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Citation: Cicalău, G.I.P.; Babes, P.A.;

Calniceanu, H.; Popa, A.; Ciavoi, G.;

Iova, G.M.; Ganea, M.; Scrobotă, I.
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Abstract: Periodontal disease and diabetes mellitus are two pathologies that are extremely widespread
worldwide and share the feature of chronic inflammation. Carvacrol is a phenolic monoterpenoid,
produced by a variety of herbs, the most well-known of which is Origanum vulgare. Magnolol is a
traditional polyphenolic compound isolated from the stem bark of Magnolia officinalis, mainly used
in Chinese medicine. The purpose of this paper is to review the therapeutic properties of these
bioactive compounds, in the treatment of periodontitis and diabetes. Based on our search strategy
we conducted a literature search in the PubMed and Google Scholar databases to identify studies.
A total of one hundred eighty-four papers were included in the current review. The results show
that carvacrol and magnolol have anti-inflammatory, antioxidant, antimicrobial, anti-osteoclastic,
and anti-diabetic properties that benefit both pathologies. Knowledge of the multiple activities of
carvacrol and magnolol can assist with the development of new treatment strategies, and the design
of clinical animal and human trials will maximize the potential benefits of these extracts in subjects
suffering from periodontitis or diabetes.

Keywords: carvacrol; magnolol; periodontitis; diabetes; anti-inflammatory; antioxidant; antimicrobial;
anti-osteoclastic; anti-diabetic; toxicity

1. Introduction

Periodontal disease is the subject of a public health problem, being a pathology
that joins general conditions. This pathology, also called periodontitis, is an infectious
disease of the oral cavity, characterized by irreversible destruction of the tooth-supporting
structures: Alveolar bone, periodontal ligament, and cementum [1]. Periodontitis is one of
the major causes of tooth loss, which endangers the functions of the stomatognathic system:
Mastication, phonation, physiognomy, aesthetics, as well as self-confidence, self-esteem,
and quality of life of patients [2,3]. According to a 2016 survey fulfilled by the Global
Burden of Disease (GBD), severe periodontal disease was the 11th most widespread disease
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on the globe [4]. In the case of periodontitis, a prevalence of 20–50% worldwide has been
noted [5].

Diabetes is characterized by the body′s inability to control blood glucose levels. Type 1
and type 2 diabetes are the forms of diabetes that have been stated to act upon periodontium.
In type 1 diabetes, pancreatic β-cells do not synthesize insulin or synthesize an insufficient
amount, patients are treated with insulin, and therefore this type of diabetes is also known
as insulin-dependent diabetes mellitus (IDDM). Type 2 diabetes is also called non-insulin-
dependent diabetes (NIDDM) and is characterized by a deficiency of insulin receptors [6].
The prevalence of diabetes is constantly rising on all continents and can be classified as
an epidemic, due to alarming proportions: 415 million people have been diagnosed with
diabetes and it is expected that the values will increase to about 640 million in 2040 [7].
Diabetes mellitus will be the seventh leading cause of mortality by 2030, as per World
Health Organization (WHO) statistics [8].

Herbal extracts have been considered therapeutic elements since ancient times. Cur-
rently, more and more natural compounds, essential oils, and vegetable extracts have
attracted interest from researchers, due to their antioxidant properties and benefits for the
wellbeing of the human body [9].

Carvacrol is a phenolic monoterpenoid, produced by many herbs, the best known of
which are Origanum vulgare (Greek oregano, wild marjoram), Origanum majorana (marjo-
ram), Satureja hortensis (summer thyme), Thymus vulgaris (thyme), and Satureja montana
(winter thyme) [10]. Carvacrol has long been recognized as a component of oregano essen-
tial oil, being one of its most investigated components [11]. Thymol is a structural isomer
of carvacrol, with the hydroxyl group (–OH) in the second position and similar character-
istics to those of carvacrol [12]. Carvacrol possesses anti-inflammatory, antioxidant, and
antibacterial properties [13,14]. At the same time, carvacrol has other biological proper-
ties, being anti-diabetic, antifungal [15], antitumor [16], antimutagenic [17], analgesic [18],
anti-hepatotoxic [19], cardioprotective [15], and antiparasitic [20].

Magnolol is a binaphthalene polyphenolic compound, isolated from the stem bark of
Magnolia officinalis, being a traditional extract, used mainly in Chinese medicine. Honokiol
is the structural isomer of magnolol [21]. Magnolol was first isolated in 1930 from the
magnolia root by Sugii, a Japanese scientist, and was first synthesized by Holger Erdtman
and Johan Ludvig Runeberg, two Swedish scientists, using p-allylphenol as a raw material.
Magnolia officinalis has been described since ancient times, in the “Shennong Herbal Classic”,
dating from Qin and Han Dynasty, around 221 B.C. to 220 A.D. Magnolol is widely used
in Oriental medicine [19]. There is ample evidence that magnolol exerts a wide variety of
beneficial pharmacological activities. Magnolia officinalis extract has plentiful attributes,
such as anti-inflammatory [22–24], antioxidant [25], antibacterial [26], anti-osteoclastic [23],
antianxiety [27], anti-diabetic [28], antiplatelet, and anticarcinogenetic [29]. Figure 1 shows
the chemical structure of carvacrol [30] and magnolol [31].
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Figure 1. (A) The chemical structure of carvacrol [30]; (B) the chemical structure of magnolol [31].

The purpose of this manuscript is to conduct a literature review on the therapeutic
properties of two natural bioactive extracts, carvacrol and magnolol, as well as their impact
on periodontal disease and diabetes mellitus. The aim of this assessment is to evaluate
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the pathogenesis of periodontitis and diabetes, as well as the interdependence between
periodontitis and diabetes, and the biological effects of these extracts in these diseases. Last
but not least, we will investigate the toxicity of carvacrol and magnolol at various doses.
The objective of this review, in summary, is to create a synthesis of the effects of carvacrol
and magnolol on periodontitis and diabetes, based on literature research.

2. Materials and Methods
2.1. Search Strategy

We conducted a review of the properties of bioactive plant extracts, carvacrol and
magnolol, against periodontal disease and diabetes mellitus.

This narrative review was conducted using two databases: PubMed and Google
Scholar. In order to identify the most revealing articles, the search strategy included com-
bined keywords such as “carvacrol” or “magnolol”, “anti-inflamatory” or “antioxidant” or
“antimicrobial” or “anti-osteoclastic” or “bone resorption” or “anti-diabetic”, “periodon-
titis” or “gingivitis”, “diabetes” or “hyperglycemia”. The databases were searched for
studies published between 1986 and 2021.

The search strategy was designed to identify in vivo or in vitro studies on the anti-
inflammatory, antioxidant, antimicrobial, anti-osteoclastic, anti-diabetic, and toxicity effects
of carvacrol and magnolol on the treatment of various inflammatory diseases, particularly
periodontal disease and diabetes mellitus.

2.2. Study Selection and Eligibility Criteria

The authors carefully reviewed the articles found and selected the ones that were
the most informative in terms of the topic they were looking for. Although there was no
restriction on the year of publication for the studies included, the majority of the papers
were published after 2010.

All electronically searched titles, selected abstracts and full-text publications were
independently reviewed by a minimum of two reviewers. We included in our manuscript
papers containing the keywords mentioned. The inclusion criteria were in vivo or in vitro
studies, the use of carvacrol or magnolol, the treatment of periodontitis or diabetes or other
inflammatory diseases, and the evaluation of anti-inflammatory, antioxidant, antimicrobial,
anti-osteoclastic, anti-diabetic action, or toxicity of these extracts. The selected in vivo
studies have been conducted on both animals and humans. Exclusion criteria were studies
that did not meet the required criteria. Furthermore, we excluded papers that were
published in languages other than English. Disagreements over whether texts fit the
inclusion or exclusion criteria were resolved through consensus.

Through database research, 438 records were identified. After removing 151 duplicates,
as well as 86 irrelevant articles whose theme did not match the standards of this review, we
proceeded to read the remaining 201 titles and abstracts eligible for inclusion. We removed
17 articles not meeting all the inclusion criteria. Ultimately, based on our search strategy,
we included 187 references that met the criteria of the study. One hundred and sixty-five
of these are found in the PubMed database and 14 in the Google Scholar database. The
remaining number to complete the total is represented by 7 sites and 1 book. A flow chart
regarding the selection criteria of the articles that were taken into account for this review is
illustrated in Figure 2.
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Figure 2. Flow chart illustrating the selection process of the references included in this review.

A section on bibliometric information was included to increase the value of the
research. The articles’ quality was evaluated based on the number of citations in the
literature and the impact factor of the journals where they were published. As shown in
Scheme 1, the percentage distribution of the articles included in the study was calculated
based on their citations number. Thus, 46% have been quoted 1–100 times, 25% have been
quoted 100–200 times, 16% have been quoted 200–500 times, 8% have between 500 and
1000 citations, and 5% have over 1000 citations.
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Simultaneously, the articles were classified based on the impact factor of the journals
where they were published. Thus, 92 articles had an impact factor of 3.00 to 6.00, 43 publi-
cations had an impact factor of 1.00 to 3.00, 35 had an impact factor of 6.00 to 9.00, and 17
had an impact factor greater than 9.00. Scheme 2 depicts the distribution of articles based
on the journals’ impact factor.
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3. Pathogenesis of Periodontal Disease and Diabetes Mellitus

Periodontal disease is an inflammatory condition of the superficial or deep marginal
periodontium, with the primary etiological factor of bacterial biofilm. Periodontal pathogens,
represented mainly by the anaerobic flora, induce cellular inflammation, local edema, and
consequent vasodilation through their products [32]. Chronic inflammation from gingivitis
or periodontitis degrades the supporting structures of the tooth, also acting on the alveolar
bone, and in severe cases reaching the avulsion of the teeth [33,34].

Periodontal disease is a pathology with a very high prevalence among the population
and is a non-specific inflammatory condition. It is a condition closely related to other
systemic inflammatory or non-inflammatory disorders, including coronary heart disease
and diabetes [35].

Periodontal pathogens can be grouped into bacterial complexes according to their
properties and pathogenicity. One of the oldest classifications of subgingival bacteria
was made by Socransky, who grouped periodontopathogenic bacteria into complexes,
associated with different periodontal statuses. This classification is still valid today and
can be observed in Figure 3 [36].

Those bacteria that rapidly colonize the bacterial plaque, with the ability to adhere
to the film, are bacteria from the green, purple, or yellow complex. The orange complex
comprises moderately pathogenic periodontal microorganisms such as Fusobacterium nu-
cleatum (F. nucleatum) and normally occurs after the first colonizers appear in the bacterial
plaque [37]. They associate with other bacteria to colonize the gingival sulcus. The bacteria
in the red complex have the greatest pathogenicity: Porphyromonas gingivalis (P. gingivalis),
Treponema denticola (T. denticola), and Tannerella forsythia (T. forsythia), the most important
in the periodontal disease of adults [38]. The pathogenicity of these bacteria increases
significantly through the production of various enzymes and toxins. The loss of gingival
attachment and the increase in the depth of the periodontal pockets is due to bacteria be-
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longing to the orange complex. Through their metabolism, they provide living conditions
for microorganisms in the red complex, strictly anaerobic bacteria, which multiply in the
crevicular groove. The presence of bacteria in the red complex and the identification of
Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is evidence of the final
colonization of the periodontium [39].

The pathogenesis of periodontal disease would therefore be the result of dysbiosis,
caused by ecological stress, generated by the multiplication of numerous periodontal
pathogens [40].
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In the etiopathogenesis of periodontal disease, complex interactions are involved
between numerous mediators of inflammation and mediators of tissue remodeling [41].
Lipopolysaccharides (LPS) are the main constituent of the outer shell of Gram-negative
microorganisms, playing a role in the production of many cytokines, such as tumor necro-
sis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) [42,43]. These
cytokines infiltrate the gingival tissue and cause local inflammation. Matrix metallopro-
teinases (MMPs) are a group of host factors, involved in periodontal pathology, being
incriminated for the degradation of collagen and the extracellular matrix in periodontal
tissue [44]. In addition, gelatinases such as gelatinase A (MMP-2) and gelatinase B (MMP-9)
have been associated with periodontitis [45].

During the inflammation generated by periodontitis, there is a significant increase in
interleukin expression (IL-1β, IL-6) and transforming growth factor-1β (TGF-1β), which
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play a key role [46]. At the same time, an alarming increase in growth factors has been
observed in diabetes [47,48]. IL-6 is produced by most cells of the immune system and
can have anti-inflammatory or pro-inflammatory effects, depending on the circumstances
in which it is secreted. The anti-inflammatory effect of IL-6 is mediated by the inhibition
of TNF-α and interleukin-1 (IL-1), but also by the activation of agonist receptors of IL-1
and interleukin-10 (IL-10). On the other hand, IL-6 is the mediator of the induction of
acute phase proteins, such as the C-reactive protein (CRP). IL-6 is responsible, among other
things, for the differentiation and proliferation of B lymphocytes, for the differentiation of
monocytes in macrophages, and for the induction of osteoclast formation [49,50]. The most
important function of interleukin (IL) is the regulation of bone metabolism [51].

Last but not least, TGF-1β is a multifunctional cytokine with a pleiotropic effect,
similar to IL-6, both pro-inflammatory and anti-inflammatory. It stimulates inflammation
by chemotactism for monocytes, neutrophils, or lymphocytes and stimulates the production
of inflammatory cytokines (IL-1, IL-6) [52,53]. As an anti-inflammatory cytokine, it plays a
role in suppressing the humoral response. TGF-1β is secreted by lymphocytes, monocytes,
neutrophils, and platelets, making it a very important molecule in wound healing and
tissue regeneration [54].

A lack of insulin causes diabetes. Insulin deficiency is generated by insufficient
insulin production in IDDM or by insulin resistance in NIDDM, leading to hyperglycemia.
Elevated blood sugar levels are associated with disruption of carbohydrate metabolism,
which is controlled by enzymes [55].

Chronic hyperglycemia and hyperlipidemia activate oxidative stress, which causes
diabetes, cardiovascular, renal, or ocular complications [56]. The liver is the organ that
accounts for glucose utilization (30–60% of glucose intake) and regulates blood glucose
levels. Glucose homeostasis is maintained through carbohydrate metabolism pathways,
such as aerobic oxidation, anaerobic glycolysis, and glycogen synthesis [57].

Complications of diabetes include cardiovascular disease, neuropathy, diabetic nephropa-
thy, retinopathy, and diabetic foot gangrene [58]. In the oral cavity, there are characteristic
manifestations of diabetes: Halitosis, xerostomia, sialadenitis, cheilitis, glossodynia, ulcers,
increased incidence of infections, and delayed wound healing [59].

The relationship between oral infections and diabetes is far from being fully elucidated
by the medical community. However, there are theories that chronic hyperglycemia and
hypersecretion of prostaglandins E2 (PGE2) and TNF-α are due to the accumulation of
advanced glycation end products (AGEs) [60,61]. A change in collagen metabolism was also
observed because of increased collagenase activity and decreased collagen synthesis [62].

Both pathologies have chronic inflammation as a common feature [63,64]. Several
studies have shown the bidirectional relationship between periodontal disease and dia-
betes mellitus [65–67]. Both pathologies are extremely widespread worldwide, but the
mechanisms that link them are not fully understood [68].

Diabetes is a clinical syndrome characterized by hyperglycemia, which affects all age
groups. NIDDM significantly increases the risk of developing periodontal disease and
has been suggested to modulate oral microbial communities. The increase in bacterial
load could explain the risk of periodontal disease in diabetics [69]. Other studies have
shown that NIDDM alters the subgingival bacterial community through inflammation and
high blood sugar levels in the crevicular fluid [70]. This would explain the changes in
the sulcus in the case of diabetes, with the crevicular groove being a reservoir of bacterial
growth [71–74].

An observational research study observed that periodontitis had a higher predomi-
nance in patients suffering from diabetes, compared to patients without hyperglycemia,
regardless of differences in age or sex [75]. There is clear evidence that diabetes is a risk
factor for gingivitis and periodontitis, and high blood sugar levels are a determining factor
in this two-way relationship [6]. Increased values of inflammation have been reported in
patients with poor diabetes control [76]. Diabetes is considered to be the only systemic
condition with a positive association in terms of loss of gingival attachment [77]. The
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hyperglycemic environment causes the thickening of the basement membrane of the capil-
laries, the alteration of the oxygen distribution in the tissues, and the elimination of toxic
products. Neutrophil hypofunction alters host defense mechanisms and discredits the
immune system against infections [78].

Hyperglycemia modifies fibroblast metabolism, inhibits osteoblastic cell proliferation,
and compromises bone healing. Elevated blood glucose levels are a vector for the produc-
tion and accumulation of AGEs. AGEs bind to monocytes and macrophages, causing them
to release several pro-inflammatory cytokines such as IL-1β, TNF-α, and PGE2, causing
tissue damage [48,79]. Therefore, diabetes contributes to the aggravation of periodontal
pathology through increased levels of inflammation, oxidative stress, and changes in the
body’s defenses.

In the case of periodontal disease, several inflammatory molecules are released, such
as IL-1β, IL-6, interleukin-8 (IL-8), LPS, TNF-α, and PGE2. These molecules are able to
interplay with free fatty acids, lipids, and AGEs, all characteristic of hyperglycemia. Thus,
some intracellular pathways associated with insulin resistance are affected, such as nuclear
factor-kappa B (NF-κB), the inhibitor of kappa B kinase (IκB), or the inhibitor of kappa B
kinase β (IκBβ) [80].

Systemic levels of inflammation mediators, such as CRP, TNF-α, and IL-6, are ele-
vated in periodontal disease and may represent the link between diabetes and periodonti-
tis [74,81–84]. Another association between periodontitis and hyperglycemia is oxidative
stress, which can activate pro-inflammatory pathways similar to both diseases. [85]

Patients with diabetes have an increased risk of developing periodontal disease,
especially when they do not control their blood sugar levels. Prevention and treatment
of pathologies in the superficial and deep marginal periodontium must be judiciously
considered in the management of patients with hyperglycemia. It has been shown that
keeping blood sugar levels under control has advantages over periodontal disease, while
the treatment of periodontal disease improves metabolism in patients with diabetes [86].
Clear health strategies need to focus on periodontal disease, as a risk factor for diabetes
and cardiovascular disease, through prevention and treatment programs for all chronic
infections [87].

4. Chemistry of Carvacrol and Magnolol

Carvacrol is a liquid phenolic monoterpenoid, present in the essential oil of oregano
(Origanum vulgare), thyme (Thymus vulgaris), pepper (Lepidium flavum), wild bergamot
(Citrus aurantium var. Bergamia Loisel), and other plants [88]. It is also known as 5-Isopropyl-
2-methylphenol [30]. Other synonyms for carvacrol are isopropyl-o-cresol, p-cymen-2-
ol, 2-hydroxy-p-cymene, 5-isopropyl-2-methylphenol, or iso-thymol [35]. Carvacrol is
registered in the IUPAC (International Union of Pure and Applied Chemistry) chemical
nomenclature of organic compounds under the name 2-methyl-5-propan-2-ylphenol, with
the molecular formula C10H14O and the CAS identification number 499-75-2 [89]. It has a
molecular weight of 150.22 g/mol, a density of 0.976 g/mL at 20 ◦C, and a boiling point of
236–237 ◦C [30]. It is insoluble in water, but very soluble in ethanol, acetone, and diethyl
ether. Commercial carvacrol is synthesized by chemical and biotechnological methods [90].

Magnolol is a bioactive plant extract, isolated from the bark and root of various
species of magnolia, among which we mention Magnolia officinalis [30]. This substance
of natural origin is a binaftelic polyphenolic compound, also known as 2,2′-Bichavicol
or 5,5′-Diallyl-2,2′-biphenyldiol [91]. Magnol is registered in the chemical nomenclature
IUPAC of organic compounds under the name 2-(2-hydroxy-5-prop-2-enylphenyl)-4-prop-
2-enylphenol, with the molecular formula C18H18O2 and CAS identification number 528-
43-8. It has a molecular weight of 266.33 g/mol, water solubility of 1.24 mg/L at 25 ◦C, and
a boiling point of 101.5–102 ◦C [92].
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5. Biological Activities of Carvacrol and Magnolol on Periodontitis and Diabetes

Over time, a wide variety of therapeutic methods for the removal of periodontal
disease have emerged. One of the most common approaches is mechanical treatment
and periodontal surgery, in order to annihilate the microbial load on the periodontium.
However, this approach is not always optimal, as periodontal disease is immunogenetically
modulated and therefore requires adjuvant therapies [93]. The increased incidence of
marginal periodontitis, increased resistance of Gram-negative bacteria to routine antibiotics,
and even their side effects motivate researchers to discover new treatment schemes for the
prevention and treatment for this illness [94].

Hence the emergence of new herbal medicine formulas, with bioactive molecules,
would be beneficial for minimally invasive treatment, simple and predictable, but also
with prophylactic potential in the occurrence of marginal periodontitis. Natural medicines
consist of plant extracts that are considered to have therapeutic properties. At present,
phytotherapy is gaining more and more followers, due to the complex action of the extracts,
minimal side effects, and low cost compared to synthetic drugs. At the same time, modern
medicines can generate resistance to antibiotics, so herbal treatments are an alternative in
combating various diseases of the body and oral cavity [95].

Plant extracts have been paid more and more attention on account of their anti-
inflammatory and antibacterial properties and their role in modulating the inflammatory
response. Recent research also shows that certain flavonoids have particularly beneficial
properties [77]. In recent years, more and more plant extracts have been scientifically
investigated in terms of their effect on the bacterial flora of periodontal disease. Many of
these studies are experimental research on rats, as this animal model has similar histological,
immunological, and biochemical mechanisms to those found in humans [96–99].

A number of natural extracts have been shown to improve the symptoms of dia-
betes and chronic marginal periodontitis. Two of these extracts are carvacrol and mag-
nolol [100,101]. An in vivo study showed that carvacrol improves experimentally induced
periodontitis in rats and analyzed the effect of intragastric (IG) administration of carvacrol
on alveolar bone resorption, using radiographic examinations. The use of carvacrol in
small doses is safe and helpful in the treatment of periodontal disease. The results showed
that carvacrol protects gingival tissue in rats with periodontal disease, which is mediated
by carvacrol through the inhibitory effect on inflammation and degradation of periodontal
tissue. Carvacrol also reduces the inflammatory reaction and expression of MMP-9 [102].
Other studies have used carvacrol incorporated into herbal periodontal gels to treat ex-
perimentally induced periodontitis in rats and it has been shown that local application of
carvacrol has reduced alveolar bone resorption [103,104].

Magnolol has been shown to reduce hyperglycemia and alleviate the complications
of diabetes [105]. It has also been shown to relieve the accumulation of stress thanks
to its antioxidant properties [90] and reduce inflammation in ligature-induced marginal
periodontitis in rats [88]. Last but not least, magnolol reduces the inflammation induced
by P. gingivalis LPS in macrophages [106]. Figure 4 summarizes the properties of car-
vacrol [13–20] and magnolol [22–29].

5.1. Anti-Inflammatory Effects of Carvacrol and Magnolol

It is known that cytokines are the link between cell damage and signs of inflammation
(cell migration, edema, fever, or hyperalgesia) [107–109]. Cytokines are produced and
released by many cell types in response to inflammatory stimuli. Inflammatory cytokines,
such as IL-1β and TNF-α, are followed by the appearance of anti-inflammatory cytokines,
IL-10, or interleukin-4 (IL-4) [109]. It is documented that cytokines such as TNF-α, IL-
1β, and interleukin-17 (IL-17) play a substantial role in the inflammatory response [110].
TNF-α is secreted by mononuclear phagocytes and can induce acute phase proteins [111].
IL-17 produced by T helper 17 cells (Th17), natural killer (NK) cells, and neutrophil cells
can exacerbate inflammation by proliferating the number of immune cells and indirect
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recruitment of neutrophils [112]. IL-1β is recognized as an acute phase mediator of the
inflammatory response against infections [113].
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Therefore, the ratio between pro- and anti-inflammatory cytokines modulates the
intensity of inflammation [114]. Inflammation is also characterized by oversynthesis
of inducible nitric oxide synthase (iNOS), oversynthesis of cyclooxygenase-2 (COX-2),
and excess synthesis of nitric oxide (NO) and prostaglandins (PGE) [115]. Carvacrol
has been shown to inhibit inflammatory cytokine levels and the expression of iNOS and
COX-2 [116,117]. Other research has displayed that carvacrol inhibits neutrophil elastase
production and the production of PGE2, prostaglandins F1 (PGF1), and prostaglandins F2
(PGF2) [114,117,118].

da Silva Lima et al. (2013) demonstrated in an in vivo animal study that the adminis-
tration of carvacrol, in doses of 50–100 mg/kg, has an anti-inflammatory effect, attenuates
inflammatory edema in rat paws, and reduces IL-1β and PGE2. At the same time, they
demonstrated that the administration of a dose of 100 mg/kg reduces COX-2 and IL-1β
messenger ribonucleic acid (mRNA) expression. Levels of IL-10 and anti-inflammatory
cytokines were increased by carvacrol, which highlights the protective effect of this natural
extract [114]. The anti-inflammatory effect of carvacrol may be due to the inhibition of
one or both of the cyclooxygenase (COX) enzymes, an effect previously suggested in other
studies, which shows the inhibitory effect of carvacrol on cyclooxygenase-1 (COX-1) and
COX-2 [18,117]. Another study indicates that carvacrol plays an anti-inflammatory role by
inhibiting inflammatory edema and leukocyte migration [119].
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Tabibzadeh Dezfuli et al. (2017) also demonstrated that oral administration of car-
vacrol, once daily, in animals with streptozotocin (STZ)-induced diabetes, reduces the
levels of IL-1β, IL-6m and TNF-α [120]. On the other hand, contradictory results were
obtained, claiming that carvacrol has a positive effect in reducing IL-1β, IL-4, and IL-8, but
would not have an effect on IL-6 and TNF-α, probably due to the methodology used in the
studies by de Carvalho et al. (2020) [119,121].

In research on human subjects, Xiao et al. (2018) showed that carvacrol is able to inhibit
the production of NO and PGE2, induced by IL-1β, but it also reduced the expression
of iNOS, COX-2, and MMPs in chondrocytes by suppressing the signaling pathway NF-
κB [122].

The anti-inflammatory characteristics of magnolol have also been investigated in
abundant conditions. Magnolol exerts anti-inflammatory activity by inhibiting the forma-
tion of reactive oxygen species (ROS), COX-2 and iNOS expression, activating NF-κB, a
transcription factor that directs inflammation in inflammatory diseases induced by LPS,
and inhibiting the formation of pro-inflammatory cytokines [23,27].

In vitro studies coordinated by Lai et al. (2011) suggested that a dose of 5–15 µM
magnolol may exhibit anti-inflammatory activity in LPS-induced RAW 264.7 cells. At the
same time, magnolol inhibited iNOS and COX-2 gene and protein expression [123]. In
another study, Lu et al. (2015) concluded that a dose of 5–20 µM magnolol significantly
reduced inflammation, decreased the production of pro-inflammatory nitrates and PGE2,
reduced iNOS and COX-2 expression, and activated NF-κB. At the same time, nuclear factor
erythroid 2-related factor 2 (Nrf2) and hemogen oxygenase (HO) expression increased [124].

In an in vivo study by Lin el al., intraperitoneal (IP) injection of 20 mg/kg magnolol
was shown to significantly improve the inflammatory response in Sprague–Dawley rats.
Magnolol can attenuate ROS production, iNOS, and COX-2 expression, and NF-κB activa-
tion, as well as up-regulate of peroxisome proliferator-activated receptor gamma (PPAR-γ)
expression [125]. Magnolol administered IP by Yang et al. (2016) has been shown to
develop therapeutic potential in retinal angiogenesis and glial dysfunction, by decreasing
inflammatory cytokines [126].

Research by Lu et al. (2013) on male rats of the Sprague–Dawley breed, with ligature-
induced experimental periodontitis, showed that oral administration of Magnolia officinalis
extract for 9 days inhibited neutrophil migration, myeloperoxidase (MPO) activity, COX-2
expression, and iNOS in gingival tissue [104]. In another investigation, Lee et al. (2005)
highlighted the anti-inflammatory activity of magnolol and honokiol on a pathogenic
anaerobic, Propionibacterium acnes (P. acnes), responsible for acne. This time, magnolol has
been shown to inhibit NF-κB from COX-2, IL-8, and TNF-α promoters [127].

The abovementioned reveal that carvacrol and magnolol could be used successfully
in the treatment of various inflammatory conditions, such as periodontal disease, whose
main component is chronic inflammation, affecting the superficial and deep periodontal
tissue, endangering the support of the tooth in the dental alveolus. Table 1 presents the anti-
inflammatory effects of carvacrol and magnolol and Scheme 3 shows the anti-inflammatory
mechanism of carvacrol and magnolol in periodontitis and diabetes.

Table 1. Anti-inflammatory effects of carvacrol and magnolol [104,114,120–127].

Researcher Study Design Doses of Treatment Main Results References

da Silva Lima et al.
(2013)

Model: Swiss mice (22–28 g)
Disease model: CFA paw edema

Treatment: 50 mg/kg,
100 mg/kg CAR, 40 min

before CFA
Type of administration: IP

↓IL-1β
↓PGE2

↔ TNF-α local levels
↓COX-2

↓IL-1β mRNA expression
↑IL-10

↑IL-10 mRNA expression

[114]
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Table 1. Cont.

Researcher Study Design Doses of Treatment Main Results References

Tabibzadeh Dezfuli
et al. (2017)

Model: Rats
Disease model: STZ induced DM

Treatment: 5 mg/kg,
10 mg/kg, 15 mg/kg BW

CAR
Type of administration: OG

↓ IL-1β
↓ IL-6
↓ TNF-α [120]

de Carvalho et al.
(2020)

Model: Animals or humans
Disease model: Pulmonary

injury

Treatment: Different doses
of CAR

Type of administration: IP/
diluted in water/ PO/

capsule

↓IL-1β
↓IL-4
↓IL-8
↔ IL-6
↔ TNF-α

[121]

Xiao et al. (2018)

Model: Human articular
cartilage (8 patients, age

24–41 years), chondrocyte
culture

Disease model: Articular
cartilage with degenerative

changes, osteoarthritis
Treatment: Various

concentrations of CAR
(0 µg/mL, 1 µg/mL, 5 µg/mL

and 10 µg/mL), for 2 h
Type of administration: in vitro

Treatment: Various
concentrations of CAR
(0 µg/mL, 1 µg/mL,

5 µg/mL and 10 µg/mL),
for 2 h

Type of administration:
in vitro

inhibits IL-1β-induced
NO

inhibits PGE2
↓iNOS

↓COX-2 expression
suppressed

IL-1β-induced MMP-3
and MMP-13 expression
inhibits the activation of
NF-κB signaling pathway

in chondrocytes

[122]

Lai et al. (2011)

Model: RAW 264.7 cells, derived
from murine macrophages,

induced by LPS
Disease model: Inflammation

Treatment: 5–15 µM MAG
dissolved in DMSO were
added together with LPS
Type of administration:

in vitro

significantly inhibited
LPS

stimulated iNOS and
COX-2 protein and gene

expression

[123]

Lu et al. (2015) Model: RAW 264.7 macrophages
Disease model: Inflammation

Treatment: 5–20 µM MAG
Type of administration:

in vitro

↓production of
pro-inflammatory

nitrates
↓PGE2
↓iNOS

↓COX-2 expression
activated NF-κB

↑Nrf2
↑HO

[124]

Lin el al. (2015)

Model: Male Sprague–Dawley
rats (200–230 g)

Disease model: Acute lung
injury

Treatment: 10 mg/kg,
20 mg/kg BW MAG, for

1 h
Type of administration: IP

↓iNOS expression
↓COX-2 expression
↓NF-κB activation
↑PPAR-γ expression

[125]

Yang et al. (2016)
Model: Neonatal C57BL/6J mice
Disease model: Oxygen-induced

retinopathy

Treatment: 25 mg/kg
MAG, once a day

Type of administration: IP
↓inflammatory cytokines [126]

Lu et al. (2013)

Model: Male Sprague–Dawley
rats (250–350 g)

Disease model: Ligature induced
periodontitis

Treatment: 100 mg/kg
MAG, for 9 days, starting

1 day before ligature
Type of administration: OG

inhibited neutrophil
migration in gingival

tissue
inhibited MPO activity in

gingival tissue
inhibited COX-2

expression in gingival
tissue

inhibited iNOS in
gingival tissue

[104]
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Table 1. Cont.

Researcher Study Design Doses of Treatment Main Results References

Lee et al. (2005)
Model: Human monocyte THP-1

cell line
Disease model: Acne

Treatment: 10–15 µM MAG
and 10–15 µM honokiol
dissolved in 10% DMSO
Type of administration:

in vitro

inhibit NF-κB from
COX-2, IL-8 and TNF-α

promoters
↓ IL-8
↓ TNF-α
↓ COX-2

[127]

↑: Increase or upregulate; ↓: Decrease or down-regulate;↔: No change.

Molecules 2021, 26, x FOR PEER REVIEW 14 of 31 
 

 

 
Scheme 3. The anti-inflammatory mechanism of carvacrol and magnolol in periodontitis and diabetes 
[23,27,104,114,120,122–125].↑:Increase or upregulate; ↓:Decrease or down-regulate. 

5.2. Antioxidant Properties of Carvacrol and Magnolol in Association with Periodontal Disease 
and Diabetes Mellitus 

Carvacrol has strong antioxidant properties and can be effective in preventing and 
inhibiting many pathologies [128]. Oxidative stress is a substantial mechanism that may 
be involved in cytotoxicity induced by chronic stress [129]. 

Oxidative stress is the expression utilized for pathologies caused by ROS, imposed 
by free radicals. Oxidative stress is defined as the imbalance between oxidants and anti-
oxidants, in favor of oxidants, with destructive and pathogenetic potential. Depending on 
the intensity, oxidative stress can occur intra or extracellularly. Intracellular oxidative 
stress can cause cell necrosis or more or less marked disorganization of the cell, with cat-
astrophic effects in the case of a cell that cannot reproduce. Extracellular oxidative stress 
is cytotoxic, too. Free radicals are substances derived from incompletely oxidized com-
pounds, which have undergone partial combustion, with oxygen groups in their structure 
capable of initiating aggressive oxidation reactions on the surface of cell membranes or 
even inside cells [130]. 

Rapid metabolism entrains additional free radicals, producing an imbalance between 
ROS generations and the antioxidant system. These free radical species lead to oxidative 
damage to various cells such as lipids, proteins, or nucleic acids [129]. The first-line de-
fense antioxidants basically include superoxide dismutase (SOD), catalase (CAT), and glu-
tathione peroxidase (GPx) [131]. 

CAR treatment 

MAG treatment 

↓IL-6 

↓iNOS 

↑IL-10 

↓ROS 

↓MPO 

↓IL-8 
↑Nrf2 

↑HO 

↓MMPs 

↓NF-κB 

↓TNF-α 

↓PGE2 

DIABETES 

PERIODONTITIS 

↓COX-2 

↓IL-1β 

↑PPAR-γ 

Scheme 3. The anti-inflammatory mechanism of carvacrol and magnolol in periodontitis and diabetes [23,27,104,114,120,122–125].
↑: Increase or upregulate; ↓: Decrease or down-regulate.

5.2. Antioxidant Properties of Carvacrol and Magnolol in Association with Periodontal Disease
and Diabetes Mellitus

Carvacrol has strong antioxidant properties and can be effective in preventing and
inhibiting many pathologies [128]. Oxidative stress is a substantial mechanism that may be
involved in cytotoxicity induced by chronic stress [129].

Oxidative stress is the expression utilized for pathologies caused by ROS, imposed by
free radicals. Oxidative stress is defined as the imbalance between oxidants and antioxi-
dants, in favor of oxidants, with destructive and pathogenetic potential. Depending on the
intensity, oxidative stress can occur intra or extracellularly. Intracellular oxidative stress
can cause cell necrosis or more or less marked disorganization of the cell, with catastrophic
effects in the case of a cell that cannot reproduce. Extracellular oxidative stress is cytotoxic,
too. Free radicals are substances derived from incompletely oxidized compounds, which
have undergone partial combustion, with oxygen groups in their structure capable of
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initiating aggressive oxidation reactions on the surface of cell membranes or even inside
cells [130].

Rapid metabolism entrains additional free radicals, producing an imbalance between
ROS generations and the antioxidant system. These free radical species lead to oxidative
damage to various cells such as lipids, proteins, or nucleic acids [129]. The first-line defense
antioxidants basically include superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx) [131].

Carvacrol treatment significantly improves glutathione (GSH) levels. The maintenance
of GSH levels by carvacrol occurs mainly due to the removal of ROS, through its radical
elimination effects [132]. Carvacrol has also been shown to increase antioxidant capacity in
cell cultures and animals [133]. Oregano extract has been proved to have a protective effect
against the function of free radicals, with the ability to prevent tissue damage, induced by
chronic stress [9]. The harmful effects of chronic stress have been demonstrated to be ame-
liorated by carvacrol treatment. Carvacrol prevents lipid peroxidation by inducing SOD,
GPx, glutathione reductase (GR), and CAT. Carvacrol effectively eliminates free radicals,
such as peroxyl radicals, superoxide radicals, hydrogen peroxide, and NO [134,135].

Carvacrol exerts antioxidant effects in vitro and in vivo, and the antioxidant activity
is attributed to the presence of the –OH, related to the aromatic ring [136,137]. Another
study, conducted by Samarghandian et al. (2016), showed that carvacrol inhibits oxidative
damage to the brain, liver, and kidneys, being a new pharmacological agent, fruitful for
relieving oxidative damage, induced by chronic stress [9].

In research by Tabibzadeh Dezfuli et al. (2017) it was shown that oral administration
of 15 mg/kg body carvacrol, per day, to diabetic rats, can lower malondialdehyde (MDA)
levels and increase CAT, SOD, and GPx activity, compared to rats to whom the extract has
not been administrated, suggesting that carvacrol has antioxidant properties [120].

It is verified that the accrual of oxidative stress plays a critical role in the aggravation
of both pathologies: Periodontitis and diabetes. In addition to its anti-inflammatory
effects, magnolol has also antioxidant properties. Besides, it has been stated that magnolol
scavenges hydroxyl radical [136], peroxy-nitrite [138], and hydrogen peroxide [139] to
reduce or suppress the generation of ROS. As well, there is additional direct proof of its
anti-oxidative effect on intracellular GSH depletion [25] or enzymatic system capacity in
the rat model [140].

A study conducted by Zhao et al. (2016) shows that magnolol supplements are useful
in wound healing and modulating inflammation by decreasing Nrf2 in patients with
diabetes and periodontitis. Nrf2 is a transcription factor with a crucial role in regulating the
antioxidant response and has been decreased in oral neutrophils in patients with aggressive
periodontitis [141].

Nrf2 and hemogen oxygenase-1 (HO-1), one of its main target genes, have been proved
to be in charge of the increased inflammation in osteoarthritis associated with NIDDM [142].
Several studies have suggested that Nrf2 is crucial in regulating antioxidants in patients
with advanced periodontitis [143]. Therefore, treatments targeting the Nrf2/HO-1 axis can
relieve oxidative stress and inflammation in diabetic patients with periodontal disease [144].

Other authors have shown that magnolol amplifies the expression of the Nrf2/HO-1
axis, depending on the dose, suggesting that magnolol can attenuate ROS generation by
activating Nrf2/HO-1 signaling. They also proved that magnolol reduces the production of
two cytokines, IL-6 and IL-8. The production of IL-6 and IL-8, induced by AGEs, has been
prevented with Nrf2, concluding that the increase in Nrf2 suppresses these cytokines [144].
On the other hand, the production of ROS induced by AGEs also decreased after the
administration of the magnolia extract. Furthermore, magnolol has been illustrated to
activate Nrf-2/HO-1 signaling and suppress inflammation induced by P. gingivalis LPS in
macrophages [145].

Proteins and lipids are often subjected to irreversible non-enzymatic glycosylation
in patients with chronic hyperglycemia, leading to the formation of AGEs. The role of
AGEs in potentiating diabetic complications is discussed by activating cellular responses
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by AGEs-modified proteins, which interact with specific receptors on the cell surface [146].
A recent study shows that in patients with marginal periodontitis and diabetes, the levels
of AGEs in the blood are significantly increased [147].

In in vitro examinations, the use of a dose of 16 µM magnolol reduced the oxidative
stress caused by acrolein in human SH-SY5Y cells and acted on the following signaling
pathways: JNK (c-Jun N-terminal kinase), mitochondria, caspase, phosphoinositide 3-
kinase (PI3K), mitogen-activated protein kinase (MEK), extracellular signal-regulated
kinases (ERK), protein kinase B (Akt), and forkhead box protein O1 (FOXO1). It also
inhibited the accumulation of ROS and the accumulation of intracellular GSH [148]. It has
been found that IV administration of 20 mg/g magnolol could significantly reduce MPO
activity and the expression of TNF-α, IL-6, and iNOS, so as to inhibit oxidative stress [29].

Consequently, magnolol down-regulates MPO activity, TNF-α, IL-6, and iNOS ex-
pression due to JNK, mitochondria, caspase modification, and PI3K, MEK, ERK, Akt, and
FOXO1 signaling pathways [29,148].

5.3. Antimicrobial Activity of Carvacrol and Magnolol against Periodontal Pathogens

Carvacrol, similar to thymol, acts on microbial cells and causes structural and func-
tional damage to bacterial membranes [11]. Carvacrol is one of the few elements of essential
oil that has the ability to dissolve the outer membrane of gram-negative bacteria, causing
the release of LPS [149,150].

Research conducted by Wang and et al. (2016) evaluated the antibacterial character
of the phenolic components of oregano essential oil against oral microorganisms. The
components evaluated were hinokitiol, carvacrol, thymol, and menthol. In this study, the
minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
of these components were demonstrated, as a result of the fact that carvacrol has an MIC of
200–400 µg/mL and an MBC of 200–600 µg/mL on A. actinomycetemcomitans, Streptococcus
Mutans (S. Mutans), Methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia. Coli
(E. Coli) [151].

Another analysis, conducted by Maquera-Huacho et al. (2018) evaluated the antibac-
terial properties of carvacrol and terpinen-4-ol against P. gingivalis and F. nucleatum and the
cytotoxic effect on fibroblasts. The MIC and MBC of carvacrol were 0.007% for P. gingivalis
and 0.002% for F. nucleatum. The results showed anti-biofilm activity of carvacrol (0.26%,
0.06%) and the cytotoxicity was similar to that of chlorhexidine (CHX).

Therefore, the authors demonstrated that carvacrol has antibacterial activity on the
periodontal biofilm [152].

In an in vitro study, Lu et al. (2013) showed that Magnolia officinalis extract inhibited
key pathogens in the initiation of periodontal disease, P. gingivalis and A. actinomycetem-
comitans [104].

Ho et al. (2001) demonstrated through in vitro studies the MIC of magnolol in order
to exert the antimicrobial effect. At an MIC dose of 25 µg/mL, magnolol has a marked
antimicrobial effect against P. gingivalis, A. actinomycetemcomitans, Prevotella intermedia (P.
intermedia), Micrococcus luteus (M. luteus), and Bacillus subtilis (B. subtilis), so it can be used
as an adjunct in the treatment of periodontitis [145].

Another in vitro study determined the MIC and MBC of honokiol and magnolol on
oral bacteria. Thus, Chiu et al. (2021) discovered that the MIC of magnolol was 10 µg/mL
for A. actinomycetemcomitans and the MBC of magnolol was 20 µg/mL, 20 µg/mL, and
30 µg/mL for A. actinomycetemcomitans, S. mutants, and MRSA [153].

The results of the studies presented above emphasize the antimicrobial properties of
carvacrol and magnolol on periodontal pathogens. The MIC and MBC of carvacrol and
magnolol for the periodontal pathogens are summarized in Tables 2 and 3.
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Table 2. MIC and MBC of carvacrol for the periodontal pathogens [151,152].

Periodontal Pathogens
CAR

References
MIC MBC

A. actinomycetemcomitans 200 µg/mL 200 µg/mL [151]
E. coli 400 µg/mL 400 µg/mL [151]

F. nucleatum 0.002% 0.002% [152]
MRSA 400 µg/mL 600 µg/mL [151]

P. gingivalis 0.007% 0.007% [152]
S. mutans 400 µg/mL 600 µg/mL [151]

Table 3. MIC and MBC of magnolol for the periodontal pathogens [145,153].

Periodontal Pathogens
MAG

References
MIC MBC

A. actinomycetemcomitans 10 µg/mL, 25 µg/mL 20 µg/mL [145,153]
B. subtilis 25 µg/mL [145]

E. coli >100 µg/mL >100 µg/mL [153]
F. nucleatum 25 µg/mL [145]

M. luteus 25 µg/mL [145]
MRSA 10 µg/mL 30 µg/mL [153]

P. gingivalis 25 µg/mL [145]
P. intermedia 25 µg/mL [145]

S. mutans 10 µg/mL 20 µg/mL [153]

5.4. Anti-Osteoclastic Properties of Carvacrol and Magnolol

One of the key mediators of bone resorption, of a local or general nature, is chronic
inflammation. Chronic inflammation is found in both periodontitis and diabetes; therefore,
these patients have an increased risk of osteoporotic fracture [154].

Bone tissue is a dynamic tissue that undergoes continuous remodeling, generated by
the activity of osteoblasts and osteoclasts. Osteoclast activity is increased in periodontitis,
with adverse consequences on bone trabeculae and alveolar ridges. Osteoclasts appear as
an inflammatory response to the production of receptor activators of nuclear factor-kappa
B ligand (RANKL) and bacterial LPS, generated by cytokines [14].

One of the inflammatory biomarkers is IL, whose values are increased in pathologies
such as periodontitis [155]. IL-1 directly stimulates bone resorption through osteoclasts,
while prolonging their lifespan [156,157]. Osteoclasts are multinucleated cells, differen-
tiated from monocytes or macrophages, involved in bone resorption [158]. IL-1 has an
indirect effect on osteoclast differentiation by increasing RANKL expression and decreasing
osteoprotegerin (OPG), an inhibitory factor in osteoclastogenesis. OPG is a trap receptor
for RANKL in osteoblasts [159].

Carvacrol abolished the RANKL-induced formation of tartrate-resistant acid phos-
phatase (TRAP)-positive multinucleated cells in RAW 264.7 macrophages and human
CD14+ monocytes. Moreover, oregano extract inhibited LPS-induced osteoclast formation
in RAW 264.7 macrophages. Exploration of the underlying molecular mechanisms revealed
that carvacrol down-regulated RANKL-induced NF-κB activation in a dose-dependent
manner. Furthermore, the suppression of NF-κB activation is correlated with the inhibition
of inhibitor of kappa B kinase (IκB) activation and the attenuation of inhibitor of kappa
B kinase α (IκBa) degradation. Carvacrol potentiated apoptosis in mature osteoclasts by
caspase-3 activation and DNA fragmentation. Furthermore, carvacrol did not influence the
viability of proliferating MC3T3-E1 osteoblast-like cells. Together, these results founded by
Deepak et al. (2016) demonstrate that carvacrol mitigates osteoclastogenesis by damaging
the NF-κB pathway and induction of apoptosis in mature osteoclasts [14].

A study by Bothelo et al. (2009) showed that local treatment with carvacrol gel
significantly inhibited bone resorption in the alveolar bone of rats with experimentally
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induced periodontal disease. The topical application of carvacrol gel also inhibited the
multiplication of periodontal microorganisms in these animal models [102].

Magnolia extract has been shown to modulate the resorption of alveolar bone in rats. In
the same study, it was revealed that magnolol reduces RANKL expression, reduces gingival
inflammation, and decreases the number of osteoclasts [104]. A dose of 5–20 µM magnolol
has been shown to be effective in inhibiting RANKL-induced osteoclast differentiation
from macrophage-like cells called RAW 264.7 cells [104,124]. On the other hand, a dose
of up to 20 µM does not influence the differentiation of osteoclasts induced by RANKL
expression in rats [160].

In vitro cell culture research has shown that magnolol inhibits IL-1 induced osteoclast
differentiation, decreases RANKL expression in IL-1 stimulated osteoblasts, and reduces
IL-1 induced PGE2 production, by inhibiting COX-2 expression. Magnolol restrains the
formation of osteoclasts [161].

Hwang et al. (2018) studied the effect of magnolol on osteoclast differentiation and
concluded that Magnolia officinalis extract prevents the formation of IL-1 induced osteoclasts
by the following mechanisms: Inhibition of COX-2 expression, inhibition of PGE2 synthesis,
and suppression of RANKL expression. PGE2 mediates bone resorption generated by
inflammation and Magnolia officinalis extract inhibits PGE2 synthesis, thus demonstrating
the protective effect of magnolol on marginal periodontitis [161]. In addition to the anti-
osteoclastogenetic effect, magnolol stimulates the differentiation of osteoblasts and their
proliferation [22].

A dose of 0.1 µM magnolol modulated the production of factors that induce osteoclast
differentiation, such as TNF-α, IL-6, and RANKL [22]. In RANKL-induced RAW 264.7 cells,
75–150 µM magnolol reduces osteoclast differentiation, TRAP activity of differentiated cells,
and the area of bone resorption generated by osteoclasts [104]. Furthermore, 2.5–20 µM
magnolol attenuates RANKL-induced osteoclast differentiation by inhibiting ROS pro-
duction, suppressing mitogen-activated protein kinase (MAPK), C-proto-oncogene (c-fos),
activator protein-1 (AP-1) and NF-κB, and increasing HO-1 expression [124].

In rats in which periodontal disease was experimentally induced by ligature, the
administration of 100 mg/kg magnolol per os (PO) significantly decreased the resorption
of the alveolar bone, the volume of osteoclast cells at the level of the alveolar ridge, as
well as the RANKL expression. The same dose of magnolol could reduce the expression of
MMP-9, MMP-1, iNOS, and the activation of TNF-α and COX-2 [104]. At the same time, in
the case of experimental periodontitis induced in rats, an increase in neutrophil infiltrate
was observed. Following the administration of magnolol extract, the values of superoxide,
NF-κB, iNOS, COX-2, MMP-1, and MMP-9 in the gingival tissues decreased. Magnolol
significantly reduced the resorption of the alveolar ridge in rats with experimentally
induced periodontitis, suppressing the accumulation of periodontal bacteria, suppressing
the synthesis of the inflammation mediator mediated by NF-κB, reducing RANKL, and
therefore partially blocking osteoclast formation [104].

Thus, magnolol has a number of activities to stimulate osteoblasts and inhibit os-
teoclasts in cell cultures and has been recommended for screening for anti-osteoporosis
activity [104].

5.5. Anti-Diabetic Properties of Carvacrol and Magnolol

There is little knowledge about the effects of carvacrol on diabetes. However, Bayra-
moglu et al. (2014) evaluated the anti-diabetic properties of carvacrol in STZ-induced
diabetic rats. Following PO administration of carvacrol doses of 25 mg/kg body weight
(BW) and 50 mg/kg BW, there was a reduction in serum glucose, a significant reduction
in total plasma cholesterol (TC), and a reduction in aspartate aminotransferase (AST),
alanine aminotransferase (ALT), and lactate dehydrogenase (LDH). Therefore, it has been
established that this extract provides partial protection against liver enzymes [162].

In another experimental study, Li et al. (2020) used lower doses, 10 mg/kg BW and
20 mg/kg BW administered IP in mice and after 4 to 6 weeks administration determined
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the following values: TC, triglycerides (TG), AST, ALT, alkaline phosphatase (ALP), LDH,
and the activity of liver enzymes involved in glucose metabolism. They showed that
regardless of the dose administered, carvacrol decreased blood glucose levels and the
20 mg/kg dose significantly reduced LDH plasma levels. They concluded that this extract
exerts anti-hyperglycemic effects in rats with experimentally induced diabetes [163].

Another study showed that the combination of rosiglitazone (RSG), an antidiabetic
drug of the thiazolidione family, and carvacrol has antihyperglycemic effects, beneficial in
improving carbohydrate metabolism, in mice with NIDDM who were given a diet rich in
fats [164].

Several studies have shown that major bioactive constituents of Magnolia officinalis
extract contribute to glycemic control [165,166]. Studies in diabetic rats have proved that
magnolol is effective against oxidative damage to the liver, modulating hyperglycemia and
hyperlipidemia. At the same time, it has been stated to inhibit the activity of cytochrome
(P450 2E1), a mechanism against insulin resistance [167].

Wang et al. (2014) studied the effects of magnolol on hyperglycemia, hyperlipidemia,
and hepatic oxidative stress in a diabetic model in rats, established using STZ and a high-fat
diet (HFD). Following PO administration of doses of 25, 50, and 100 mg/kg for 10 weeks,
the values of TC, TG, and low-density lipoprotein (LDL) cholesterol decreased significantly,
while the antioxidant liver enzymes (CAT, GSH) increased. These results illustrate that
magnolol is effective against liver damage induced by oxidative stress, acting as support
against hyperglycemia and hyperlipidemia [167]. Simultaneously, in other in vivo studies,
oral treatment with 200 mg/kg honokiol, the isomer of magnolol, for 8 weeks significantly
decreases fasting blood glucose in NIDDM mice [168].

Most studies have shown that the anti-inflammatory and antioxidant effects of mag-
nolol are closely correlated with the preventive effects against diabetes and its complica-
tions [141]. The anti-diabetic properties of carvacrol and magnolol in in vivo animal model
research are shown in Table 4.
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Table 4. The anti-diabetic properties of carvacrol and magnolol in in vivo animal model research [162–164,167,168].

Researcher Study Design Doses of Treatment Main Results References

Bayramoglu et al.
(2014)

Animals: Adult
Sprague–Dawley rats

(195–215 g)
Disease model:

STZ-induced DM

Treatment: 25 mg/kg,
50 mg/kg BW CAR for

7 days
Type of administration:

PO

↓in serum glucose
↓TC
↓AST
↓ALT
↓LDH

protection against liver enzymes

[162]

Li et al. (2020)

Animals: Adult male
C57BL/6 mice
(20.0 ± 2.0 g)

Disease model:
STZ-induced IDDM

Treatment: 10 mg/kg,
20 mg/kg, 40 mg/kg
BW CAR, once a day,

for 2 weeks
Type of administration:

IP

↓plasma glucose levels
↓level of fasting plasma glucose

improved glucose tolerance
↓the level of TG

↔ on the serum level of AST, ALT or
ALP

no effect on the serum level of AST,
ALT, or ALP

no effect on the serum level of AST,
ALT, or ALP

no effect on the serum level of AST,
ALT, or ALP

no effect on the serum level of AST,
ALT, or A

↓LDH plasma levels
↓reduced significantly the activity of

hepatic enzymes

[163]

Ezhumalai et al.
(2014)

Animals: Male
C57BL/6J mice

(20–30 g)
Disease model:
NIDDM + HFD

Treatment: 20 mg/kg
BW CAR + 4 mg/kg
BW RSG, daily, for

35 days
Type of administration:

IG

antihyperglycemic effects
improving carbohydrate metabolism

↓plasma glucose
↓activity of hepatic

marker enzymes

[164]

Wang et al. (2014)

Animals: Male
C57BL/6J mice

(20–30 g)
Disease model:

STZ-induced DM +
HFD

Treatment: 25 mg ×
kg(–1) × d(–1), 50 mg
× kg(–1) × d(–1),

100 mg × kg(–1) ×
d(–1) MAG, for 10 days
Type of administration:

PO

↓TC levels
↓TG levels
↓LDL levels

↓hepatic CYP2E1 activity
↓MDA
↑CAT
↑GSH

[167]

Sun et al. (2015)

Animals: Male Chinese
Kunming mice

(18–22 g)
Disease model:

STZ-induced NIDDM

Treatment: Honokiol
200 mg/kg, once a day,

for 8 weeks
Type of administration:

OG

↓fasting blood glucose
↓blood glucose levels

ameliorates body weight disorder
enhances insulin signaling

[168]

↑: Increase or upregulate; ↓: Decrease or down-regulate;↔: No change.

5.6. Toxicity of Carvacrol and Magnolol

Most drugs have the ability to develop potential side effects, and natural extracts do
not make an exception. It is difficult to record the toxicity of essential oils, as the toxicity
varies depending on the number of components that compose the aromatic oil [169].
However, essential oils are considered safe for consumption, as a natural substitute for
antioxidant food additives [170].

Kohlert et al. (2002) have shown that the most toxic concentration of carvacrol is
36–49 mg/L [171]. Carvacrol at a concentration of up to 25 µM in V79 fibroblast cells in
the lungs of hamsters did not cause DNA damage, according to measurements made by
Undeger et al. (2009) [172].

Suntres et al. (2015, 2020) identified the average lethal doses of carvacrol in rats: A
dose of 810 mg/kg in oral administration, 80 mg/kg in IV administration, and 73 mg/kg in



Molecules 2021, 26, 6899 20 of 29

IP injection [10,173]. In 2017, Kuo et al. (2017) administered IG with a dose of 70 mg/kg of
carvacrol in rats and found that they suffered from dehydration, diarrhea, or even mortality,
2–3 days after treatment, which emphasize carvacrol toxicity at this dose [101].

Caco-2 intestinal cells were used to study the mutagenic and genotoxic effect of
carvacrol. Elevated doses of 460 µM carvacrol were used and these caused damage to the
purine bases in DNA [174,175] but had no adverse effects on hamster lung fibroblasts or
human hepatocytes and lymphocytes [174–176].

In their studies regarding magnolol toxicity, conducted in 2006, Saito et al. (2006)
found that magnolol extract did not show mutagenic toxicity and genotoxicity [177].
A more recent study, conducted by Sarrica et al. (2018), showed through in vivo and
in vitro experiments that concentrated magnolia root extract (MRE) has no mutagenic
or genotoxic potential, while an OECD (Organisation for Economic Co-operative and
Development) study established that no adverse effects occur at MBE (magnolia bark
extract) concentrations >240 mg/kg, thus being considered safe for consumption [178].

Studies in humans have shown that dietary supplementation with magnolol affects
only 1/22 patients, with symptoms such as heartburn, thyroid dysfunction, or shaking
hands, but the link between these symptoms and the treatment could not be explained [179].
Another experiment by Mucci et al. (2006) included 89 postmenopausal women who
received 60 mg of MRE and 50 mg of magnesium. The treatment was tolerated by 94% of
subjects without side effects [180]. However, studies by Teschke et al. (2014–2016) have
reported that some Magnolia-based mixtures may be hepatotoxic [181–183].

Carvacrol has been approved for food use by the Food and Drug Administration. It has
been included by the Council of Europe in the list of approved chemical flavorings [184,185].
This extract is also used in food, spice, or pharmaceutical industries [170]. Nevertheless,
different institutions have comprised Magnolia officinalis in lists of herbal preparations
suitable for inclusion in food supplements, because of its digestive and rebalancing activity
upon the oral microbiome. In the market, anti-ageing cosmetics containing magnolol have
also appeared [186].

Therefore, when the doses are obeyed, the two natural extracts, carvacrol and mag-
nolol, can be considered safe, but further research is needed to determine their toxicity
when administered in periodontitis and diabetes.

6. Conclusions and Prospective

Our manuscript reviewed the results of various surveys on the topic and emphasized
the therapeutic effects of carvacrol and magnolol on periodontal disease and diabetes
mellitus. Following this analysis, it is obvious that carvacrol and magnolol have beneficial
properties in the investigated pathologies, as demonstrated by in vitro and in vivo studies.
These natural extracts have potential as a future “key-role player” that can be integrated into
new treatment formulas, effective both in reducing gingival inflammation and periodontal
pockets, while also controlling blood sugar in diabetic patients. For example, a new
treatment perspective could be the development of a periodontal gel containing magnolol
as an active ingredient, as the literature has only revealed the use of a topical carvacrol-
based periodontal gel.

We believe that this literature review is of interest because no papers have been
published that evaluate the potential benefits of both extracts in the same study. However,
future studies are needed to maximize the therapeutic potential of carvacrol and magnolol
to bring these compounds to the clinic.
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Abbreviations

A. actinomycetemcomitans Aggregatibacter actinomycetemcomitans
A.D. Anno Domini
AGEs advanced glycation end products
Akt protein kinase B
ALP alkaline phosphatase
ALT alanine aminotransferase
AP-1 activator protein-1
AST aspartate aminotransferase
B.C. Before Christ
B. subtilis Bacillus subtilis
BW body weight
CAR carvacrol
CAS Chemical Abstracts Service
CAT catalase
c-fos C-proto-oncogene
CFA complete Freund’s adjuvant
CHX chlorhexidine
COX cyclooxygenase
COX-1 cyclooxygenase-1
COX-2 cyclooxygenase-2
CRP C-reactive protein
CYP2E1 cytochrome P450 2E1
DM diabetes mellitus
DMSO dimethylsulfoxide
DNA deoxyribonucleic acid
E. coli Escherichia coli
F. nucleatum Fusobacterium nucleatum
FOXO1 forkhead box protein O1
ERK extracellular signal-regulated kinases
GBD Global Burden of Disease
GPx glutathione peroxidase
GR glutathione reductase
GSH glutathione
HFD high-fat diet
HO hemogen oxygenase
HO-1 hemogen oxygenase-1
IDDM insulin-dependent diabetes mellitus
IG intragastric
IκB inhibitor of kappa B kinase
IκBa inhibitor of kappa B kinase α

IκBβ inhibitor of kappa B kinase β

IL interleukin
IL-1 interleukin-1
IL-1β interleukin-1β
IL-4 interleukin-4
IL-6 interleukin-6
IL-8 Interleukin-8
IL-10 interleukin-10
IL-17 interleukin-17
iNOS inducible nitric oxide synthase
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IP intraperitoneal
IUPAC International Union of Pure and Applied Chemistry
IV intravenous
JNK c-Jun N-terminal kinase
LDH lactate dehydrogenase
LDL low-density lipoprotein
LPS lipopolysaccharides
M. luteus Micrococcus luteus
MAG magnolol
MAPK mitogen-activated protein kinase
MBC minimum bactericidal concentration
MBE magnolia bark extract
MRE magnolia root extract
MDA malondialdehyde
MEK mitogen-activated protein kinase
MIC minimum inhibitory concentration
MMP-2 matrix metalloproteinase-2, gelatinase A
MMP-3 matrix metalloproteinase-3
MMP-9 matrix metalloproteinase-9, gelatinase B
MMP-13 matrix metalloproteinase-13
MMPs matrix metalloproteinases
MPO myeloperoxidase
mRNA messenger ribonucleic acid
MRSA Methicillin-resistant Staphylococcus aureus
NF-κB nuclear factor-kappa B
NIDDM non-insulin-dependent diabetes mellitus
NK natural killer
NO nitric oxide
Nrf2 nuclear factor erythroid 2-related factor 2
OECD Organisation for Economic Co-operative and Development
–OH hydroxyl group
OG oral gavage
OPG osteoprotegerin
P. gingivalis Porphyromonas gingivalis
P. intermedia Prevotella intermedia
PGE prostaglandins
PGE2 prostaglandins E2
PGF1 prostaglandins F1
PGF2 prostaglandins F2
PI3K phosphoinositide 3-kinase
PO per os
PPAR-γ peroxisome proliferator-activated receptor gamma
Propionibacterium acnes P. acnes
RANKL receptor activator of nuclear factor-kappa B ligand
ROS reactive oxygen species
RSG rosiglitazone
S. mutans Streptococcus mutans
SOD superoxide dismutase
STZ streptozotocin
T. denticola Treponema denticola
T. forsythia Tannerella forsythia
TC total plasma cholesterol
TG triglycerides
TGF-1β transforming growth factor-1β
Th17 T helper 17 cells
TNF-α tumor necrosis factor alpha
TRAP tartrate-resistant acid phosphatase
WHO World Health Organization
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