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Abstract: Background and Aims: Niemann–Pick disease (NPD) types A (NPA) and B (NPB) are
caused by deficiency of the acid sphingomyelinase enzyme, which is encoded by the SMPD1 gene,
resulting in progressive pathogenic accumulation of lipids in tissues. Trehalose has been suggested
as an autophagy inducer with therapeutic neuroprotective effects. We performed a single-arm, open-
label pilot study to assess the potential efficacy of trehalose treatment in patients with NPA and NPB
patients. Methods: Five patients with NPD type A and B were enrolled in an open-label, single-arm
clinical trial. Trehalose was administrated intravenously (IV) (15 g/week) for three months. The
efficacy of trehalose in the management of clinical symptoms was evaluated in patients by assessing
the quality of life, serum biomarkers, and high-resolution computed tomography (HRCT) of the lungs
at the baseline and end of the interventional trial (day 0 and week 12). Results: The mean of TNO-AZL
Preschool children Quality of Life (TAPQOL) scores increased in all patients after intervention at W12
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compared to the baseline W0, although the difference was not statistically significant. The serum
levels of lyso-SM-509 and lyso-SM were decreased in three and four patients out of five, respectively,
compared with baseline. Elevated ALT and AST levels were decreased in all patients after 12 weeks
of treatment; however, changes were not statistically significant. Pro-oxidant antioxidant balance
(PAB) was also decreased and glutathione peroxidase (GPX) activity was increased in serum of
patients at the end of the study. Imaging studies of spleen and lung HRCT showed improvement of
symptoms in two patients. Conclusions: Positive trends in health-related quality of life (HRQoL),
serum biomarkers, and organomegaly were observed after 3 months of treatment with trehalose
in patients with NPA and NPB. Although not statistically significant, due to the small number of
patients enrolled, these results are encouraging and should be further explored.

Keywords: lysosomal storage disease (LSD); Niemann–Pick type A; Niemann–Pick type B; acid
sphingomyelinase; sphingolipid deposition; trehalose

1. Introduction

Niemann–Pick disease (NPD) is a lysosomal storage disorder (LSDs) caused by the
deficiency of acid sphingomyelinase activity (ASM) NP type A and B or cholesterol trans-
porter function (NP type C) leading to lipid accumulation in different tissues and organs [1].
The estimated prevalence of NPA and NPB is 0.4–0.6 in 100,000 individuals [2]. Hep-
atosplenomegaly, pulmonary insufficiency, and profound central nervous system (CNS)
involvement can lead to death in untreated patients within the first few years of life
in NPA [3]. In contrast, NPB is the non-neuropathic form of the disorder with milder
symptoms and clinical manifestations starting at later ages, with most patients reaching
adulthood [4]. Low levels or total deficiency of ASM is the main cause of sphingomyelin
accumulation and lipid abnormalities as well as downstream cell signaling pathways that
affect ceramide generation as an important secondary pathway [1]. A common histopatho-
logical occurrence in NP patients is lipid-laden macrophages, also called foam cells, in
the liver, spleen, lung airways, bone marrow, and cerebral cortex that lead to progressive
destruction of target tissues [5]. Early diagnosis and treatment are required to attenuate
outcome and to improve the quality of life in NP patients; however, bone marrow trans-
plantation (BMT), enzyme replacement therapy (ERT), and other therapeutic approaches
are still in stages of research and have not been adequately effective [6–8].

Trehalose is a natural non reducing (1–1 α-linkage) disaccharide in various organisms,
from bacteria to animals, that exerts cell-protective effects under tensions, such as tempera-
ture, drought, and oxidative stress [9]. Trehalose has been recognized as a safe additive by
the Joint WHO/FOA Expert Committee on Food Additive (JECFA) and U.S. Food and Drug
Administration (FDA) in 2000, and was approved for use in food in Europe in 2001 [10].
Apart from basic and experimental evidence [11–16], several clinical trials were performed
to evaluate the safety and efficacy of trehalose in healthy subjects or patients with different
diseases, both orally and intravenously [17,18]. At doses up to 50 g, trehalose is safe for
humans, and no adverse effect has been reported in most subjects; however, gastrointestinal
side effects may occur in trehalose-deficient individuals [19].

In addition, trehalose has also been reported to prevent neuronal damage and attenuate
neurodegenerative disorders caused by LSDs [19,20]. Antiaggregant, anti-inflammatory,
and antioxidant properties, along with autophagy inducer, might be proposed as potential
mechanisms of neuroprotective activities of trehalose in both cell cultures and in-vivo
animal models [21,22]. Several lines of evidence suggest the chaperone-like activity of
trehalose to prevent protein misfolding or aggregation and to contribute to clearance
of accumulated proteins through promoting autophagy in neurodegenerative diseases
(NDs) [21]. As such, trehalose is emerging as a novel therapeutic alternative to repressing
oxidative stress and inflammation by decreasing the production of reactive oxygen species
(ROS) and proinflammatory cytokines, such as interleukin 1 beta (IL-1β) and tumor necrosis
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factor-alpha (TNF-α), respectively [23]. Deposition of sphingomyelin and other lipids [24],
neuroinflammation [25], and oxidative stress [26] have been considered as leading causes
of NP. Therefore, trehalose might be effective at attenuating the negative outcomes in
NP patients by reducing lipid accumulation, inflammation, and oxidative damage [9,27].
Trehalose can be used by either oral or intravenous (IV) administration; however, its
absorption is decreased to 0.5% in the oral route due to enzymatic metabolization with
Trehalase exhibiting in the intestinal brush border, and (IV) trehalose administration is
more efficient for clinical trials [10,28]. Nevertheless, oral administration of trehalose in
both preclinical and clinical studies of oculopharyngeal muscular dystrophy (OPMD) and
Machado–Joseph disease (MJD) can stabilize neurological impairment and improve the
severity of clinical disease scores [17,18].

This study reports clinical research aimed to investigate the efficacy of intravenous
trehalose infusion (15 g/week) for a period of 12 weeks in five NPA and NPB patients.

2. Patients and Methods
2.1. Study Design and Participants

A single-arm, open-label pilot study was performed to assess trehalose therapeutic
potential in NPA and NPB patients. All patients received IV trehalose infusions once a week
(15 gr) for 90 min during three months of treatment. Follow-up visits were also conducted
weekly during the study period. This clinical research was approved by the Ethics Commit-
tee of the Mashhad University of Medical Sciences, registered in the Iranian Registry of
Clinical Trials (Code: IRCT20130829014521N16). Five patients aged 2–12 years old who had
been diagnosed with NPA and NPB (confirmation by genotype and clinical examination)
were considered for enrollment in the present study. The parents or legal guardians of the
children signed the informed consent forms before any procedures were performed.

2.2. Test Substances

For our research, the pharmaceutical grade of trehalose has been used as a form of
aqueous 15% solution in 100 mL sterile sealed vials manufactured by Dr. Rajabi Pharma-
ceutical Company, Khorasan Razavi, Iran.

2.3. Endpoints and Assessments

The main objective was to determine the therapeutic efficacy of trehalose in patients
with NPA and NPB. Primary endpoints included quality of life assessment and reduc-
tion in serum biomarker levels (lysosphingomyelin-lysoSM, and lysosphingomyelin-509
(lysoSM-509)). The secondary endpoints of the study were to assess the condition of the
liver, spleen, and lung, and measurement of the aminotransferases enzymes (AST and ALT
levels), as well as oxidative stress status at the baseline and end of the interventional trial
(day 0 and week 12).

2.3.1. Primary Endpoints

Quality of life assessment: TAPQOL (TNO-AZL Preschool children Quality of Life)
index was used during this research to evaluate the physical, social, emotional, and cogni-
tive function of patients. TAPQOL is a multidimensional questionnaire-parent form with
43 items comprising 12 scales, which was developed to measure health-related quality of
life (HRQoL) in preschool children (aged 2–48 months) [29].

Sample preparation and lyso-SM and lyso-SM-509 quantification: Blood samples
were obtained from all patients before and after treatment. Samples were collected in
tubes containing serum gel separator and were centrifuged at 750× g for 20 min to obtain
serum. Serum samples were aliquoted and were stored at −80 ◦C until required for
measurements. Changes in serum lyso-SM and lyso-SM-509 levels were measured by
ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) in
a Xevo TQ-S micro (Waters Technology, Milford, MA, USA) at baseline (day 0) and the end
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of the study (week 12). The method used for the quantification of lyso-SM and lyso-SM-509
was adapted from Polo et al., 2019 [30].

2.3.2. Secondary Endpoints

Liver, spleen, and lung scans: Serum levels of alanine aminotransferase (ALT) and
aspartate transaminase (AST) were measured by the kinetic method using a colorimetric
assay kit to assess liver function at baseline and the end of the trehalose treatment period.
Moreover, the spleen and liver size were measured using ultrasonography, and volumetric
analyses were performed at the baseline and end of the study. Chest high-resolution
computed tomography (HRCT) was also performed to compare the lung condition of
patients between the W0 and W12.

Oxidative stress status: To evaluate whether trehalose could improve the antioxidant
status, investigation of (anti)oxidant parameters pre- and post-treatment were performed
by commercial kits (Kiazist; Iran). In this study, PAB (pro-oxidant antioxidant balance)
was measured to evaluate the total oxidants and antioxidants in a single measurement
simultaneously according to the previously described method [31], which is based on the
oxidation of the chromogen 3,3′,5,5′-tetramethylbenzidine (TMB) to a color cation by pro-
oxidants in an enzymatic reaction and reduction of the TMB cation to a colorless compound
in a chemical reaction. The antioxidant enzyme activity of the glutathione peroxidase (GPx)
was also assayed based on the reduction of hydrogen peroxide to water accompanied by
the oxidation of glutathione.

2.3.3. Statistical Analysis

Statistical analysis was performed with GraphPad Prism version 8 software and Mi-
crosoft Excel (2019) The results were analyzed using paired t-test to evaluate the significance
of differences before and after the treatment period. Results with p < 0.05 were considered
statistically significant.

3. Results
3.1. Clinical Characteristics of Patients

Five male patients with a mean age of 4.4 years (range = 2–12 years of age) were
enrolled who were diagnosed clinically and genetically with Niemann–Pick (NP) type A
and B, genotype analysis results were homozygous. All children were born from consan-
guineous families. No subjects discontinued from the study, and all patients received all 12
of their scheduled doses.

3.2. Quality of Life Assessment

TAPQOL Test: To determine whether trehalose treatment could improve the health
status in patients, we compared the TAPQOL score, which was used to assess the patients’
health-related quality of life between the W12 and W0. The TAPQOL index score can
vary from 0–100, and higher scores indicate better quality of life. The TAPQOL score
was elevated in all patients, and the mean score for quality of life was increased after
intervention at W12 compared to the baseline (difference between means ± standard error
mean (SEM): 6/000 ± 2/449), although the difference was not statistically significant.
The results suggested an improvement in health-related quality of life after 12 weeks of
trehalose treatment (Figure 1) in patients 2–5.
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Figure 1. TAPQOL score of five patients at baseline (week 0) and at the end of treatment (week 12).

3.3. Serum Lysosphingomyelin Levels (lyso-SM and lyso-SM509)

The levels of serum lysosphingomyelin are shown at baseline and week 12 (Figure 2).
The average of lyso-SM-509 at the baseline was 30.511 (nmoL/L), while the average post-
treatment is 25.051 (nmoL/L); the average of lyso-SM at the baseline was 72 (nmoL/L)
while the average post-treatment was 12 (nmoL/L). Overall, out of five patients there was a
reduction in the levels of lyso-SM-509 in three patients, and a reduction in levels of lyso-SM
in four patients (Figure 2). However, the changes were not statistically significant.
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Figure 2. Levels of serum lysosphingomyelin (a) lyso-SM509 and (b) lyso-SM in patients before and
after 3 months treatment with trehalose.

3.4. Serum ALT and AST Levels

The average of ALT at the baseline was 94.40 (IU/L), while the average post-treatment
was 14.40 (IU/L); the average of AST at the baseline was 94.20 (IU/L), while the average
post-treatment was 21.80 (IU/L). Overall, there was a reduction in the levels of ALT and AST
post-treatment (Figure 3). Although changes were not statistically significant, improved
results (reduction in ALT and AST levels) showed improvement in liver function after
trehalose treatment.
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3.5. Oxidative Stress Index (OSI)

The mean of pro-oxidant-antioxidant balance (PAB) before treatment was 10.734
(HK unit), while post-treatment was 11.018 (HK unit) (Figure 4b). The level of GPX
activity before treatment was 7.93 (mU/mL), while post-treatment was 9.09 (mU/mL)
(Figure 4a). Although, differences were not statistically significant neither in PAB values
nor in GPX activity.
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3.6. Sonographic Liver and Spleen Dimensions

Table 1 includes the alteration of spleen and liver size in patients pre-and post-
treatment with trehalose. Although spleen size was found to have decreased in two
patients (patients 2 and 4) compared with baseline, a progressive increase in the mean
splenic length and the average liver volume was observed at the end of the study. It is
worth mentioning that the liver diameter was reported by measuring the liver span below
the costal margin in the midclavicular line by using the ultrasound scan because it could
assist clinicians to confirm these changes in practice.
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Table 1. Spleen and liver diameter changes pre-and post-treatment with trehalose.

Patient ID
Spleen Cranio-Caudal Diameter

(mm)

Liver Diameter Changes,
Measuring the Liver Span below
the Costa Margin by Ultrasound

Scan (mm)

Before After Before After

01 204 224 30 30
02 125 122 10 30
03 120 138 30 10
04 150 145 10 30
05 115 115 30 30

3.7. Lung HRCT

Follow-up HRCT chest was carried out in all patients. Improvement of symptoms in
HRCT chest findings were observed in two patients out of five after 3 months treatment
with trehalose (Figure 5).
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4. Discussion

ASMD (acid sphingomyelinase deficiency), also known as Niemann–Pick disease, is a
rare autosomal recessive LSD that includes two subtypes (A and B) associated with lipid
metabolism abnormalities and intracellular deposition of glycosphingolipids [32]. Abnor-
mal lipid accumulation due to a deficiency of specific lysosomal enzymes has been shown
to impact morphologic alterations in different tissues, leading to multi-organ failure and
early death in children with NPA and NPB [3]. Currently, no effective treatment is available
for NPA/NPB patients [33]. A considerable body of evidence suggests the role of impaired
autophagy in the pathophysiology and progression of lipid storage disorders [34–36].
Therefore, the possible use of the autophagy-inducing compounds in decreasing lipid accu-
mulation has been proposed to attenuate severe LSDs manifestations [37]. In recent years,
trehalose has been described as a natural non-reducing disaccharide that promotes the
autophagy process in both in vitro and in vivo models by activating transcription factor EB
(TFEB) and enhancing target genes such as GLA, LAMP2A, MCOLN1, CTSB. Furthermore,
it can also induce the autophagy process via the mTOR-independent pathway in cells of the
nervous system [38–41]. This study aimed to evaluate the potential efficacy of IV trehalose
(at a dose of 15 mg/week) in NPA and NPB patients. The dose of 15 mg/week was selected
based on recent evidence and a previous similar clinical study showing the safety and
efficacy of 15 mg IV trehalose in patients with Machado–Joseph disease (MJD) [18]. We
hypothesized that trehalose could slow disease progression and improve neuropathologic
features by decreasing sphingolipid deposition post three months of treatment. Disruption
of sphingolipid homeostasis leads to several pathological consequences, and the accumula-
tion of these metabolites can trigger a high level of apoptosis by activating proapoptotic
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genes and proteins [42,43]. Elevated levels of lysosphingolipids (lyso-SM and lyso-SM-509)
have been identified as specific and reliable biomarkers for the diagnosis of NP and early
assessment of drug effects during the treatment process in all types of NP (A/B and C),
which might be detected via different methods in plasma, serum, or dried blood spots
of patients [30,44]. The results of this study might suggest that treatment with trehalose
could potentially lead to a decrease in the levels of both lyso-SM and lyso-SM-509; however,
additional studies are required to further elucidate the efficacy of trehalose treatment and
to confirm if the mechanism is associated with the autophagy-inducing effect of this small
molecule that contributes to the clearance of accumulated lysosomal lipid substrates.

In addition, as important signaling mediators involved in the control of cell survival,
sphingolipids also have an essential role in regulating proinflammatory cytokines and in-
flammation processes. Sphingosine-1-phosphate can induce interleukin 8 (IL-8) expression
and activated protein 1 (AP-1) inflammatory transcriptional action via activating ERK and
p38 MAPK pathways, which are involved in many inflammatory responses, particularly
in lung inflammation and progressive respiratory failure [45,46]. Pulmonary involvement
is considered one of the main causes of morbidity and mortality in NPA and NPB pa-
tients [47]. It has been shown that trehalose can attenuate inflammation in different animal
models by reducing the production of inflammatory cytokines, such as TNF-α, MCP-1
(monocyte chemotactic protein-1) and PAI-1 (plasminogen activator inhibitor–1) [23]. Our
lung function tests and high-resolution computed tomography (HRCT) findings showed
improved lung function in two patients during three months of trehalose treatment that
might be due to anti-inflammatory effects of trehalose and modulation of pro-inflammatory
cytokines. Furthermore, recent studies have uncovered the link between sphingolipid
deposition and cellular stress responses, such as ER and oxidative stress [48,49]. The ac-
cumulation of complex sphingolipid inositol phosphorylceramide (IPC) can increase ROS
generation in mitochondria, which in turn decreases mitochondrial mass by activating Ras
and affecting Snf1/AMPK pathways [49]. It has also been suggested that trehalose might
exhibit a protective effect against oxidative stress by either upregulation of antioxidant
enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX) [50,51], or
scavenging ROS [52]. In line with this, we investigated pro-oxidant antioxidant balance
and GPX activity after treatment to evaluate if trehalose has antioxidant effects. A decrease
in levels of PAB and increased GPX activity could be due to the antioxidant activity of
trehalose in the serum of NPA and NPB patients.

Besides anti-inflammatory and antioxidant properties, neuroprotective effects of tre-
halose to ameliorate neurological pathologies have been established in several experimen-
tal models of neurodegenerative diseases (NDs) [19]. Significant improvement has been
observed on multiple behavioral tasks along with a marked increase in synaptophysin,
doublecortin, and progranulin in the hippocampus and cortex of mice treated with oral
administration of 2% trehalose for one month [53–55]. Moreover, a clinical study showed
the effect of trehalose in patients with MJD with the optimal dose of 15 mg/week to im-
prove disease severity and clinical symptoms [18]. Neurological involvement in NP varies
in frequency and severity of disease, loss of mental abilities, and cognitive impairment
more prominent in NPA, while type B patients tend to have milder symptoms with later-
onset [56]. Our data confirmed previous similar reports in the literature and demonstrated
significant improvement in health-related quality of life assessment through increased
TAPQOL scores in four out of five patients after three months of treatment.

Hepatosplenomegaly accompanied by liver failure is another typical sign in NP pa-
tients [56]. Two clinical studies indicated liver dysfunction and elevated transaminase
levels (ALT and AST) in 51% to 75% of NP patients [57,58]. Our results showed improve-
ments in liver transaminase levels, and a reduction in the levels of both ALT and AST were
observed in all patients treated with trehalose. Furthermore, a slight decrease in the spleen
dimensions were found in two patients.

Our study has several limitations, including it being an open-label pilot research with
limited sample size. Larger controlled, blind studies are required to demonstrate whether
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trehalose is effective in NPA and NPB patients. The length of treatment in our research is
also not long enough to evaluate trehalose’s effects on behavioral problems. Finally, future
dose-ranging studies are needed to indicate the optimal therapeutic dose of trehalose.

In conclusion, the treatment of NPA and NPB in patients with 15 mg/week of trehalose
may be effective to reduce serum levels of sphingomyelins and possibly improving disease
symptoms caused by lipid accumulation, although large-scale randomized trials with
longer follow-up are needed to confirm whether trehalose has clinical efficacy in patients
with LSDs.
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