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Human activities have shaped large-scale distributions of many
species, driving both range contractions and expansions. Species
differ naturally in range size, with small-range species concen-
trated in particular geographic areas and potentially deviating
ecologically from widespread species. Hence, species’ responses to
human activities may be influenced by their geographic range
sizes, but if and how this happens are poorly understood. Here,
we use a comprehensive distribution database and species distri-
bution modeling to examine if and how human activities have
affected the extent to which 9,701 vascular plants fill their climatic
potential ranges in China. We find that narrow-ranged species
have lower range filling and widespread species have higher range
filling in the human-dominated southeastern part of China, com-
pared with their counterparts distributed in the less human-
influenced northwestern part. Variations in range filling across spe-
cies and space are strongly associated with indicators of human
activities (human population density, human footprint, and propor-
tion of cropland) even after controlling for alternative drivers. Im-
portantly, narrow-ranged and widespread species show negative
and positive range-filling relationships to these human indicators,
respectively. Our results illustrate that floras risk biotic homogeni-
zation as a consequence of anthropogenic activities, with narrow-
ranged species becoming replaced by widespread species. Because
narrow-ranged species are more numerous than widespread spe-
cies in nature, negative impacts of human activities will be preva-
lent. Our findings highlight the importance of establishing more
protected areas and zones of reduced human activities to safeguard
the rich flora of China.

biotic homogenization | land use | plant species distribution |
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Biodiversity is important in itself as well as for society, pro-
viding a variety of ecosystem services, from numerous prod-

ucts and regulation of climate to cultural and even psychological
benefits (1). However, human activities have strongly affected not
just local biodiversity but also large-scale species distributions,
with intensifying impacts across the last centuries and decades due
to the exponential increases in the human population size, re-
source consumption, and technological capabilities (2, 3). Hence,
there is an increasing need for understanding the effects of human
activities on species distributions, such as in terms of extinction
risks (3–7).
Anthropogenic activities can drive both species’ range con-

tractions and expansions. Many species have lost substantial dis-
tribution areas due to intensifying land use and associated habitat
loss as well as other human activities (3, 4, 8), with substantial
numbers even becoming globally extinct (6, 7). About 20% of
plant species globally are considered threatened with extinction

(9). Human activities have also driven range expansions in many
other species, exemplified by the spread of alien species, pro-
moted by global transport (10). However, many regionally native
species have also experienced range increases through human-
mediated dispersal and the ability to thrive in anthropogenic
landscapes (11). These opposing processes, range contraction and
expansion, come together to cause biotic homogenization, where
biotic assemblages are becoming more taxonomically similar through
the loss of rare and distinct species (“losers”) and the expansion of
alien or common native species (“winners”) (12, 13). Biotic ho-
mogenization has been shown to be a common outcome of land-
use intensification and human disturbance (11, 14).
Species differ naturally in range size, with small-range species

concentrated in particular geographic areas and potentially de-
viating ecologically from widespread species (15), for example,
having more specialized habitat requirements (16). In a human-
dominated world, narrow-ranged, specialist species are more
likely to be losers, whereas widespread, generalist species should
have a higher probability of being winners (13). By comparing
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distribution atlases of 736 plant species in the United Kingdom
and Estonia surveyed at 2 periods with an interval of about 30 y,
Laanisto et al. (4) found that those species with smaller range
sizes at the first survey lost higher proportions of their distribu-
tion areas. The more specialized bird species in France have also
been found to show a more negative response to landscape
disturbance and fragmentation (17). Conversely, in the severely
disturbed Atlantic rain forest of Brazil, tree species with in-
creasing occurrences between pre-1980 and post-1980 periods
tend to be widely distributed (11). The probability of a species
becoming naturalized outside its native range has also been
shown to be positively related to its native range size and habitat
range (18, 19). Still, while it is clear that species’ responses to
human activities may be influenced by their geographic range
sizes, if and how this happens are still poorly understood.
Although species distributions can be influenced by human

activities, their distributions at broad scales are primarily de-
termined by contemporary climate and their dispersal abilities
(20). Specifically, a species’ ecological niche and the climatic
conditions over the Earth’s surface determine its climatic po-
tential distribution areas. These potential ranges, however, are
often not fully occupied due to dispersal limitation as well as
biotic interactions (21, 22). Therefore, realized ranges of species
are often in disequilibrium with current climate, filling a limited
portion of their climatic potential ranges. For example, Euro-
pean tree species are found to occupy collectively 38% of their
potential ranges, which in large part can be attributed to

postglacial dispersal limitation (23). The degree of range equi-
librium with climate determined by natural factors may be dis-
torted by human activities. Range filling (RF; realized/potential
range size ratio) of species in a region may increase or decrease
due to anthropogenic activities. In eastern North America, dis-
tributions of multiple tree species have been shown to be asso-
ciated with Native American settlements, with their probabilities
of presence increased or reduced close to villages and trails (24),
likely having led to greater or lower RF.
China is one of the most species-rich countries, with a latest

estimate of ∼36,000 vascular plants, due to its diverse ecological
characteristics and unique evolutionary history (25, 26). In the
latest Red List for higher plants in China, however, 3,879 species,
or 11% of the assessed species, were identified as threatened
(27). China has overall suffered from high human pressures for
several millennia (28, 29). Due to the lack of extensive historical
distribution data for plants in China, as for most regions in the
world, no study has hitherto directly evaluated human impacts on
distributions for many plant species at the national scale. Despite
the large human population in China, there is a clear national-
scale differentiation in human population density (HPD), with
most people living in the southeastern part and the northwestern
part much more thinly settled (Fig. 1A). The 2 parts are roughly
separated by a straight line, known as the Hu Huanyong Line
(HHL), stretching from Heihe City (Heilongjiang Province) to
Tengchong County (Yunnan Province) (30). The southeastern
part only occupies 43% of Chinese terrestrial area but supports
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Fig. 1. Human impacts on species range filling of vascular plants in China. (A) HPD across China at the 20 × 20-km resolution. The dashed line indicates the Hu
Huanyong Line, which separates China into the northwestern and southeastern parts. Grid cells with low and high HPD (classified by the median, 13.5 people
per square kilometer) are separated with black outlines. (B) Histogram of species range filling. Blue and green show those species with >80% of their ranges
in the southeastern or northwestern parts, respectively, and yellow shows the remaining species. The red vertical dashed line shows the median of range
filling. (C) Comparisons of range filling between the northwestern and southeastern species within the 30% most narrow-ranging species (≤1,145 grid cells)
and the 30% most wide-ranging species (≥2,475 grid cells). Numbers above the boxplot show the number of species in each category. ***P < 0.001. (D)
Contour plot showing the interaction effect between HPD and range size on species range filling. The range filling in the plot is the predicted values by a
beta-regression model while keeping other predictors as their mean observed values.
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94% of the total human population. Comparing these 2 regions
offers an opportunity to investigate human impacts on plant
distributions at large scales, given adequate control for envi-
ronmental differences, with the less intensely settled northwest-
ern part providing a baseline for the extent to which species fill
their potential ranges under relatively natural conditions.
Here, we assembled distribution data across China at a 20 ×

20-km resolution for 9,701 vascular plant species and estimated
each species’ climatic potential ranges using species distribution
models (SDMs). We then calculated the RF of each species by
overlaying its potential range with its observed range. RF was
then compared between species that were primarily distributed
in the northwestern or southeastern parts of China. We also
calculated geographic patterns of grid-cell mean RF (MRF),
namely the mean RF of the species occurring in each 200 ×
200–km grid cell. Variation in RF across species and space was
then modeled against 3 indicators of human activities (HPD;
human footprint, HFP; proportion of cropland, cropland) and
other potential determinants, such as topography, current cli-
mate, and Quaternary climate change. To evaluate whether
species’ responses to human activities are influenced by their
geographic range sizes, we tested for an interaction effect be-
tween range size and human impact factors as well as performed
analyses for the 30% most narrow-ranging and 30% most wide-
ranging species, respectively. We hypothesize that 1) the RF of
narrow-ranged species is reduced, while that of widespread
species is increased in southeastern China due to intensive hu-
man influence; and 2) variation in RF across species and space is
strongly associated with human activities, even after controlling
for alternative drivers, with negative relations for narrow-ranged
species but positive relations for widespread species.

Results
Range Filling across Species. Using ensemble SDMs, we estimated
that species occupied high proportions of their climatic potential
ranges (Fig. 1B). The median RF was 75.4% and the mean was
73.4% (SD 15.7%). There were 870 species (9.0% of total)
having RF less than 50%. The threatened species had signifi-
cantly lower RF (median 66.1%) than nonthreatened species
(median 75.5%; SI Appendix, Fig. S1).
Overall, species with over 80% of their distribution ranges in

either northwestern or southeastern China filled similar percent-
ages of their potential ranges, with median values of 74.2 and
76.2%, respectively (Fig. 1B). However, narrow-ranged and wide-
spread species showed opposing differences in RF between
northwestern and southeastern species. Southeastern species had
lower RF than the northwestern species for the 30% most narrow-
ranging species but higher RF for the 30% most wide-ranging
species (Fig. 1C), consistent with range size-dependent effects of
human activities. The above results were confirmed by beta-
regression models with consideration of multiple explanatory var-
iables (Table 1 and SI Appendix, Tables S1 and S2), as the inter-
action term between human impact and range size was positive and
larger than the human impact main effect, indicating that human
activities have negative impacts on narrow-ranged species but
positive impacts on widespread species (Fig. 1D, Table 1, and SI
Appendix, Tables S1 and S2).

Geographic Range-Filling Patterns. Grid-cell MRF of all, narrow-
ranged, and widespread species exhibited strong and distinct
spatial patterns (Fig. 2). Considering all species, high MRF
mainly occurred in southeastern China, whereas low MRF was
observed in the northwest, with widespread species showing a
similar spatial pattern. Narrow-ranged species, however, showed
a divergent pattern, with high MRF mainly occurring in north-
western China. The patterns of grid-cell MRF were different
from the geographic patterns of observed and potential range
sizes, where high-range sizes were generally observed in higher

latitudes (SI Appendix, Fig. S2), showing that the patterns in RF
were not simply driven by variation in range size. This in-
dependence was also supported by the geographic patterns in the
grid-cell mean of the residuals of species RF after controlling for
range size, as these were highly correlated with corresponding
MRF patterns (Pearson’s r = 0.997 and 0.966 for narrow-ranged
and widespread species, respectively; SI Appendix, Fig. S3).
Both simple regression and multiple regression analyses

showed that geographic patterns of MRF had strong associations
with human activities, which were even comparable to or stron-
ger than those with natural factors such as topography, current
climate, and paleoclimate change (Fig. 3, Table 2, and SI Ap-
pendix, Fig. S4 and Tables S3–S5). However, as for the species-
level analyses, human activities had opposing effects on narrow-
ranged and widespread species, with their MRF decreasing and
increasing with the intensity of human activities, respectively
(Fig. 3 and SI Appendix, Fig. S4). For narrow-ranged species,
human impact factors had the strongest association with MRF
among the explanatory variables. For widespread species, human
impact factors had strong and positive effects but weaker than
current climate. The relations for all species were similar to
those for widespread species.

Range-Filling Patterns across Plant Growth Forms and Orders. The
opposite RF patterns and associations with human activities
between narrow-ranged and widespread species were generally
consistent across plant growth forms (SI Appendix, Figs. S5 and
S7 and Table S6) and orders (SI Appendix, Figs. S6 and S8 and
Table S7). Southeastern species tended to have higher median
RF than the northwestern species for widespread species, but
lower RF for narrow-ranged species in most species groups (SI
Appendix, Figs. S5 and S6). Further, widespread species had
consistently positive MRF correlations with indicators of human
activities, while these correlations were negative for narrow-
ranged species for most species groups (SI Appendix, Figs. S7
and S8 and Tables S6 and S7).

Discussion
Our results suggest that the distributions of vascular plants in
human-dominated regions of China are strongly shaped by an-
thropogenic activities, with narrow-ranged and widespread spe-
cies experiencing range reductions and expansions, respectively.
The lower RF for narrow-ranged species and higher values for
widespread species in the human-dominated southeast compared
with their counterparts in the less intensely settled northwest can
be attributed, at least partly, to human activities. Human impacts
on plant distributions are further confirmed by the strong asso-
ciations between geographic patterns of grid-cell MRF and hu-
man activities for both narrow-ranged and widespread species,
even after controlling for topography, current climate, paleo-
climate, and spatial autocorrelation.

Table 1. Beta regression of species range filling against the
explanatory variables

Estimate SE z P value

HPD 0.041 0.014 3.06 0.002
EleR 0.175 0.011 16.22 <0.001
Anomaly 0.070 0.015 4.66 <0.001
MAT 0.104 0.019 5.43 <0.001
RZ 0.499 0.009 58.68 <0.001
HPD × RZ 0.086 0.007 11.60 <0.001

Estimate, standardized regression coefficients; pseudo R2 = 0.344. Mean
annual precipitation was excluded by model selection. Anomaly, tempera-
ture anomaly since the Last Glacial Maximum; EleR, elevation range within
grid cells; RZ, species observed range size.
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Although environmental conditions differ across the studied
regions, a strong association between RF across both species and
space and human activities remained even after controlling for
major environmental differences. Additionally, RF patterns and
associations with human activities were consistent across major
plant growth forms and orders, showing that the regions’ contrasting

RF patterns cannot be explained from differences in functional
or phylogenetic composition. The opposing responses of narrow-
ranged and widespread plants to anthropogenic activities may
be related to their different sensitivities to human-induced
habitat change. Narrow-ranged species may be more vulnera-
ble to land-use change and tend to be excluded from disturbed
habitats (31, 32). For example, epiphyte assemblages in young
secondary forests in Ecuador are dominated by species with
larger geographic ranges and broader ecological niches com-
pared with those in primary forests (32). Furthermore, a recent
global multiclade study found more widespread species in as-
semblages in disturbed habitats compared with natural habitats
and also increased abundances of widespread species but re-
duced abundances of narrow-ranged species (31). This is prob-
ably because environmental conditions in the disturbed habitats
are not tolerated by many specialist species (32). Additionally,
winner tree species in the context of human disturbance are over-
represented by pioneer species because of their high capacity
to establish in disturbed habitats (11). These pioneer species
generally have larger ranges (15). Further, human-mediated
dispersal of useful plants may selectively target widespread spe-
cies due to factors such as recognition and availability. A recent
study on palms in South America indeed found that widespread
species are preferentially used by people relative to narrow-ranged
species (33).
Although it is widely accepted that species’ realized ranges are

often in disequilibrium with contemporary climate, there are few
studies investigating the degree to which species fill their climatic
potential ranges and the underlying determinants (23). Post-
glacial dispersal limitation and dispersal capacity of species have
been found to be important for RF (23, 34, 35). Besides these
natural factors, our results showed that human activities can also
be important. This shows that the RF metric is useful in the
evaluation of human impacts on large-scale species distributions.
We indeed found that threatened plant species in China have
lower RF than nonthreatened species (SI Appendix, Fig. S1A).
Even though China has suffered from high but heterogeneous
human pressures, human activity descriptors only explained a
limited variation in species richness of woody plants in China,
which in contrast is mainly coupled to climate (36). Because RF
accounts for current climate through potential ranges, the hu-
man effects become more apparent in the geographic patterns of
RF. Due to the limited availability of temporal distribution data,
human impacts on plant distributions at large scales have not
been frequently investigated (4). The RF approach used in this
study provides a possible way to estimate human impacts on
species ranges for the many species without dynamic distribution
data but with good coverage in terms of distribution data.
Species range size is widely used to assess species extinction

risk (37). The common idea is that narrow-ranged species have
higher extinction risk under stochastic threats because of their
small distribution areas (38). As a complement, our results
suggest that the narrow-ranged species are more sensitive to
anthropogenic activities, thus having a higher probability to
be loser species. Our results emphasize the importance of
narrow-ranged species in the assessment of spatial patterns of
extinction risk and the decision regarding conservation priority
areas. Because widespread species contribute disproportion-
ately more distribution records, narrow-ranged species are
underrepresented in the overall patterns of biological summary
metrics such as species richness (39) or grid-cell MRF. To ensure
representativeness, assessment of priority areas for conservation
should specifically consider biodiversity patterns of narrow-
ranged species.
In this study, we did not consider species interactions or

edaphic and other nonclimatic environmental factors, which may
affect plant distributions. We note that the extent and grain of
this study are beyond the scale domain where these factors

A

B

C

Fig. 2. Geographic patterns of grid-cell mean range filling for all species
(A), the 30% most narrow-ranging species (B), and the 30% most wide-
ranging species (C). Grid cells without data are shown in gray.
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typically limit plant ranges (20). Additionally, this study focused
on contrasts in RF between different regions rather than abso-
lute values. Because of widespread mountainous terrain in
China, grid-cell mean climatic conditions may not capture
topoclimate well, potentially resulting in larger predicted potential
distributions (40) and thus lower RF. However, elevation range
within grid cells is comparable between southeastern and north-
western China at 20 × 20-km resolution (SI Appendix, Fig. S9).
Compared with previous studies focused on European plants (23,
35), vascular plants in China are estimated as having higher RF,
probably due to methodological differences. First, we only exam-
ined species having at least 20 occurrences, while over 20,000
species with narrower ranges were not included (41). Because
narrow-ranged species tend to have low RF (42), the RF estimates
of examined species thus likely represent relatively high levels of
RF relative to the whole flora. Second, sophisticated SDM algo-
rithms, rather than a rectilinear climatic envelope modeling, were
utilized here, which may produce conservative potential ranges
(23). We note that conservative potential ranges may be more
appropriate for measuring human impacts on absences in poten-
tial ranges, by better excluding areas of relatively low climatic
suitability. Third, the observed ranges at a coarse resolution
(200 × 200 km) may contain unoccupied areas even though
climatically unsuitable areas have been removed by overlaying
them with the predicted distributions at the 20 × 20-km reso-
lution. The geographic patterns of RF, however, are not likely
to be distorted as the distribution data had the same resolution
across the study area.
In summary, this study measured the extent to which 9,701

vascular plant species fill their climatic potential ranges across
China and analyzed the human impacts on RF of narrow-ranged
and widespread species, respectively. We found that narrow-
ranged and widespread species exhibited opposite relations to
human activities, with their RFs decreasing and increasing with
human influence, respectively. These results are consistent with floras
experiencing biotic homogenization due to human activities, with
narrow-ranged species being replaced by widespread species. Narrow-
ranged species as defined in this study actually are not even the rarest,
because they were defined as having at least 20 occurrences to allow
for modeling. Moreover, there are about 2-fold more vascular plants
in China with narrower range sizes (41). As it is a general pattern that
narrow-ranged species are more numerous than widespread
species in nature (43), negative impacts of human activities on plant
distributions are therefore likely very prevalent. Our findings highlight

the importance of establishing more protected areas and zones of
reduced human activities to help mitigate negative human impacts on
China’s rich diversity of plants, especially the narrow-ranged species,
as well as a need to promote the recovery of narrow-ranged species as
a goal in China’s extensive programs for ecosystem restoration.

Materials and Methods
Species Data. The species distribution data came from the Chinese Vascular
Plant Distribution Database, which was compiled from over 6 million speci-
mens and more than 1,000 published floras, checklists, and inventory reports

A B C

Fig. 3. Relationships between grid-cell mean range filling and HPD for all species (A), the 30% most narrow-ranging species (B), and the 30% most wide-
ranging species (C). The lines are fitted with simple linear regressions. HPD is log10-transformed.

Table 2. Multiple linear regressions of grid-cell mean range
filling of all species, the 30% most narrow-ranging species,
and the 30% most wide-ranging species against the explanatory
variables and the selected eigenvector-based spatial filters

Estimate SE t P value R2 Partial R2

All species
Full model 0.719
HPD 0.29 0.07 4.41 <0.001 0.077
EleR −0.35 0.04 −7.69 <0.001 0.203
Anomaly 0.04 0.07 0.51 0.611 0.001
MAT 0.22 0.10 2.25 0.025 0.021
MAP 0.01 0.09 0.08 0.937 0.000
14 spatial filters <0.05

Narrow-ranged species
Full model 0.586
HPD −0.28 0.08 −3.67 <0.001 0.059
EleR 0.08 0.05 1.55 0.123 0.011
Anomaly 0.23 0.10 2.29 0.023 0.024
MAT 0.23 0.11 2.16 0.032 0.021
MAP −0.11 0.07 −1.49 0.137 0.010
11 spatial filters <0.05

Widespread species
Full model 0.898
HPD 0.15 0.05 3.17 0.002 0.040
EleR −0.13 0.03 −5.16 <0.001 0.100
Anomaly −0.10 0.04 −2.52 0.012 0.026
MAT 0.31 0.05 5.96 <0.001 0.129
MAP 0.31 0.04 7.62 <0.001 0.195
8 spatial filters <0.05

Estimate, standardized regression coefficients; R2, R2 of full models; partial
R2, partial R2 of each variable in the models. Anomaly, temperature anomaly
since the Last Glacial Maximum; EleR, elevation range within grid cells.
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(41). All records in this database were georeferenced to a spatial unit of
county level, and most of them also provided collection locality descriptions.
Because these records with the resolution of county were relatively impre-
cise for building SDMs, we further georeferenced these records to such
higher resolutions as towns, villages, and specific sampling sites according to
the locality descriptions and then obtained latitude and longitude in-
formation. These georeferenced records were then aggregated within grid
cells of a 20 × 20-km resolution. Species with more than 20 presences were
selected for further analyses, leaving 9,784 study species belonging to 1,929
genera and 264 families, with a total of 974,596 presence records, aggregated
from 4,287,352 records with coordinates, georeferenced from 7,034,587 re-
cords at the county level. The presence records at the resolution of 20 × 20 km
were used for SDMs, whereas the records at the county level were projected
to the resolution of 200 × 200 km, which were used to describe observed
species distributions. We chose the 200 × 200–km resolution because species
inventories at this coarse resolution were relatively complete whereas they
were likely undersampled at the county-level and finer resolutions (44) (SI
Appendix, Fig. S10).

Environmental Data. We extracted current climatic variables from the
WorldClim 1.4 database at a 2.5′ resolution for the period of 1960 to 1990,
including 19 bioclimatic variables (bio1 to bio19) and monthly mean tem-
perature and precipitation (45). Based on monthly mean temperature and
precipitation, we also derived 2 commonly used bioclimatic variables,
growing degree days (with 5 °C as base temperature) and water balance
(calculated as the difference between annual precipitation and potential
evapotranspiration) (23). These 2 variables plus the above 19 bioclimatic
variables were used as predictor candidates to predict species potential
distributions. Because of strong multicollinearity among these variables, we
performed variable selection based on the intensity of collinearity and
predictive capacity of variables (SI Appendix). Finally, 5 climatic variables
were selected (SI Appendix, Fig. S11): temperature seasonality (bio4), mini-
mum temperature of coldest month (bio6), precipitation seasonality (bio15),
precipitation of warmest quarter (bio18), and coldest quarter (bio19).

We used 3 indicators of human activities to explain variations in species RF
and geographic patterns of grid-cell MRF including HPD, HFP, and cropland
from open sources (SI Appendix, Fig. S12 and Table S8). These variables were
strongly correlated (SI Appendix, Table S9) and thus included in statistical
models below individually. Besides human impacts, RF may also be affected
by topography and paleoclimatic change (23). For topography, we used el-
evation range, which was defined as the range of elevation within each grid
cell using elevation data at a 1-km spatial resolution (SI Appendix, Fig. S12).
For paleoclimatic change, we used temperature anomaly since the Last
Glacial Maximum (LGM), which was calculated as the difference between
current mean annual temperature (MAT) and the average of 2 estimates of
MAT during the LGM from the simulation of the models CCSM4 (46) and
MIROC-ESM (47) from WorldClim (SI Appendix, Fig. S12). We also included
current MAT and mean annual precipitation (MAP) to control for environ-
mental differences across China even though current climates had been used
in predicting potential ranges of species and hence to some extent was al-
ready considered in the computation of RF (SI Appendix, Fig. S12).

Species Distribution Modeling. An ensemble approach was used to forecast
species potential distributions at grid cells of 20 × 20 km (48). We used 4
modeling algorithms: generalized linear model, generalized additive mode,
random forest, and maximum entropy. Because these algorithms require
background data or pseudoabsence data, we generated 20 sets of pseu-
doabsences for each species with the same size of each as the number of
presences (49). Due to spatial biases in the observed presences, we selected
pseudoabsences with a similar bias as found in the occurrence data, using a
target-group method rather than selecting pseudoabsences randomly from
across the whole study region (SI Appendix) (50). The probability of a grid
cell to be chosen was weighted by its mean number of records per species (SI
Appendix, Fig. S13). We then calibrated models using a 70% random sample
of initial data and evaluated them against the remaining 30% of the data
using true skill statistics (TSS) and area under the receiver operating char-
acteristic curve, which were repeated 5 times. Those models with TSS >0.5
were included to build an ensemble model. A total of 9,701 species passed
the evaluation and were used for further analyses. The generated ensemble
SDMs have generally good performance (SI Appendix, Fig. S14). The cali-
brated models were then projected to current climatic space and the en-
semble forecasts were classified to presence/absence with the threshold by
maximizing TSS (51). All of the modeling was performed using the biomod2
package in the R language (52).

Calculation of Species Range Filling. For each species, we calculated the ratio
of observed to potential range sizes as RF to measure range equilibrium with
current climate (Dataset S1). Both observed and potential range sizes were
measured as numbers of grid cells at the 20 × 20-km resolution. However,
reliable plant distribution data at fine resolutions across China are not
available presently. We therefore overlaid the observed species distributions
at the 200 × 200–km resolution with the potential distributions at the 20 ×
20-km resolution. In this way, all climatically suitable grid cells of 20 × 20-km
within a 200 × 200–km grid cell were assumed as occupied when a species
was observed in the 200 × 200–km grid cell.

In this study, RF was used to detect human impacts on species distributions.
Besides anthropogenic activities, absences within climatic potential ranges at
broader scales might also be caused via large-scale dispersal limitation. Such
absences were more likely to occur for climatically suitable areas outside of
observed ranges. We therefore used a 200-km buffered minimum convex
polygon around the observed ranges to clip climatic potential ranges. Then,
we repeated the calculation and analyses using these clipped potential
ranges. The produced RF estimates and spatial patterns of RF were similar to
those using the unclipped potential ranges (SI Appendix, Figs. S15–S17).
Therefore, we did not perform further analyses using RF based on the
clipped potential ranges.

We further examined whether RF varied with threat-level categories (27),
endemism status (53), plant phylum, and growth form (41) using Wilcoxon
rank-sum and Kruskal–Wallis rank-sum tests. Because there were few species
in each category labeled as threatened or near-threatened in our studied
species, we combined the species within the IUCN categories critically en-
dangered (16 species), endangered (82 species), vulnerable (251 species), and
near-threatened (293 species) as threatened species, and then compared
them with the least-concern species (7,477 species). Endemism status rep-
resented whether or not a species was endemic to China (endemics: 3,141
species; nonendemics: 6,560 species) (53). Plant phyla were categorized as
pteridophytes (715 species), gymnosperms (102 species), and angiosperms
(8,884 species). For angiosperms, species were further divided as annual
herbs (639 species), perennial herbs (3,583 species), climbers (950 species),
shrubs (2,048 species), and trees (1,441 species).

Range Filling across Species and Determinants. To test whether human ac-
tivities have opposing effects on narrow-ranged and widespread species, we
first compared RF between species from low and high human-influenced
regions for narrow-ranged and widespread species, respectively. The
northwestern and southeastern parts of HHL in China represent 2 contiguous
regions with contrasting intensities of human activities. Although regions
with low or high human activities can be defined directly based on human
activity variables, the generated regions will be fragmented. The species with
their ≥80% observed ranges in the northwest and in the southeast were
defined as northwestern and southeastern species, respectively, which rep-
resented 2 species groups affected by low versus high human activities. We
then ranked all studied species by observed range size regardless of regions
where species were primarily distributed. The species with the 30% lowest
range sizes (≤1,145 grid cells) were categorized as narrow-ranged species
and the species with the 30% highest range sizes (≥2,475 grid cells) as
widespread species (SI Appendix, Fig. S18). Within narrow-ranged and
widespread species, the northwestern and southeastern species had similar
range sizes and their RFs were compared using the Wilcoxon rank-sum test.
We note that narrow-ranged species may be specialists that persist in limited
habitats within their geographic ranges and thus have lower RF compared
with widespread species (42) (SI Appendix).

Second, we tested for associations between species RF and explanatory
variables with beta regression using the betareg package of R (54). Beta
regression is commonly used to model proportional data restricted between
0 and 1 that are typically nonnormal and heteroskedastic (54). Explanatory
variables included human impact factors (HPD, HFP, and cropland), elevation
range, temperature anomaly, MAT, MAP, and species observed range size.
The interaction term between human impact factors and range size was
included to test the range size-dependent effect of human activities. Here,
the environmental variables were calculated as the median value across
species potential ranges. We performed backward model selection based on
the Akaike information criterion to select predictors. HPD and cropland
were log10-transformed to improve linearity and goodness of fit of models.
All of the explanatory variables were standardized for comparing regression
coefficients.

Here, we did not account for phylogenetic relatedness of species in sig-
nificance tests, which had the potential to inflate type I error. The nested
ANOVA was then applied to determine the proportions of variation in RF
occurring at different taxonomic levels. We found that the majority of
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variation (77.3%) occurred at the species level, 18.8% at the genus level, and
4.0% at the family level, suggesting that species-level RF was not strongly
phylogenetically dependent.

Geographic Range-Filling Patterns and Determinants. Besides the species-level
analyses, we also used an assemblage-based approach to summarize RF of
species in each 200 × 200–km grid cell and explore spatial patterns of RF. By
integrating species RF estimates with distribution data at the 200 × 200–km
resolution, we calculated the mean value of RF of species observed in each
grid cell for all, narrow-ranged and widespread species, respectively. To
check whether geographic variations of MRF were associated with range
size patterns, we also calculated the grid-cell median of both observed and
potential range sizes, and grid-cell mean residuals of species RF from the
regression against range size for all, narrow-ranged and widespread species,
and compared them with MRF (SI Appendix).

We then used simple and multiple linear regressions to explore the as-
sociations between MRF and the explanatory variables, including human
impact factors (HPD, HFP, and cropland), elevation range, temperature
anomaly, MAT, andMAP. However, spatial correlograms and globalMoran’s I
showed strong spatial autocorrelations presented in residuals of the fitted
multiple regression models, which could inflate type I error and bias coef-
ficient estimates (SI Appendix, Fig. S19). We then used an eigenvector-based
spatial filtering approach to account for the spatial autocorrelation (55) (SI
Appendix). Explanatory variables together with the selected spatial filters
were used as predictors of multiple regression models, the residuals of which
were therefore without spatial autocorrelation (SI Appendix, Fig. S19). As a
supplement, we provide the results without controlling for spatial auto-
correlation in SI Appendix, Tables S10–S12; these were consistent with the
results from the modeling with spatial filters.

The standardized regression coefficients and partial R2 were calculated to
measure the relative importance of the explanatory variables. In the statis-
tical analyses, we removed the grid cells with areas smaller than 12,000 km2,
leaving a total of 253 grid cells. To improve linearity and normality of model
residuals, HPD, cropland, temperature anomaly, and elevation range were
log10-transformed. All statistical analyses were performed using R 3.4.3 (56).
The spatial filtering analysis was performed using the function pcnm in the
vegan package of R (57).

Range-Filling Patterns across Plant Growth Forms and Orders. To investigate if
it can be generalized that narrow-ranged and widespread species have

opposite RF patterns and associations with human activities, we performed
comparisons across growth forms and evolutionarily independent lineages.
Different growth forms and evolutionary lineages have distinct geographic
distributions, which are jointly determined by both ecological and evolu-
tionary processes (25, 41). Similarity in RF patterns and associations with
human activities across growth forms and lineages would suggest similar
mechanisms involved in generating RF patterns across species groups.

Four growth forms (annual herbs, perennial herbs, shrubs, and trees) were
evaluated. To represent evolutionarily independent lineages, we chose angio-
sperm orders with>100 studied species overall and at least 5 narrow-ranged and
widespread species in both the southeastern and northwestern regions, result-
ing in 13 orders: Asparagales, Asterales, Brassicales, Caryophyllales, Ericales,
Fabales, Gentianales, Lamiales, Malpighiales, Poales, Ranunculales, Rosales, and
Saxifragales. We examined differences of RF between the northwestern and
southeastern species within narrow-ranged and widespread species across these
growth forms and orders. We also calculated geographic patterns of MRF and
analyzed their Pearson correlations with 3 indicators of human activities (HPD,
HFP, and cropland) using Dutilleul et al.’s modified t test (58) to test the
significance (controlling for spatial autocorrelation) for narrow-ranged and
widespread species, respectively.

Data Accessibility. Themain source of the species distribution data used in this
study, the specimen information, is accessible through the Chinese Virtual
Herbarium (http://www.cvh.ac.cn). The products that are based on the spe-
cies distribution data (species observed and potential range sizes and range
filling) are indicated in Dataset S1.
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