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Abstract

Reducing the number of influenza A virus (IAV) infected pigs at weaning is critical to mini-

mize IAV spread to other farms. Sow vaccination is a common measure to reduce influenza

levels at weaning. However, the impact of maternally-derived antibodies on IAV infection

dynamics in growing pigs is poorly understood. We evaluated the effect of maternally-

derived antibodies at weaning on IAV prevalence at weaning, time of influenza infection,

number of weeks that pigs tested IAV positive, and estimated quantity of IAV in nursery

pigs. We evaluated 301 pigs within 10 cohorts for their influenza serological (seroprevalence

estimated by hemagglutination inhibition (HI) test) and virological (prevalence) status. Nasal

swabs were collected weekly and pigs were bled 3 times throughout the nursery period.

There was significant variability in influenza seroprevalence, HI titers and influenza preva-

lence after weaning. Increase in influenza seroprevalence at weaning was associated with

low influenza prevalence at weaning and delayed time to IAV infection throughout the nurs-

ery. Piglets with IAV HI titers of 40 or higher at weaning were also less likely to test IAV posi-

tive at weaning, took longer to become infected, tested IAV RT-PCR positive for fewer

weeks, and had higher IAV RT-PCR cycle threshold values compared to piglets with HI titers

less than 40. Our findings suggest that sow vaccination or infection status that results in

high levels of IAV strain-specific maternally-derived antibodies may help to reduce IAV cir-

culation in both suckling and nursery pigs.

Introduction

Influenza A virus (IAV) is a primary cause of acute respiratory disease in pigs and it is also

part of the porcine respiratory disease complex (PRDC), which includes other pathogens such

as porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus 2

(PCV2), and Mycoplasma hyopneumoniae [1]. IAV infection affects the performance of pigs

by increasing feed conversion [2] and mortality [3], decreasing body weight gain [4] and
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reducing semen quality of boars [5]. IAV in pigs also represents a threat to public health since

it is a zoonosis with pandemic potential.

Influenza is widespread in US pigs and breed-to-wean (BTW) pig farms play a central role

in the spread of IAV across geographical regions [6–9]. Suckling pigs maintain, diversify and

transmit IAV when moved to other farms [10–13]. Commonly, pigs are weaned at 21 days of

age and are moved to distant locations to grow to market. The significant IAV genetic diversity

in pigs is a result not only from pig movements but also due to the rapid mutation rate of the

virus (genetic drift) [14–17] and the introduction of IAV from humans (reverse zoonosis) [18–

23] and birds [24–26], which facilitates the emergence of novel reassorted strains (genetic

shift). H1N1, H1N2 and H3N2 are the most common subtypes found in pigs and the introduc-

tion of gene segments from other species into a pool of endemic viruses has resulted in a com-

plex landscape of IAV in pigs. Indeed, currently there are 16 genetically and antigenically

distinct H1 clades (alpha, beta, gamma, gamma 2, delta 1a, delta 1b, delta 2 and pandemic

2009) [15, 17, 27] or H3 clusters (IV A-F, human-like 2011 and human-like 2016) [9, 14, 28,

29] of IAV co-circulating in US pigs. This broad genetic diversity and the common co-circula-

tion of several clades within a farm or production system represents a critical hurdle for vac-

cines to induce cross-protective immunity effective against genetically diverse strains [30, 31].

Sow vaccination is the main measure to control influenza in BTW farms [32–35]. Sow vac-

cination helps protecting the herd from severe clinical disease and enhances the transfer of

maternally-derived antibodies (MDA) from sows to piglets through colostrum. MDA protect

piglets from clinical disease shortly after weaning [36–39] and strain-specific MDA can also

decrease IAV transmission in weaned pigs [40]. However, although the use of IAV vaccines in

BTW farms is common, IAV still circulates in pigs likely due to the limitations for generating

sufficient levels of immunity against the multiple strains co-circulating [11, 41].

In addition, pigs have complex IAV infection dynamics, such as recurrent infections, multi-

ple waves of infection, co-circulation of genetically distinct viruses and frequent reassortment

events observed in growing-finishing pigs [42–49]. However, quantitative knowledge on the

factors that are associated with the complex IAV infection dynamics in nursery pigs is limited.

Also, there is limited information about how IAV MDA may impact infection dynamics in

nursery pigs. Filling this knowledge-gap is critical to guide successful intervention strategies

for BTW farms that aim to reduce IAV circulation in pigs before and after weaning. In our

study, we evaluated the effect of IAV seroprevalence and individual MDA levels at weaning on

IAV prevalence at weaning, time to IAV infection after weaning, number of weeks that pigs

tested IAV RT-PCR positive, and IAV RT-PCR cycle threshold values in pigs after weaning.

Results from our study contributed to determine whether sow interventions in the breeding

herd have a direct benefit in piglets at weaning and throughout the growing period in the

nursery.

Materials and methods

Ethics statement

This study was carried out after the protocol was approved by the Institutional Animal Care

and Use Committee (Protocol Number: 1510-33054A) and the Institutional Biosafety Com-

mittee (Protocol Number: 1508-32918H) of the University of Minnesota. The participating

producers provided written consent to conduct the study in their farms. All samples were col-

lected by trained veterinarians and researchers. Pigs were raised indoors in conventional

mechanically ventilated nursery barns with climate control. Pigs had ad libitum access to fresh

food and water and farmers monitored the health of the pigs twice daily to detect and treat any
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sick pig. Pigs were cared according to recommendations by the herd veterinarian which

included antipyretic and antibiotic treatments on as needed basis.

Study population and design

Piglets (n = 301) were identified at weaning and tested during the growing period in the nurs-

ery which included piglets from 3 to 10 weeks of age. Five batches of weaned piglets were

placed into 2 separate nursery farms. Pigs in each batch were divided into 2 rooms for a total

of 10 cohorts. Approximately 30 pigs within each cohort were selected and pigs were placed in

a randomly selected pen within each room. Each nursery farm was a single-barn site with two

rooms with all-in/all-out flow by site (all pigs entered and exited at once to facilitate cleaning

and disinfection of the entire facility). Piglets were vaccinated at weaning against Mycoplasma
hyopneumoniae, PCV2 and PRRSV (Ingelvac 3FLEX1 Vaccine, Boehringer Ingelheim Vetme-

dica, Inc., St. Joseph, MO).

Piglets originated from a single air-filtered 3,200 sow farm located in Minnesota with a his-

tory of testing IAV positive by RT-PCR in piglets prior to weaning for at least the last 2 months

before the study began. The sow farm was located within 10 miles from the nursery farms and

known to be negative for wild-type PRRSV strains but positive for M. hyopneumoniae and

PCV2. Additionally, incoming replacement females (gilts) were vaccinated twice with an inac-

tivated IAV commercial vaccine (FluSure XP1; Zoetis Inc, Parsippany, NJ).

The study was conducted from November 2015 to April 2016. During that time, sows were

vaccinated against PRRSV using a modified-live vaccine (Ingelvac PRRS1MLV vaccine,

Boehringer Ingelheim Vetmedica, Inc., St. Joseph, MO) as part of their biannual vaccination

against PRRSV. During 8 weeks within the study period (December 2015 to January 2016),

sows were also vaccinated with 2 commercial IAV inactivated vaccines (Maxivac Excell 5.01,

Merck Animal Health, Madison, NJ; and FluSure XP1, Zoetis Inc, Parsippany, NJ) with

cohorts 3a, 3b, 4a and 4b originating from vaccinated sows. There was no sow influenza vacci-

nation before and after the described 8-week period during the study timeframe. Cohort

details are explained in Table 1.

Sampling, testing and influenza characterization

Piglets in each cohort were ear-tagged, nasal swabbed and blood samples collected at weaning.

Nasal swabs were collected weekly post-weaning until the end of the growing period in the

nursery and blood samples collected at 3- and 6-weeks post-weaning. Nasal swabs were pro-

cessed by suspending them in 2mL of viral transport media (Minimum Essential Media plus

bovine serum albumin, antibiotics, antifungals and trypsin TCPK) and stored at -80˚C until

testing. Swabs were tested by a real-time RT-PCR targeting the IAV matrix gene [50].

Briefly, sample viral RNA was extracted using a MagMaxTM—96 viral RNA extraction kit

(Applied Biosystems, Foster City, CA) following manufacturer’s instructions using an automa-

tized robotic extraction equipment: MagMaxTM–Express 96 Deep well magnetic particle pro-

cessor (Applied Biosystems, Foster City, CA). RT-PCR test reagents were from AgPath-ID

one-step RT-PCR kit (Life Technologies, Grand Island, NY) and reactions were run in a 7500

Fast RT-PCR system (Life Technologies, Grand Island, NY). Thermal cycles for IAV detection

were 10 min at 45˚C, 10 min at 95˚C, 45 cycles of 1 sec at 94˚C and 30 sec at 60˚C within a

25μL of total volume [50]. A sample was considered IAV rRT-PCR positive if the cycle thresh-

old (ct) value was 37.5 or lower.

Additionally, two nasal swab samples with the lowest ct values in each cohort from weeks

when IAV prevalence was the highest were selected for virus isolation in Madin-Darby Canine

Kidney (MDCK) cells [51] and whole-genome sequenced (WGS) using the MiSeq Ilumina
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platform [52]. When IAV isolation was not possible, WGS was performed directly from

selected nasal swab samples (cohorts 4a, 4b, 5a and 5b). Raw sequence reads were cleaned,

trimmed and assembled against both H1 (FJ789832) and H3 (KC992248) reference strains

obtained from the Influenza Virus Resource at the National Center for Biotechnology Infor-

mation (NCBI) [53]. Hemagglutinin (HA) gene assembly was done using the Map to a Refer-

ence function in Geneious 8.1 software [54].

HA gene consensus sequences were annotated for completeness, functionality and subtype

classification using the influenza virus sequence annotation tool (FLAN) [55]. Complete HA

gene sequences were further characterized using BLAST tools and the global swine H1 clade

was inferred using the swine H1 clade classification tool from the Influenza Research Database

(IRD) [56].

HA gene sequences were aligned and translated into amino acid sequences to further ana-

lyze the amino acid similarities between viruses from the BTW farm, the studied cohorts and

the IAV commercial vaccines used in sows. Alignment, amino acid translation and sequence

comparisons were done using the ClustalW algorithm, Neighbor Joining method and a Jukes-

Cantor substitution model in Geneious software [54]. H1 antigenic sites (Sa, Sb, Ca1, Ca2 and

Cb) [57–61] were compared among the obtained sequences using the above described analysis

and the Identify Sequence Features in Segments tool of the IRD [56].

Finally, blood samples were left at room temperature for serum separation and then refrig-

erated overnight. Samples were centrifuged for 10 min at 1500 rpm and 4˚C. Sera then were

stored at -20˚C until testing. Sera were tested by hemagglutination inhibition (HI) assay using

a representative and dominant IAV isolate (H1 delta 2) among all cohorts and BTW farm.

Briefly, sera were pretreated with receptor destroying enzyme (RDE) and incubated at 37˚C

for 14 hours overnight. Incubated sera were hemadsorpted by adding a 20% turkey red blood

cell solution, centrifuged, and stored at -20˚C until titration. Two-fold serial dilutions from

1:10 to 1:640 were tested for each serum sample using an antigen solution containing 16 hem-

agglutination units (HAU) in 50uL and a 0.5% turkey red blood cell solution. Positive and neg-

ative controls were used in each plate to confirm the results obtained in plate. Plates were read

manually by tilting them and visualizing inhibition of agglutination (presence of a mat of red

blood cells in the bottom of the well) [62]. Additionally, 15 pigs in each cohort were selected

according to their HI titers (half of the piglets within each HI titer) at weaning and serum sam-

ples tested by IAV NP ELISA (IDEXX Influenza A Ab Test, IDEXX Laboratories, Inc., West-

brook, Maine). A sample was considered positive if the S/N value was less than 0.6. ELISA

testing was done according to the manufacturer’s protocol.

Table 1. Cohort information.

Cohort ID Nursery farm ID Nursery room ID No. pigs/room No. pens/room No. pigs sampled Sow IAV vaccination

1a 1 A 707 28 28 No

1b 1 B 707 28 28 No

2a 2 A 670 20 34 No

2b 2 B 670 20 31 No

3a 1 A 700 28 28 Yes

3b 1 B 699 28 27 Yes

4a 2 A 675 20 34 Yes

4b 2 B 675 20 34 Yes

5a 1 A 708 28 28 No

5b 1 B 709 28 29 No

https://doi.org/10.1371/journal.pone.0210700.t001
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Data analysis

Individual HI titer data was tabulated and classified as HI-positive or -negative using a recipro-

cal HI titer of 40 as the cutoff point (�40 were considered positive). RT-PCR data were tabu-

lated and classified as positive or negative based on a cycle threshold (ct) cutoff point of 37.5.

Then, the percentage of IAV RT-PCR and HI serum antibody positive pigs over time in the

nursery was calculated and values reported as prevalence and seroprevalence, respectively.

Prevalence and seroprevalence data were summarized by week for each cohort.

Time to IAV infection was calculated by counting the number of weeks from weaning until

a pig tested IAV RT-PCR positive. The number of weeks that a given pig tested IAV RT-PCR

positive during the growing period in the nursery was calculated by counting the total number

of weeks that a pig tested IAV RT-PCR positive for the entire nursery period. Because the real-

time RT-PCR used in this study is semi-quantitative, the estimated quantity of IAV virus was

approximated from the RT-PCR ct values, with the lowest ct values having the highest esti-

mated virus quantity and ct values of>37.5 having estimated virus quantity approaching zero.

For a given pig, the lowest ct value during the entire study was chosen for the median calcula-

tions by cohort. Median values of time to IAV infection, number of weeks that a pig tested

IAV RT-PCR positive and lowest ct values were calculated for each cohort and for each recip-

rocal HI titer group using the dplyr package in R 3.4.2 statistical software [63].

To test the association between IAV seroprevalence of the cohort and HI titer at weaning

with prevalence at weaning, time to IAV infection, number of weeks that pigs tested IAV

RT-PCR positive and lowest ct values during the nursery period, a Spearman non-parametric

correlation test was used in STATA 121 statistical software (StataCorp, College Station, TX)

[64]. Different regression models were used to test the association of HI titers at weaning with

IAV RT-PCR positivity at weaning for each pig (logistic regressions), time to IAV infection

and number of weeks that each pig tested IAV RT-PCR positive (Poison regressions), and low-

est ct value of each pig during the growing period in the nursery (linear regressions). Regres-

sions were modeled under generalized linear models (GLM) in the glimmix procedure of SAS

9.41 statistical software (SAS Foundation, Cary, NC) [65]. Models were adjusted by nursery

farm and season effects as fixed covariates. Best models were chosen based on goodness of fit

criteria using the lowest Bayesian Information Criterion (BIC) and visual inspection of the

residuals to check model assumptions accordingly.

Results

A total of 301 piglets from 10 cohorts were tested from weaning to the end of the growing

period in the nursery. Overall, there were 885 serum samples of which 28% had a reciprocal

HI titer of 40 or higher. Moreover, 348 of 2176 (16%) nasal swabs were IAV RT-PCR positive.

In total, 185 of 301 pigs (62%) tested IAV RT-PCR positive at least once during the study (S1

Table).

We obtained 20 IAV HA gene sequences including 19 from the cohorts and 1 from the

BTW farm prior to the start of the study. We characterized the HA gene sequences as H1 delta

2 (1B.2.1) viruses having 99.4% nucleotide and 99.3% amino acid similarity among themselves.

The H1 delta 2 HA gene sequences obtained during the study shared 94.3% and 94.8% amino

acid similarity to the H1 delta 2 commercial vaccine strains used in the BTW farm and there

were no amino acid changes in the H1 antigenic sites (Sa, Sb, Ca1, Ca2 and Cb).

There was appreciable variability in prevalence and seroprevalence between cohorts over

time (Fig 1). IAV prevalence at weaning changed from almost 100% in cohorts with low sero-

prevalence to about 0% in cohorts with high seroprevalence at weaning. Inversely, seropreva-

lence measured by HI titers against the H1N2 delta 2 IAV circulating farm strain at weaning
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changed over time from 0% in cohorts of piglets originating from non-vaccinated sows up to

80 and 90% in cohorts originating from vaccinated sows. Additionally, IAV prevalence during

the growing period in the nursery at the cohort level varied. There were episodes of high preva-

lence of IAV infection at weaning (97–100%) with none or one recurrent infection after wean-

ing to episodes of lower prevalence (~0%) at weaning with limited infection during the

nursery, as shown in Fig 1.

IAV NP ELISA results summarized as percentage of ELISA positive pigs over time in each

cohort are also shown in Fig 1 (red dots). Almost all pigs at weaning tested IAV NP ELISA pos-

itive and percentage of positive pigs declined over time or increased slightly after the second

peak of infection, similar to the HI titers dynamics observed in most of the cohorts. However,

cohorts 1a, 1b, 2a and 2b had a high percentage of NP ELISA positive pigs at weaning and pigs

had low HI titers and high levels of IAV infection. In these cohorts, pigs did not appear to have

HI strain-specific antibodies that could prevent IAV infection.

Per cohort, high seroprevalence at weaning was significantly associated with lower IAV

prevalence at weaning (correlation value of -0.71) and it took a longer time, more than 6

weeks, to become IAV infected after weaning. The number of weeks that pigs tested IAV posi-

tive, and lowest ct values during the growing period in the nursery were not significantly asso-

ciated with seroprevalence at weaning although, there was a numerical trend that reflected

limited circulation of IAV after weaning. Table 2 illustrates the association between IAV sero-

prevalence at weaning and our calculated IAV infection data after weaning for each cohort.

HI titer group at weaning was significantly associated with infection dynamics after wean-

ing as detailed in Table 3. According to their HI titer group at weaning, reciprocal HI titers of

40 or higher were significantly associated with lower IAV levels at weaning, longer time to

IAV infection, fewer weeks that pigs tested IAV RT-PCR positive, and less estimated quantity

of virus in groups of pigs during the growing period in the nursery.

Individual HI titer at weaning was significantly associated with the IAV RT-PCR positive

status during the growing period in the nursery as shown in Table 4. Pigs with a reciprocal HI

titer of 40 or higher at weaning were less likely to test IAV RT-PCR positive at weaning, took

longer to become IAV infected, tested IAV RT-PCR positive for fewer weeks and had higher ct

values. We estimated a 5% probability of infection for pigs with reciprocal HI titers� 40.

Overall, high MDA levels at weaning decreased the likelihood of IAV infection and circulation

at weaning and during the growing period in the nursery.

Discussion

Control of influenza in BTW farms is needed to minimize the spread of IAV across pig pro-

duction systems and regions given that piglets infected at weaning covertly transmit IAV to

other farms. Sow vaccination is the most common IAV control measure although the impact

of MDA on infection after weaning is poorly understood. Our study showed that high levels of

strain-specific MDA at weaning can decrease prevalence of IAV at weaning and more impor-

tantly, decrease the overall IAV circulation during the growing period in the nursery. Reduc-

ing IAV circulation at weaning should help decrease IAV transmission between farms.

Our study supports previous experimental work that demonstrated high MDA measured

by strain-specific HI titers reduced significantly the transmission of IAV in weaned pigs [40].

It also supports case reports where IAV elimination was attempted using IAV strain-specific

Fig 1. Influenza A virus prevalence and seroprevalence by cohort during the nursery period. Black bars are the seroprevalence

(hemagglutination inhibition titer of 40 or higher), blue line is the prevalence (percentage of RT-PCR positives) and red dots is the percentage

of NP ELISA positive pigs (S/N<0.6).

https://doi.org/10.1371/journal.pone.0210700.g001
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sow vaccination strategies that were successful in decreasing the detection of IAV in piglets at

weaning for certain periods of time [34, 35]. Notably, our results help clarify the understanding

of the effect of high levels of strain-specific MDA over IAV infection in the nursery phase

under field conditions.

Our study was also similar to other studies that reported variable levels of IAV circulation

and seroconversion in growing pigs and had one or more peaks of infection after weaning [37,

42–47]. In contrast, our results differed from studies where heterologous antibodies had been

measured. In those studies, heterologous MDA had no effect on IAV transmission in weaned

pigs, prolonged the infectious period and blocked the active immune response to infection [36,

Table 2. Cohort-level correlation of influenza A virus (IAV) seroprevalence at weaning with infection parameters in the nursery.

Cohort Number of

pigs

IAV seroprevalence (HI titer�40)

at weaning

(%)

IAV prevalence at

weaning (%)

Time to IAV infection

(weeks)

Median (IQR)

Number of IAV

positive weeks

Median (IQR)

Lowest RT-PCR ct

value

Median (IQR)

1a 28 4 100 0 (0) 1 (0) 27 (11)

1b 28 4 100 0 (0) 1 (1) 24 (8)

2a 34 0 97 0 (0) 2 (0) 31 (10)

2b 31 0 100 0 (0) 1 (1) 28 (9)

3a
�

28 79 57 0 (1) 2.5 (1) 29 (8)

3b
�

27 85 7 1 (0) 2 (1) 29 (7)

4a
�

34 82 0 >6 (0)a 0 (0) 45 (0)

4b
�

34 91 0 >6 (0)a 0 (0) 45 (0)

5a 28 64 0 >6 (0)a 0 (0) 45 (0)

5b 29 38 0 >6 (0)a 0 (0) 45 (0)

Spearman’s rho

(rs)

- Predictor -0.71 0.66 -0.25 0.51

p-value - Predictor 0.02 0.04 0.48 0.14

HI, Hemagglutination inhibition assay; IQR, Interquartile range; RT-PCR, Real-time reverse transcriptase polymerase chain reaction; ct, RT-PCR cycle threshold.

� Cohorts 3a, 3b, 4a and 4b originated from vaccinated sows.
a Time to IAV infection in cohorts 4 and 5 was assigned 6 weeks due to the termination of the study. We did not measure how many weeks those pigs remained IAV

negative in the finishing sites.

https://doi.org/10.1371/journal.pone.0210700.t002

Table 3. Correlation of influenza A virus (IAV) hemagglutination inhibition (HI) titer group at weaning with infection parameters in nursery pigs.

IAV HI titer group at

weaning

Number of

pigs

IAV prevalence at weaning

(%)

Time to IAV infection

(weeks)

Median (IQR)

Number of IAV positive

weeks

Median (IQR)

Lowest RT-PCR ct

value

Median (IQR)

<10 81 79 0 (0) 1 (1) 31 (9)

10 51 90 0 (0) 1 (1) 29 (12)

20 34 38 1.5 (6) 1 (2) 35 (17)

40 53 11 6 (5) 0 (2) 45 (13)

80 34 15 6 (5) 0.5 (2) 41 (16)

160 21 10 6 (5) 0 (2) 45 (11)

320 19 11 6 (5) 0 (2) 45 (10)

�640 8 0 6 (0) 0 (0) 45 (0)

Spearman’s rho (rs) Predictor -0.90 0.87 -0.85 0.85

p-value Predictor 0.002 0.005 0.008 0.008

HI, Hemagglutination inhibition assay; IQR, Interquartile range; RT-PCR, Real-time reverse transcriptase polymerase chain reaction; ct, cycle threshold.

https://doi.org/10.1371/journal.pone.0210700.t003
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39, 40, 66–69]. The immunological mechanism behind these latter observations is not well

defined and B cell epitope masking has been proposed as one of the possible mechanisms.

Maternal antibodies could cover some viral epitopes so B cells would not recognize those viral

antigens and not mount the expected humoral response after infection or vaccination [70].

Nonetheless, our results indicate that high levels of homologous MDA decreased IAV levels at

weaning and likely subsequent transmission during the growing period in the nursery.

Sow vaccination and MDA can protect sows and piglets from IAV clinical disease [36, 37,

39, 68, 69, 71]. Although sow vaccination is a common strategy to control IAV in BTW farms

[32], IAV is still widespread in pigs. One of the major challenges to sow vaccination is the

increasing IAV genetic diversity with about 16 different HA genetic clades currently circulat-

ing in US pig populations [14–17, 19–21, 25–27, 31, 72–80]. In this study, we found that

homologous MDA against the circulating delta 2 H1 virus decreased delta 2 H1 IAV circula-

tion in pigs after weaning. Since we did not sequence all viruses isolated from every pig nor

did we sequence directly from every positive nasal swab, there is a possibility that we missed

other viruses that might have been co-circulating in the study cohorts. Indeed, in one of the

cohorts (Cohort 5a) we found partial sequences of 2 other viruses (H1 gamma (1A.3.3.3) and

H3 subclade IV B) that had been historically identified in the sow farm. Why these viruses cir-

culated at a low prevalence and did not spread throughout the entire population is uncertain.

Immunity, viral spread and dominance of co-circulating viruses is puzzling and needs to be

further studied in pig populations [81–85].

Our sequencing approach demonstrated the circulation of one predominant strain (H1

delta 2) in the 10 cohorts and in the BTW farm. We found no differences in the H1 antigenic

sites between the delta 2 H1viruses detected in our study and the vaccine strains. Our results

indicated that the HI antibodies at weaning affected IAV infection dynamics in the nursery.

We considered that pigs originating from vaccinated sows had higher levels of antibodies able

to cross-react with the farm specific delta 2 H1 strain and that these were, at least in part,

responsible for the decrease in IAV infection. Although almost all pigs tested ELISA IAV NP

positive at weaning, NP antibodies did not appear to be protective against IAV infection in the

cohorts with high infection at weaning. This may be an additional indication that HI strain-

specific antibodies were not present to protect pigs from IAV infection against the circulating

H1 farm strain prior or at weaning, especially in the first 4 cohorts originating from non-vacci-

nated sows. Finally, we cannot fully discard the possibility that sow vaccination may have

boosted IAV natural infection before vaccination.

Table 4. Pig-level association of influenza A virus (IAV) hemagglutination inhibition titer at weaning with individual infection parameters during the nursery

period.

IAV HI titer at

weaning

Probability of a pig testing IAV positive at

weaning

Mean time to IAV infection in

weeks

Mean number of IAV positive

weeks

Mean lowest RT-PCR ct

value

<10 0.93a 0.07a 1.41a 30.2a

10 0.88a 0.05a 1.38a 30.2a

20 0.33b 0.13b 0.70b 33.9b

40 0.06c 0.17c 0.49bc 37.7c

80 0.05c 0.22d 0.45bc 39.2cd

160 0.05c 0.24d 0.34c 42.5e

�320 0.05c 0.24d 0.30c 42.0de

p-value < .0001 < .0001 < .0001 < .0001

HI, Hemagglutination inhibition assay; IQR, Interquartile range; RT-PCR, Real-time reverse transcriptase polymerase chain reaction; ct, cycle threshold. Different

superscripts in each column mean statistically significant differences after adjusted pairwise comparisons (p-value<0.05).

https://doi.org/10.1371/journal.pone.0210700.t004
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Understanding IAV immunity is critical when trying to optimize the vaccination strategies

currently used in swine production systems. There are still gaps in our understanding of the

quality and quantity of antibodies being generated after IAV vaccination and/or natural infec-

tion. This is particularly important in pigs where we have several strains cocirculating in the

same population. The complex evolution and landscape of IAV in pigs highlights the need for

better vaccines and comprehensive vaccination strategies [30, 31, 80].

Conclusions

In conclusion, we found that high levels of strain-specific hemagglutination inhibition anti-

bodies at weaning decreased IAV infection at weaning, delayed time to become influenza-posi-

tive, decreased the number of weeks that pigs tested influenza-positive during the nursery

stage, and decreased the overall estimated virus quantity during the infection period. Our

results suggest that IAV infection and circulation in nursery pigs may be decreased by using

adequate influenza sow vaccination protocols.
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