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Abstract

Metaboloepigenetics is a newly coined term in biological sciences that investigates the crosstalk between epigenetic
modifications and metabolism. The reciprocal relation between biochemical transformations and gene expression
regulation has been experimentally demonstrated in cancers and metabolic syndromes. In this study, we explored the
metabolism-histone modifications crosstalk by topological analysis and constraint-based modeling approaches in the
budding yeast. We constructed nine models through the integration of gene expression data of four mutated histone tails
into a genome-scale metabolic model of yeast. Accordingly, we defined the centrality indices of the lowly expressed
enzymes in the undirected enzyme-centric network of yeast by CytoHubba plug-in in Cytoscape. To determine the global
effects of histone modifications on the yeast metabolism, the growth rate and the range of possible flux values of reactions,
we used constraint-based modeling approach. Centrality analysis shows that the lowly expressed enzymes could affect and
control the yeast metabolic network. Besides, constraint-based modeling results are in a good agreement with the
experimental findings, confirming that the mutations in histone tails lead to non-lethal alterations in the yeast, but have
diverse effects on the growth rate and reveal the functional redundancy.
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Introduction

Biological systems contain many highly interconnected process-

es that function in a coordinated fashion to produce cellular

behavior. Therefore, understanding the biological networks and

their crosstalk properties is important to put an accurate

interpretation on the complex nature of biological systems.

Metabolism and epigenetics are two central biological processes

that are vital to the organisms’ survival and reproduction.

Metabolism is a complex network of dynamical biochemical

reactions empowering organisms to grow, reproduce and maintain

their integrity [1]. Epigenetic mechanisms, as a constituent of gene

expression regulation machinery, alter transcriptional activities of

various genes, independently of changes in their nucleotides

sequences [2]. These mechanisms include modifications of DNA

and histone proteins, such as different combinations of histone

acetylation, methylation and phosphorylation which shape, the so-

called ‘histone code’ and DNA methylation. Ultimately, these

modifications lead to transcriptionally active or inactive chromatin

[3]. Growing evidence suggests the possible link between different

metabolic states of living systems and the epigenetic modifications

[4]. For instance, histone acetylation is under control of changes in

the intracellular concentration of acetyl-CoA [5]. On the other

hand, some of these epigenetic modifications change the metabolic

gene expression patterns under varying conditions [6]. Further-

more, recent studies propose that the impairments in the interface

between epigenetics and metabolism are strongly associated with

development of cancers [7] and metabolic syndromes [8].

Consequently, the cellular metabolism and the epigenetic modi-

fications are not independent entities, and they would better be

viewed as an integrated discipline, metaboloepigenetics that

focuses on the crosstalk between them [9]. To illustrate the

genotype-phenotype relationship of metabolism, a complete map

of biochemical reactions and their comprehensive connections in a

cell is required [10]. The Genome-Scale Metabolic Model

(GSMM) is a mathematical framework, to gain a comprehensive

understanding of physiology and the metabolic capacities of the

cell, as well as being used for integrative data analysis of genetic,

epigenetic and metabolism in combination [11]. Following the

introduction of GSMM, the integration of gene expression data

into the GSMM, was the new challenge for a better prediction of

the metabolic cell fate. The integrative data approach, leads to a

deeper understanding of the occurrence of certain changes in

different conditions and creates condition- and tissue-specific

models [12,13]. For the first time, Covert and Palsson [14]

addressed this issue in 2002. In 2004, Akesson et al. [15] used gene

expression data as an additional constraint on the metabolic fluxes

in yeast. Afterward, different algorithms were developed for

tackling this challenge; GIMME [16], E-Flux [17], Moxley [18],

MADE [19], RELATCH [20], INIT [21] and mCADRE [22].

Recently, advantages and disadvantages of different approaches of

integration of expression data into constraint-based modeling have

been evaluated [23]. Due to the availability of curated data [24],

we focused on Saccharomyces cerevisiae, the budding yeast, as a
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model for investigating the global influences of epigenetic

modifications on metabolism. The first budding yeast GSMM,

iFF708, [25] was released in 2003. This model consists of 708

genes and 1175 reactions. Afterward, the improved versions of

yeast GSMM were reconstructed; iND750 [26], iLL672 [27],

iLN800 [28], iMM904 [29], improved iMM904 [30], and yeast 5

[31] released in the standard format using jamboree approach [32]

which is the most up to date version.

In this study, we used the GSMM of S. cerevisiae, Yeast_6.01,
as a scaffold, consisting of 889 genes, 1889 reactions (150 reactions

are irreversible), 1456 metabolites and the standard biomass

equation. Then we analyzed the nine gene expression profiles of

four different states of mutated histones tails (H2A, H2B, H3, and

H4) extracted from Gene Expression Omnibus (GEO) [33].

Subsequently, we constructed nine models, by integrating fold

change values of the significantly lowly expressed reactions of each

gene expression profile, as an additional constraint on metabolic

fluxes. Afterward, we have tried to explore possible relation

between topological analysis of metabolic network and down-

regulated genes with this assumption that down-regulated genes

could affect and control the yeast metabolic network. Then, Flux

Balance Analysis (FBA), as a constraint-based modeling approach

has been used to compute and compare [34], [35] the impact of

the mutated histone tails on every reaction flux, the global

metabolic fluctuations and the growth rate. The results verifies the

prior experimental findings, showing that the histone tails are not

essential for the viability of yeast but have a large impact on a vast

range of metabolic reactions, which reveals the functional

redundancy of the histone tails and their ability to regulate their

own metabolite sources [36].

Materials and Methods

2.1. The GSMM of yeast and gene expression data
In this study, we used microarray gene expression profiles and

RNA-Seq data of mutated histone tails [37–40] of S. cerevisiae
extracted from GEO database. The GSE accession numbers and

their categorizations are listed below. The GSMM of yeast in

SBML format (Systems Biology Markup Language), a represen-

tative format for mathematical models of biological processes such

as metabolic network, was obtained from http://www.comp-sys-

bio.org/yeastnet. The metabolic states of yeast have been studied

by integration of gene expression data into the Yeast_6.01 GSMM

as a scaffold model.

GSE1639: Consists of gene expression profiles of H3 and H4

mutated tail. [37].

Group 1: H3 deleted tail.

Group 2: H3 substituted tail, lysine substituted with glutamine

residues in histone 3 tail.

Group 3: H4 substituted tail, lysine substituted with glutamine

residues in histone 4 tail.

Group 4: H4 deleted tail.

GSE3806: Consists of gene expression profiles of H2B mutated

tail. [38].

Group 5: H2B deleted tail.

Group 6: H2B substituted tail, lysine substituted with glutamine

residues in histone 2B tail.

GSE7337: Consists of gene expression profile of H2A deleted

tail. [39].

Group 7: H2A deleted tail.

GSE7338: Consists of gene expression profile of H2A

substituted tail. [39].

Group 8: H2A substituted tail, lysine substituted with glutamine

residues in histone 2A tail.

GSE29293: Consists of gene expression profile of H3

depletion. [40].

Group 9: H3 depletion.

2.2. Gene expression analysis
Microarray gene expression data analysis for each given group

has been done by GeWorkbench 2.4.0 software [41]. RNA-Seq

data analysis has been done according to methodology explained

in [42]. Statistical significance of up- and down-regulated genes

computed by t-test for the Wild Type (WT) and its corresponding

mutated histone tail on log2-normalized data (using WT and

mutated histone tail data sets as case and control, respectively).

The differential expression of a gene defined significant, if p-value
,0.01 and the negative fold change value was indicative of the

down-regulated genes. The SBML file of Yeast_6.01 was

converted into COBRA (Constraints Based Reconstruction and

Analysis) model structure by COBRA toolbox for subsequent

analysis and the lowly expressed reactions determined according to

gene-protein-reaction relationship (GPR) in the COBRA model of

Yeast_6.01.

2.3. Model construction
FBA, a constraint-based modeling approach, calculates the flow

of metabolites through a metabolic network. This method allows

predicting the rate of production of a metabolite or the growth rate

of an organism. FBA includes delineating constraints on the

network, based on environmental, physicochemical, regulatory,

enzyme capacity and thermodynamics principles for shrinking the

solution space. Integration of transcriptomic data into GSMM is a

way to generate better predictive computational models through

adding an extra biologically meaningful constraint and limiting the

solution space of the GSMM. Blazier and Papin in a comprehen-

sive review, summarized the differences, limitations and advan-

tages of all integration algorithms [43]. Considering biological

concepts, there are some limitations in the different integration

algorithms. For example, the GIMME algorithm reduces gene

expression data into binary states (0 and 1 for on and off state of an

enzyme, respectively) and the iMAT algorithm [44] into three

states (21, 0, and 1 for lowly expressed, moderately expressed, and

highly expressed enzymes, respectively). It is not biologically

acceptable that the down-regulated genes and their corresponding

fluxes removed from the model, because lowly expressed is not

equivalent with the gene silencing. In MADE approach [19], there

is no exact threshold to determine which reaction is highly

expressed and which one is lowly expressed and in E-Flux [17]

there is no function to convert gene expression level into fluxes.

Totally, there are two main classes for creating condition-

specific models; switch- and valve-based approaches. In a switch-

based approach, the lowly expressed genes removed from

constrained model by adjusting their corresponding reactions

boundaries (lower and upper bounds) to zero, while in a valve-

based approach, the activity of lowly expressed genes decrease by

reducing the corresponding reaction boundaries according to

expression values [45]. In our integration method, we followed the

valve-based approach. First, we used the simulation results of the

unconstrained initial model (Yeast_6.01) to identify the reaction’s

fluxes (which matches fluxes observed in vivo) and established the

boundaries of the WT model according to the reaction fluxes of

the initial model [31]. Then, we imposed the gene expression data

of nine groups on these fluxes to construct new models. It means

that, the solution space of the constructed GSMMs has been

shrunk by adjusting the reaction’s fluxes of initial model according

to their fold change values of lowly expressed genes. In other

words, the upper and lower bounds of our new constructed models
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are the reduced simulated reaction’s fluxes of initial model.

However, to represent up-regulated genes, we have to increase the

flux ranges of the corresponding reactions which will not have any

impact on the FBA-based solution. Therefor we excluded the up-

regulated genes from our study. We have used p-value as a

threshold for identification of highly and lowly expressed genes.

Finally, for not reducing the gene expression data into binary or

three states, we used fold change values as a quantitative

parameter to constraint the fluxes. Figure 1 shows that how

expression data integrated into GSMM.

Moreover, we used the standard biomass equation as an

objective function of the yeast growth rate. To investigate the

comprehensive metabolic properties of the models, several

COBRA utilities have used. All GSMMs are available in the File

S2.

2.4. Topological analysis
Centrality analysis has been carried out on the undirected

enzyme-centric network [46] of Yeast_601 using CytoHubba plug-

in in Cytoscape [47]. We have used twelve centrality indices:

Maximal Clique Centrality (MCC), Density of Maximum

Neighborhood Component (DMNC), Maximum Neighborhood

Component (MNC), Degree, Edge Percolated Component (EPC),

Bottleneck, Eccentricity, Closeness, Radiability, Betweenness,

Stress and Clustering Coefficient. Then, the lowly expressed

enzymes of nine constructed GSMMs, were sorted based on their

centrality indices. (For more information, see part A in the File

S1).

2.5. COBRA utilities that have been used in this study
Among various software for calculating the FBA, we used the

well-known MATLAB toolbox, COBRA, and a standard objective

function (maximization of biomass equation) for evaluating the

Figure 1. This figure is a schematic workflow of our method for GSMM construction. The significant down-regulated gene (p-value ,0.01)
and the corresponding reactions (according to GPR) were determined. (In this model, 5 genes and 6 reactions were identified). Afterward, we have
restricted the fluxes of the given reactions according to their fold change values. For example if the fold change value is 22, we have restricted the
upper bound and lower bound of the corresponding flux to one quarter of the corresponding WT.
doi:10.1371/journal.pone.0111686.g001
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metabolic models. After running the optimizeCbModel function in

the COBRA toolbox, four main output structures are built: f, x, y,

and w, where f is optimal objective value, x is containing reaction

fluxes of each reaction in the model, y is a vector of shadow prices,

and w is a vector of reduced costs.

Then, we calculated the number of carrying-flux reactions

(negative and positive carrying-flux reactions) according to the x
file of each model extracted after performing FBA.

Flux Variability Analysis (FVA) was carried out on all GSMMs

to identify and compare the range of possible flux values (flux

Figure 2. Shows the workflow of our study. This study consists of two parts; topological analysis and constraint-based modeling. In the
topological analysis section, we used the twelve centrality indices of the undirected enzyme-centric network of yeast and examined the distribution
of the down-regulated genes in the nine mutated histone tails profiles, extracted from geWorkbench software. In the constraint-based modeling
section, we integrated gene expression of nine groups of the mutated histone tails profiles to the yeast GSMM and constructed new models. FBA,
FVA, pFBA and Single gene deletion analyzed by COBRA toolbox.
doi:10.1371/journal.pone.0111686.g002

Table 1. Up and down significant metabolic genes in each group.

GEO accession (Histone Modifications)
Total no. of GSMM
Significant genes

No. of Up-Regulated
Genes

No. of Down-
Regulated genes Annotation files

1.GSE1639 WT-H3 (Deletion1–28) 36 31 5 YG_S98.na32.annot

2.GSE1639 WT-H3(K4,9,14,18,23,27Q) 96 58 38 YG_S98.na32.annot

3.GSE1639 WT-H4 (K5,8,12,16Q) 35 18 17 YG_S98.na32.annot

4.GSE1639 WT-H4 (Deletion 2–26) 41 14 17 YG_S98.na32.annot

5.GSE3806 WT-H2B (Deletion 3–32) 8 3 5 YG_S98.na32.annot

6.GSE3806 WT-H2B (K-G) 12 3 9 YG_S98.na32.annot

7.GSE7337 WT-H2A (Deletion 4–20) 57 33 24 YG_S98.na32.annot

8.GSE7338 WT-H2A (K4,7G) 9 7 2 YG_S98.na32.annot

9.GSE29293 WT-H3 Depletion 135 130 5

doi:10.1371/journal.pone.0111686.t001
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Figure 3. Shows the distribution of down-regulated enzymes in enzyme-centric network of yeast in H4 substituted tail model. The x-
and y-axis indicate the centrality score and the enzyme ID of the H4 substituted tail model, respectively.
doi:10.1371/journal.pone.0111686.g003

Figure 4. Shows the growth rate (the optimal objective value) of all constructed GSMMs calculated by FBA. The unit of the growth rate
is mmol gDW21 hr21 (milimoles per gram dry cell weight per hour).
doi:10.1371/journal.pone.0111686.g004
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capacity) resulting in the same optimal objective value (maximum

and minimum possible fluxes through a particular reaction). We

compared the flux capacity of each reaction of a mutated histone

tail models with the corresponding reaction of WT model. So,

positive values indicate increased flux capacity in mutated histone

tail models in comparison to corresponding WT model, whereas

negative values indicate decreased flux capacity in mutated histone

tail models in comparison to corresponding WT model. Finally,

the increased and decreased ranges of flux values categorized in

the yeast metabolic subsystems.

Single Gene Deletion used to compute the essential genes,

which are important for the growth of the each model.

Parsimonious FBA (pFBA) used to categorize the metabolic

reactions to the six groups according to their importance in FBA.

The SingleGeneDeletion function is implemented by constrain-

ing the flux of deleted gene to zero and then the flux distribution

and maximal growth for the new phenotype simply calculated by

FBA. If the maximal growth of the new phenotype is reduced, the

gene will be essential. The pFBA method is a modified of FBA in

which an extra constraint is added. In this approach, after

maximizing the growth rate, the net metabolic flux through all

gene-associated reactions will be minimized [35,48]. According to

the additional constraint (minimization of metabolic adjustment)

in pFBA method, the number of non-essential metabolic genes

decreases compared with single gene deletion method [48].

Then, we calculated the percentage of the lowly expressed

enzymes of the nine constructed GSMMs in each category of

pFBA and Single Gene Deletion. (For more information, see part

B in the File S1).

Production of cofactors and biomass precursors: We used this

capability of FBA for calculating the maximum yield of acetyl-

CoA in GSMMs. Acetyl-CoA in nucleocytosolic compartment is

the main donor of acetyl group in histone acetylation and is also

used for de novo synthesis of fatty acid. In fact, histone acetylation

and synthesis of fatty acids compete for the same acetyl-CoA pool.

Acetyl-CoA synthetase is responsible for acetyl-CoA production

and acetyl-CoA carboxylase, is an enzyme which carboxylates

acetyl-CoA to form malonyl-CoA in de novo synthesis of fatty

acids. Actually, acetyl-CoA carboxylase regulates the activity of

acetyl-CoA synthetase [49]. For maximizing the production and

regulation of acetyl-CoA, we set the objective function of the

constructed models to acetyl-CoA carboxylase and acetyl-CoA

synthetase reactions respectively, and turning the lower bound of

these two reactions to 0 because these two reactions are known to

be irreversible. Figure 2 illustrates the workflow of our study.

Results

3.1. Gene expression results
In this study, we just considered the significantly up- and down-

regulated metabolic genes extracted from GeWorkbench 2.4.0

software. Table 1 summarizes the basic information about up- and

down-regulated metabolic genes. The table shows that the highest

number of the significant metabolic genes was found in H3

deletion group, whereas the group 8, H2A substituted tail, had the

lowest number of the significant metabolic genes. For constraint-

based modeling, we took into account the down-regulated

metabolic genes for further analysis. Afterward, the nine mutated

histone tail models were constructed. All data are available in the

File S3.

3.2. Topological analysis
Centrality indices are a global property of a network that ranks

the graph nodes according to their importance in the network.

The higher the rank the more important the node is in the

network, indicating that it may play key roles in controlling cellular

Figure 5. Comparison of the number of all, positive and negative carrying-flux reactions (blue, brown and green bars, respectively)
in all constructed GSMMs.
doi:10.1371/journal.pone.0111686.g005
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Table 2. Increased flux range of yeast metablic subnetwork in the 9 mutated histone tail models.

Metabolic subsystem Models

2-ketoglutarate dehydrogenase complex 1- 3- 4- 5- 9

acetoin biosynthesis 1- 3- 4- 5- 6- 9

arginine biosynthesis 1- 2- 4- 6

arginine degradation 1- 3- 4- 5- 6- 9

beta-alanine biosynthesis 1- 2

butanediol biosynthesis 1- 2- 3- 4- 5- 6- 9

chorismate biosynthesis 1- 2- 3- 4- 5- 9

de novo biosynthesis of purine nucleotides 1- 2- 3- 5- 9

de novo biosynthesis of pyrimidine ribonucleotides 1- 2- 3- 6- 9

ergosterol biosynthesis 1- 5- 6- 9

fatty acid biosynthesis 1- 2- 3- 4- 5- 6- 9

folate biosynthesis 1- 2- 3- 4- 5- 6- 9

formaldehyde oxidation 1- 2- 3- 4- 6- 9

glutamate biosynthesis 1- 2- 3- 4- 5- 6- 9

glutamate degradation 1- 3- 4- 5- 6- 9

glutathione-glutaredoxin redox reactions 1- 3- 4- 5- 6- 9

glycine biosynthesis 1- 2- 3- 4- 5- 6- 9

glycolysis/gluconeogenesis 1- 2- 3- 4- 5- 6- 9

glyoxylate cycle 1- 2- 3- 4- 5- 6- 9

hexaprenyl diphosphate biosynthesis 1- 5- 6- 9

histidine biosynthesis 1- 2- 3- 5- 9

homoserine biosynthesis 1- 3- 4- 5- 6- 9

isoleucine biosynthesis 1- 2- 3- 4- 5- 6- 9

leucine biosynthesis 1- 2- 3- 4- 5- 6- 9

lysine biosynthesis 1- 2- 3- 4- 5- 6- 9

methionine salvage pathway 1- 3- 4- 5- 9

mevalonate pathway 1- 2- 3- 4- 5- 6- 9

nonoxidative branch of the pentose phosphate pathway 1- 2- 3- 4- 5- 6- 9

oxidative branch of the pentose phosphate pathway 1- 2- 3- 4- 5- 6- 9

p-aminobenzoate biosynthesis 1- 2- 3- 5- 9

pantothenate and coenzyme A biosynthesis 1- 3- 4- 5- 6- 9

periplasmic NAD degradation 1- 2- 3- 9

phenylalanine biosynthesis 1- 2- 3- 4- 5- 6- 9

phosphatidate biosynthesis 2- 4- 9

proline biosynthesis 1- 2- 3- 4- 5- 6- 9

putrescine biosynthesis 1- 3- 4- 5- 9

pyruvate dehydrogenase 1- 2- 3- 4- 5- 6- 9

S-adenosylmethionine biosynthesis 1- 2- 3- 4- 5- 6- 9

salvage pathways of purines and their nucleosides 1- 2- 3- 9

spermidine and methylthioadenosine biosynthesis 1- 3- 4- 5- 9

sulfate assimilation pathway 1- 2- 3- 4- 5- 6- 9

superpathway of glucose fermentation 1- 3- 4- 5- 6- 9

superpathway of histidine, purine, and pyrimidine biosynthesis 1- 2- 3- 5- 9

TCA cycle, aerobic respiration 1- 3- 4- 5- 9

thioredoxin system 1- 2- 3- 4- 5- 6- 9

tryptophan biosynthesis 1- 2- 3- 5- 6- 9

tryptophan degradation 1- 2- 3- 4- 5- 6- 9
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behavior [50]. Twelve centrality indices of the undirected enzyme-

centric network of yeast were computed by cytoHubba. Results

show that the lowly expressed enzymes are in the top rank of

centrality indices of each given model. The File S4, lists the lowly

expressed enzymes among the 100 top ranked of twelve different

centrality indices. Figure 3 shows the distribution of the lowly

expressed enzymes in undirected enzyme-centric network of yeast

in the H4 substituted tail model as an example. Results show that

the properties of yeast metabolic network could change despite its

scale-freeness.

3.3. Constraint-based modeling results
3.3.1. FBA and comparison of all reaction fluxes in the

nine models. After model construction, to scrutinize the impact

of mutated histone tails on the cell growth rate, FBA was carried

out for all nine constructed GSMMs while the objective function

was a standard biomass function. The biomass function is a

hypothetical reaction that experimentally determines and quanti-

fies the specific growth rate of the cell. This reaction reflects the

needs of the cell in order to make 1 gr of cellular dry weight.

Figure 4 summarizes the optimal objective values of all construct-

ed models. Results show that the different mutated histone tails

have diverse effects on the growth rate of the corresponding

models. The H3 depletion model, has the lowest value while the

H2A substituted tail model, has no changes in the optimal

objective value.

All the computed optimal reaction fluxes of the nine models

were compared with the WT model (as it has been described in the

method section 2.5). Results as indicated in Figure 5, show that the

number of carrying-flux reactions of all models has been decreased

in comparison with the WT model, except in the H2B deleted and

substituted tail models. The numbers of the negative carrying-flux

reactions (according to the direction of reversible flux) have almost

no change in comparison with the positive carrying-flux reactions.

It means that in the H2B model, despite the increase in the

carrying-flux numbers, the optimal objective value decreases. In

other words, H2B modifications have a direct effect on the growth

rate.

3.3.2. FVA. Biological systems often contain redundancies

that contribute to their robustness. FVA is a valuable method to

Table 2. Cont.

Metabolic subsystem Models

tyrosine biosynthesis 1- 2- 3- 4- 5- 6- 9

tyrosine degradation 1- 2- 3- 5- 6

valine biosynthesis 1- 3- 4- 5- 6- 9

valine degradation 1- 2- 3- 4- 5- 6- 9

Models 1–9 refer to the H3 deleted tail model, the H3 substituted tail model, the H4 substituted tail model, the H4 deleted tail model, the H2B deleted tail model, the
H2B substituted tail model, the H2A deleted tail model, the H2A substituted tail model and the H3 depletion model, respectively.
doi:10.1371/journal.pone.0111686.t002

Table 3. Decreased flux range of yeast metablic subnetwork in the 9 mutated histone tail models.

Metabolic subsystem Models

ATPase, cytosolic 3–9

de novo biosynthesis of purine nucleotides 2- 3- 4- 6- 7

de novo biosynthesis of pyrimidine deoxyribonucleotides 4–5

de novo NAD biosynthesis 2–4

fatty acid oxidation pathway 2–6

folate transformations 2

glycerol degradation 2–6

glycine cleavage complex 2

histidine biosynthesis 4

NADH dehydrogenase 3

periplasmic NAD degradation 7

phosphatidylinositol phosphate biosynthesis 4

salvage pathways of adenine, hypoxanthine and their nucleosides 2- 3- 4

salvage pathways of guanine, xanthine and their nucleosides 4

salvage pathways of purines and their nucleosides 4

salvage pathways of pyrimidine ribonucleotides 2- 3- 4

serine biosynthesis 7

TCA cycle, aerobic respiration 2–6

Models 1–9 refer to the H3 deleted tail model, the H3 substituted tail model, the H4 substituted tail model, the H4 deleted tail model, the H2B deleted tail model, the
H2B substituted tail model, the H2A deleted tail model, the H2A substituted tail model and the H3 depletion model, respectively.
doi:10.1371/journal.pone.0111686.t003
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examine the redundancy of metabolic network by calculating the

full range of the numerical values (maximum and minimum

possible fluxes) for each reaction. FVA was carried out for each

model and subsequently compared to the WT model. Then,

increased and decreased flux range of each reaction within the

metabolic subsystems of yeast were determined. Table 2 summa-

rizes the increased flux range of the metabolic subsystems of each

model. As results in Table 3 show, the main effects of histone tail

modifications are on the increasing of flux range.

3.3.3. pFBA and single gene deletion results. pFBA was

used to label all metabolic genes based on their ability to

contribute to the optimal growth rate predictions. As results in

Table 4 show, the lowly expressed enzymes in each model are

important regarding to SingleGeneDeletion function and pFBA

analysis.

3.3.4. Production and regulation of acetyl-CoA. Table 5,

shows the different turnover values of acetyl-CoA according to two

reactions, acetyl-CoA synthetase and acetyl-CoA carboxylase

reactions, (that are responsible for production and regulation of

acetyl-CoA, respectively) in the ten models. All the mutated

histone tail models changed the turnover values of this metabolite.

Results show that the histone tails play a key role in production

and regulation of acetyl-CoA.

Discussion

Cell metabolism is dependent on different factors. Among those,

some are related to the external metabolites such as nutrient

cultures, while some are internal regulatory factors [51]. It has

been shown that metabolites can regulate the chromatin-modify-

ing enzymes activities and dynamical property of the epigenome

can modify the gene expression pattern of the cell. These

evidences, providing a direct link between metabolism and

epigenetics. Scientific approaches that deal with gene expression

analysis, which related to the metabolism have several different

purposes. While some studies are directly targeting the theoretical

foundations, others trigger specific biological questions. In this

study, we aim to answer two main theoretical questions:

A) Do the modifications of histone tails (i.e., histone tail deletion

or the substitution of amino acid lysine with glutamine in

histone tail) affect the whole metabolism of yeast? Moreover,

if so, to what rate? In addition, whether the GSMMs are able

to explain these changes?

B) Is the nucleocytoplasmic acetyl-CoA, which is the main

metabolite pool for acetylation of histones, under the control

of histone tail modifications? Moreover, whether the

epigenetic modifications can control the main source of

acetylation?

To answer the first question, we used GSMM of yeast and nine

gene expression profiles of the mutated histone tails. Determina-

tion of structural properties of a network and its nature is the first

step to analyze the given network [52]. The oldest and the most

complicated network in a living cell is metabolic network, which its

topological characteristics are known. The metabolic network of

yeast shows power-law degree distribution pointing to the fact that

the network is robust to random failures and modifications in its

structure [53,54]. On the other hand, the essential genes are vital

to maintenance cellular life and their deletion will result in lethality

or infertility. Although, the main approach for separating these

genes from non-essential genes is experiment, but there are some

theoretical approaches for predicting these genes. Network

biology, is one of the theoretical approaches, which determines

the important nodes in a network by calculating the different

centrality parameters. Analyzing the undirected enzyme-centric

network of yeast according to twelve centrality indices, shows that

some of the lowly expressed enzymes are very important for the

network robustness, and suggesting that metabolism could be

influenced by them. Concomitantly, pFBA and single gene

deletion analysis, as two different theoretical approaches which

especially applied to metabolic network, confirmed this expecta-

tion. The pFBA analysis categorizes all the reactions in the

metabolic network to six clusters. The results of pFBA and single

gene deletion show some of the lowly expressed enzymes are

crucial for the yeast growth and can affect the metabolic network

and metabolism. Therefore, concluded from these results that the

connection between histone modifications and metabolism is not

implausible. Pioneering works demonstrated that the histone tails

or enzymes which are related to the acetylation of histone (e.g.

histone acetyl transferase) control the metabolism of yeast, but are

not essential for its viability [55]. For the quantification of this

crosstalk behavior and gaining more information about how these

modifications affect yeast metabolism, FBA has been done. The

FBA results (when the objective function was the biomass

equation) show considerable changes in the optimal flux values

and the growth rate of the constructed models. Although these

substantial changes differed in each model, but none of them is

lethal. Unlike the growth rate of the H2A substituted tail model

remained unchanged, the depletion of the H3 had the highest

effect on the growth rate. Subsequently, the deleted and

substituted H2B tail models showed the modest changes, while

the substituted H3 and the H4 tail models showed more changes.

This leads us to the conclusion that lysine in H3 and H4 as the

target of histone modifications has a major role in the growth rate

of yeast and the different H3 and H4 modifications can have

different growth rate. The FBA results confirm the previous

experimental results that the histone modifications were not lethal.

In 2012 Kim et al., demonstrated that the N-terminal tails of

histones reveal functional redundancy in the budding yeast [36].

The results calculated by FVA shows, that the most of the reaction

flux has been changed in all nine models and display different

metabolic patterns. The common increased range of flux in the

subsystem of the mutated H3, H4 and H2B tail models indicated a

functional redundancy in regulation of yeast metabolism including

amino acid biosynthesis (e.g. glycine, histidine, homoserine,

isoleucine, leucine, lysine, methionine, phenylalanine, proline,

tryptophan, tyrosine and valine), as well as glycolysis, gluconeo-

genesis, glyoxylate cycle, pentose phosphate pathway and TCA

cycle. By changing the objective functions of the models to a

specific reaction, the maximum yields of important metabolites

measured. In all models, our data indicates that acetyl-CoA

turnover changes in dependence of mutated histone tails, which is

potentially indicative of a change in its concentration. Indeed, it

shows that the main source of acetylation is under control of

epigenetic modifications. Finally, it is broadly accepted that the

main sources of epigenetic changes are metabolites, which can be

provided by different states of the cell metabolism. On the other

hand, epigenetic modifications change the metabolic states of a

cell. One of the essential reactions, underlying this change is

acetyl-CoA synthetase. Therefore, histone tails have a feedback

control on their main acetylation source, as a major target of

Reciprocal Association of Metabolism and Epigenetics in Budding Yeast
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epigenetic modifications. Thus, we can claim that histone tails are

the key players of crosstalk between epigenetics and metabolism.
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