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Combined loss of tumor suppressors (TSPs), PTEN, TP53, and RB1, is highly associ-
ated with small cell carcinoma of prostate phenotype. Recent genomic studies of human 
tumors as well as analyses in mouse genetic models have revealed a unique role for 
these TSPs in dictating epithelial lineage plasticity—a phenomenon that plays a critical 
role in the development of aggressive variant prostate cancer (PCa) and associated 
androgen therapy resistance. Here, we summarize recently published key observations 
on this topic and hypothesize a possible mechanism by which concurrent loss of TSPs 
could potentially regulate the PCa disease phenotype.

Keywords: tumor suppressors, neuroendocrine prostate cancer, lineage plasticity, therapy resistance, epithelial-
to-mesenchymal transition

Small-cell prostate carcinoma (SCPC) is a common lethal variant of prostate cancer (PCa) that 
is androgen receptor (AR) negative and thus represents a mechanism for escape from the potent 
antiandrogen treatments. The presence of SCPC morphologic characteristics predicts for a distinct 
clinical course with a dismal prognosis, despite a heightened sensitivity to chemotherapy (1–4). 
Although often unrecognized, SCPC is frequently found on repeat biopsies of previously diagnosed 
adenocarcinoma of the prostate during castration-resistant PCa (CRPC) (5, 6) and is present in 
10–20% of autopsies of patients who die of the disease (7–10). SCPC also phenotypically overlaps 
with neuroendocrine prostate cancer (NEPC), and clinicopathologic characteristics of SCPC/
NEPC are generally associated with worse progression-free survival (3, 11–14).

Molecular characterization of human CRPC and SCPC/NEPC tumors showed that concur-
rent alteration of three tumor suppressors (TSPs), PTEN, TP53, and RB1, in which loss of copy 
numbers of both PTEN and RB1, and loss of copy number as well as missense mutations of 
TP53 genes are highly enriched in SCPC/NEPC tumors (Table 1) (15–24). Conditional deletion 
of the TSP genes in mouse luminal epithelial cells of prostate demonstrated new insights into 
the functional role of these TSPs in therapy resistance (25–28). Studies in mouse models as well 
as in human PCa cells showed that deletion of both RB1 and TP53 resulted in development of 
aggressive prostate tumors that are resistant to anti-androgen treatment (27, 28). Deletion of all 
three TSPs—RB1, TP53, and PTEN—resulted in development of lethal PCa and significantly 
increased cancer-related death and metastasis in mice (27). Expression analysis of mouse tumors 
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TAbLe 1 | Impact of combined loss of three tumor suppressors—PTEN, TP53, and RB1—in human and mouse models of prostate cancer.

Tumor suppressors 
status

Human prostate cancer: patient tumors and patient tumor-derived 
xenografts (PDXs)

Mouse model prostate  
cancer; conditional deletion of tumor  
suppressor genes in mouse prostate  
epitheliumc

Reference

CRPC: adenocarcinoma;  
epithelial markers positive;  

AR positivea

SCPC/nePC: morphological 
heterogeneous; neuroendocrine and 

proneural markers positive; AR negativeb

RB1 loss 10–30% 70–90% No prostate cancer (18–24, 27, 28)
Combines loss
RB1 + TP53

5–10% 30–40% NEPC-like tumor and castration  
resistance; decreased expression of AR

Combined loss
PTEN + RB1 + TP53

4–6% 30–35% Aggressive prostate cancer; castration  
resistance; short survival; loss of AR 
expression

aTSPs status of CRPC is reported from Grasso et al. (18), Robinson et al. (21), and Abida et al. (24).
bTSPs status of SCPC/NEPC is reported from Tzelepi et al. (19), Tan et al. (20), Aparicio et al. (22), and Beltran et al. (23).
cImpact of TSPs in mouse models are reported from Ku et al. (27) and Mu et al. (28).
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showed that loss of TSPs, induced epithelial lineage plastic-
ity with induction of neuroendocrine markers but loss of AR 
and epithelial makers. The study further showed that loss of 
RB1 plays a deterministic role in inducing lineage plasticity 
when combined with the loss of PTEN and TP53. In contrast, 
deletion of RB1 by itself showed no impact in prostate tumor 
development (Table 1).

The SCPC phenotype can be morphologically heterogeneous 
and is often described as mixed tumors harboring both typical 
adenocarcinoma and NEPC, suggesting that the SCPC/NEPC 
tumors constitute multiple cell types or cells in multiple distinct 
stages of differentiation. Studies in patient tumor-derived 
xenografts as well as in human tumors showed that the SCPC 
phenotype is associated with induction of the pro-neural devel-
opmental program, including expression of master transcription 
factors such as ASCL1, NEUROD1, and BRN2 that determine 
proneural differentiation (22, 29, 30). Several investigations 
reported expression of stem and basal cell markers in SCPC/
NEPC tumors, suggesting that these tumors might originate 
from basal cells of the prostate (31, 32). However, analysis of 
the mouse tumors with conditional deletion of TSPs in luminal 
epithelial cells strongly indicated that combined loss of TSPs 
induces lineage plasticity resulting in loss of AR expression 
but gain of stemness master transcription factor such as SOX2, 
along with upregulation of NEPC markers (27, 28). Importantly, 
lineage-tracing experiments demonstrated that anti-androgen 
therapy, by itself, could induce trans-differentiation of luminal 
epithelial cells into prostate NEPC-like cells lacking functional 
PTEN and TP53 TSPs (33). Of note, previous studies of com-
pound deletions of PTEN and TP53 TSPs in mice, wherein gene 
inactivation was done by a constitutive prostate-specific Cre 
driver, showed that combined TSP deletions led to development 
of invasive CRPC phenotype (34, 35). A more recent publication, 
however, used regulated inducible Cre driver in adult mice that 
specifically deleted PTEN and TP53 genes in prostate luminal 
epithelial cells, which allowed for a more detailed study about 
the role of PTEN and TP53 TSPs in therapy-induced NEPC 
transdifferentiation (33). Taken together, these studies suggest 
that cellular reprogramming or trans-differentiation could be 
a central mechanism potentiating resistance to anti-androgen 

therapy, in which loss of functional TSPs facilitates alterations 
in the epithelial lineage. This plasticity is observed in the switch 
to pro-neural and pluripotent-like cancer cells that are no longer 
dependent on AR activity.

Role of TSPs in cellular reprogramming or lineage plasticity 
is a nascent concept. Although the individual function of each 
TSP has been studied extensively for many years, the impact of 
combined loss of TSPs in specific cellular pathways that can be 
linked to therapy-resistance remains largely unclear. Importantly, 
TP53 loss or RB1 loss events in prostate tumors are not currently 
druggable. The proteins p53 and Rb1 encoded by TP53 and RB1 
genes, respectively, are known to function as nuclear transcrip-
tional activator and repressor, respectively. Loss of p53 function 
inhibits expression of downstream genes that are direct targets of 
p53 protein (36), whereas loss of Rb1 results in activation of E2F 
transcription factors regulating cell cycle genes, the pluripotency 
(transcription) factor SOX2, as well as heterochromatin regula-
tors (27, 37–39, 40, 41). The SCPC/NEPC tumors also express 
mutant p53 proteins, which although cannot bind to promoters 
of p53 target genes, can however indeed regulate transcription via 
activation of distinct transcription factors or chromatin regula-
tors driving oncogenic pathways (42, 43).

Induction of lineage plasticity due to loss of TSPs suggests 
that these TSPs likely play a role in maintaining the fundamental 
state of epithelial differentiation in the prostate. We propose that 
loss of TSPs in luminal epithelial cells induces epigenetic and 
transcriptional reprogramming resulting in differential expres-
sion of master transcription factors allowing lineage plasticity 
and thereby, the opportunity for trans-differentiation (Figure 1). 
Once the stage is set for this cellular fluidity, further molecular 
“hits” such as epithelial-to-mesenchymal transition (EMT), which 
can be induced by anti-androgen therapy (44), could then propel 
transition to SCPC/NEPC. The term EMT is used to describe 
profound cell biological transitions that convert “epithelial”  
tissue-resident cells into morphologically and functionally 
distinct “mesenchymal or mesenchymal-like” cells harboring 
increased migratory and invasive properties facilitating disease 
recurrence and progression. The genes expression analyses of 
both human and mouse prostate tumors demonstrate increased 
expression of master EMT transcription factors (FOXC2, ZEB1, 
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FiguRe 1 | Induction of transdifferentiation of epithelial prostate cancer cells 
may be brought about in multiple steps involving sequential loss of tumor 
suppressors (TSPs) function and pluripotency/plasticity events. Combined 
functional loss of TSPs (PTEN, RB, and P53), epigenetic and transcriptional 
modifiers, as well as pluripotency and stemness events have each been 
linked to the altered cellular differentiation process during prostate tumor 
progression. It is conceivable that these events have a preferential order of 
occurrence in the history of the tumor development, with each event 
contributing partially to tumor progression and also setting the stage for the 
next subsequent event. Combined TSP loss is perhaps an early event in this 
context, facilitating ensuing complex changes in the epigenome/
transcriptome of the early “primed” tumor cell. Together with powerful cell 
fate modifiers [such as epithelial-to-mesenchymal transition (EMT) and 
EMT-induced stemness], the changing tumor cell would then be equipped 
with pluripotency traits needed to fuel self-sustenance.
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SNAIL) (45, 46). These factors are known to play a critical role in 
the inhibition of the epithelial-specific transcriptional program, 
including inhibiting expression of AR, and instead inducing 
expression of mesenchymal markers.

Interestingly, loss of TP53 and RB1 TSPs is also highly associ-
ated with small-cell lung cancer (SCLC), a histological subtype 
representing nearly 15% of all lung cancers (47). SCLC expresses 
various neuroendocrine markers including the proneural 
master transcription factors, ASCL1 and NEUROD1 (48). The 
non-small-cell lung cancer (NSCLC) subtype, accounting for 
the majority of the cases, includes adenocarcinoma and is often 
treated with tyrosine kinase inhibitors targeting epidermal 
growth factor receptor (EGFR)-activating mutations. SCLC can 
develop as part of a resistance mechanism to targeted EGFR 
therapy. Analysis of SCLC tumors utilizing patient tumors and 
mouse models suggest that the SCLC phenotype can be devel-
oped due to transformation or trans-differentiation of NSCLC 
adenocarcinoma, as a result of RB1 inactivation and/or loss of 
EGFR expression, as recently reviewed extensively (49, 50). In 
this regard, it is conceivable that development of both SCPC/
NEPC and SCLC can be driven by similar cellular mechanisms 
involving cell fate changes (47, 50).

Resistance to antiandrogen therapy can also emerge as an 
AR-independent mechanism without development of the SCPC/
NEPC phenotype, as recently revealed in two publications (51, 52).  
In this case, activation of the fibroblast growth factor and mitogen-
activated protein kinase pathways can drive CRPC tumor growth 
in the absence of both AR and SCPC/NEPC markers (termed as 
“double negative”) (51). Another mechanism includes activation 
of the gastrointestinal (GI) lineage transcriptional program in 
CRPC, in which the resistant tumor cells utilize two hepatocyte 
nuclear factors (HNF1A and HNF4G), that drive an alternate 
lineage-specific program due to suppression of AR signaling 
(52). Since AR plays a key role in driving/sustaining the prostate 
luminal epithelial lineage program, loss of AR or activation of GI 
lineage transcription events would alter the luminal epithelial cell 
fate, in turn resulting in the onset of the AR-independent CRPC 
phenotype. The specific epigenetic mechanism/s and/or genomic 
deletion that might be initiating the AR-independent tumors 
without SCPC/NEPC phenotype are yet to be identified.

In summary, concurrent loss of the TSPs—PTEN, RB1, and 
TP53—permits powerful cell-fate adaptations (via altered epige-
netic and transcriptional rewiring) that together allow the tumor 
cell a new capacity to transition to a distinct cell fate. Following 
this necessary and initial event, cell biological processes like EMT 
determine the ultimate phenotype of these altered tumor cells 
along with rapid development of therapy resistance, much like in 
other solid tumors such as breast or lung cancers. We speculate 
that continued expression of EMT and/or stem-cell factors would 
sustain the SCPC/NEPC tumors in a pluripotent yet reversible 
state. The challenge lies in identifying unique and significant 
modifiers of epithelial lineage plasticity. Understanding the 
contribution of these “second” hit events such as epigenetic and 
transcriptional alterations may offer workable therapeutic oppor-
tunities overcoming resistance to antiandrogen therapy.
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