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Developing an artificial neural network 
for detecting COVID‑19 disease
Mostafa Shanbehzadeh1, Raoof Nopour2, Hadi Kazemi-Arpanahi3.4*

Abstract:
BACKGROUND: From December 2019, atypical pneumonia termed COVID‑19 has been increasing 
exponentially across the world. It poses a great threat and challenge to world health and the economy. 
Medical specialists face uncertainty in making decisions based on their judgment for COVID‑19. 
Thus, this study aimed to establish an intelligent model based on artificial neural networks (ANNs) 
for diagnosing COVID‑19.
MATERIALS AND METHODS: Using a single‑center registry, we studied the records of 250 confirmed 
COVID‑19 and 150 negative cases from February 9, 2020, to October 20, 2020. The correlation 
coefficient technique was used to determine the most significant variables of the ANN model. The 
variables at P < 0.05 were used for model construction. We applied the back‑propagation technique 
for training a neural network on the dataset. After comparing different neural network configurations, 
the best configuration of ANN was acquired, then its strength has been evaluated.
RESULTS: After the feature selection process, a total of 18 variables were determined as the most 
relevant predictors for developing the ANN models. The results indicated that two nested loops’ 
architecture of 9‑10‑15‑2 (10 and 15 neurons used in layer 1 and layer 2, respectively) with the area 
under the curve of 0.982, the sensitivity of 96.4%, specificity of 90.6%, and accuracy of 94% was 
introduced as the best configuration model for COVID‑19 diagnosis.
CONCLUSION: The proposed ANN‑based clinical decision support system could be considered as a 
suitable computational technique for the frontline practitioner in early detection, effective intervention, 
and possibly a reduction of mortality in patients with COVID‑19.
Keywords:
Artificial intelligent, coronavirus, COVID‑19, decision support systems, machine learning, neural 
network

Introduction

Emerging and new pathogens are 
major threats to global public health. 

This is principally true for virus‑induced 
diseases that are extremely contagious 
due to widespread person‑to‑person 
transmission and have asymptomatic 
infectivity periods.[1‑3] Since December 
2019, a new strand of coronavirus named 
severe acute respiratory syndrome 
coronavirus‑2 (COVID‑19) was detected in 
Wuhan District, China, and the outbreak 
continues to spreading aggressively 
worldwide.  I t  i s  thought  that  the 

SARS‑CoV‑2 outbreak has animal origins 
that slipped from animal species into the 
human population. The complex and highly 
contagious nature of COVID‑19 had led 
the World Health Organization (WHO) 
to pronounce this disease a global health 
crisis.[4,5]

The WHO and other health officials have 
recommended some safeguard measures 
including implementing physical distancing, 
wearing personal protective equipment, 
and sanitizing the hands to avoid and 
reduce the spread of the disease.[6,7] Despite 
severe preventive measures and lockdown 
policies, COVID‑19 has now become a 
pandemic on a global scale, which made a 
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tremendous impact on the health and safety of people 
all over the world, affecting their lives and causing an 
escalating number of deaths. In addition, many indirectly 
devastating outcomes are derived from this pandemic 
leading to psychological distress and socio‑economic 
crises in many societies.[8‑11]

Rapid transmission and high rate of mortality particularly 
in susceptible populations such as the elderly, and people 
with underlying medical problems, make it necessary 
to seek early detection and isolation of positive cases 
as rapidly and accurately as possible for containing 
the transmission of the virus, especially for individuals 
with no sign of symptoms in an early stage.[12‑17] These 
vulnerabilities emphasize the need for early and 
accurate diagnosis methods for COVID‑19 and prompt 
confinement of the infected people in the absence of a 
specific vaccine or treatment.[18,19] In this situation, many 
governments and public health authorities across the 
world have been searching for new and innovative 
technologies as alternative solutions to screening, 
monitoring, and tracing infected persons.

Artificial intelligence (AI) may be a unique preparation to 
take up this challenge.[20,21] AI is a broad field that refers 
to the capability of a machine to learn from experience, 
adjust to new inputs, and simulating human intelligence 
tasks.[22] Machine learning is a subset of AI and that it 
can be fueled with a huge dataset for automatically 
extracting high‑quality models.[23] Artificial neural 
network (ANN) is biologically system with an adaptive, 
self‑learning, and computational construction simulating 
the functions of human neurons.[24,25] This technique can 
be trained to recognize and categorize complex patterns 
of diseases through an iterative learning process. Once 
proper training is achieved, the ANNs try to forecast with 
greater accuracy than traditional statistical techniques. 
Due to its capabilities to identify multifarious nonlinear 
relations between predictor variables and corresponding 
outcome variables, it has been effectively applied in 
clinical decision support system (CDSS) to provide 
solutions for different numerous problems.[26‑30]

Some studies[31‑36] showed that the ANN‑based 
prediction models using clinical or laboratory data 
can be significantly helpful in a timely, effective, and 
economical diagnosis of the disease. It can discriminate 
the COVID‑19 from other similar conditions with 
better accuracy compared to traditional approaches. 
The ANNs provide timely screening, identify the 
disease at early asymptomatic phases, and promptly 
confinement the infected cases. Some other studies are 
focusing on the deep/convolutional neural network 
technique to detect any distinguish features from chest 
X‑ray images of COVID‑19 patients for identification of 
disease.[37‑43] It can also provide an automated medical 

diagnostic system to support health‑care specialists for 
enhanced decision‑making with the aim of detection and 
management of COVID‑19 disease.

Other applications of ANNs in the management of the 
COVID‑19 epidemic include prognosis, prediction, 
and risk assessment of individuals for disease 
outcomes (individual level),[33,34,44‑50] the ANNs also 
can be used in the prediction of disease outbreak 
trends at the macrolevel (community),[51‑53] and finally, 
it also employed to predict the hospital resources 
utilization (bed occupancy, length of stay, etc.).[54,55]

The present study aimed to establish an intelligent system 
based on back‑propagation ANN for earlier diagnosis of 
COVID‑19 by training on a retrospectively collected 
dataset (clinical and laboratory data) specifically for 
frontline practitioners.

Materials and Methods

Study design
This retrospective study was conducted in 2020, 
consisted of four sequential steps as follows.

Data collection and preprocessing
This retrospective and the single‑center study was 
conducted in Ayatollah Taleghani Hospital, which 
is the focal center for COVID‑19 special care and 
treatment in South West of Khuzestan, Iran. The 
experimentation is ethic compliant and has been 
approved a certificate of ethics (code: IR.ABADANUMS.
REC.1400.008) by the Ethics Committee board of the 
Abadan University of Medical Sciences. A total of 
4369 supposed COVID‑19 cases were referred to this 
center, February 9, 2020, to October 20, 2020. Of those, 
2814 cases were identified as suspicious. By applying 
the predefined exclusion criteria, 435 cases remained. 
After a quantitative analysis of medical records, 35 
incomplete records that had a lot of missing data (more 
than 70% missing) were excluded from the analysis; 
and 400 records have remained. After the test, 250 and 
150 cases were confirmed as positive and negative 
reverse transcription–polymerase chain reaction 
respectively. A flowchart to represent the patient 
selection methodology is given in Figure 1.

Feature selection
It is effective in reducing the input number for 
processing, or finding the most meaningful inputs to 
reduce the dimensions of the dataset for increasing the 
data mining performance and its calculation capabilities. 
In our study, we had the 38 independent variables 
including different criteria for COVID‑19 diagnosis 
such as demographic (age, sex, and body mass index), 
clinical findings (respiratory rate, body temperature, 
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fever, cough, weakness, dyspnea, disability, chest pain, 
throat pain, rhinorrhea, headache, rhinophyma, tremor, 
digestive sign, loss of sensation, lung lesion existence, 
lung lesion appearance, and statue and pulmonary 
infection), epidemiological factors (job risk, travel to 
high‑risk regions, contact history, contact type, contact 
number, exposure time, geographic living, and contact 
with susceptible people), and medical and personal 
history (history of drinking alcohol, in taking Vitamin D, 
smoking, in taking blocker, history of acute respiratory 
distress syndrome, and history of pregnancy) and oxygen 
saturation in the blood. Considering the qualitative 
variables that existed in the research database, the phi 
coefficient correlation has been used to investigating the 
meaningful relationship between the inputs (diagnostic 
criteria) and outputs (negative or positive COVID‑19) 
variables, statistically. P < 0.05 was considered for a 
statistically meaningful level. IBM SPSS Statistics V25.0 
(Armonk, NY: IBM Corp., USA) was used for this 
purpose.

Selecting the artificial neural network model
Selecting the ANN characteristics and efficient model is 
the key prerequisite to improving model performance. 
The ANN model used in this research was a standard 
feed‑forward, back‑propagation neural network (BPNN) 
with three input, intermediate (hidden), and output layers. 
The BPNN is a deep learning method in ANN with more 
than one hidden layer (multi‑layered preceptors [MLP]).[56,57] 
BPNN is the best technique for training in MLP of ANN. 
This method is often done by optimizing the learning 
algorithm and the weight of neurons by calculating the 
decreasing gradient of the cost function. It is a kind of 
multilayer feed‑forward neural network which uses 
supervised learning technique for diseases prediction.[58‑60]

All data were entered into the MLP as a new and the most 
common design tool for layered feed‑forward neural 
networks [Figure 2]. An MLP architecture includes 

three layers (an input layer, a hidden layer, and an 
output layer). Each node in MLP or generally in every 
ANN uses a stimulating method for communicating 
to other nodes that this process can be simulated with 
nonlinear stimulating function in the ANNs. MLP 
uses a supervised learning technique called repetition 
for training.[61‑63] This training algorithm stabilizes the 
weights of the neurons according to the error that existed 
between the features of the real and target class to make 
a suitable relationship between the input and output 
classes by the nonlinear connection between neurons.
[64] Furthermore, the Levenberg–Marquardt was used in 
this research because of its popularity in error reduction 
and increasing the efficiency in the calculation process.
[57] The MLP activation function (tansig function) was 
implemented in the MATLAB 2013a that was used in 
this study as an ANN activation method and physiologic 
connection between ANN’s neurons like human’s NN.[60]

Developing artificial neural network architecture
In this study, to determine the best configuration of 
the ANN, we used the different types of the ANNs 
configuration by different hidden layers with the number 
of the neurons that existed in them for data processing 
and performance evaluation based on different 
evaluation criteria such as sensitivity, specificity, and 
accuracy. In this step, the datasets were split into 
both training and testing. About 70% of cases were 
for training and 30% for the testing process. Finally, 
the final architecture of ANN for COVID‑19 diagnosis 
was acquired based on measuring and comparing the 
sensitivity, specificity, and accuracy of different ANN 
configuration types. Our conditional threshold in ANN’s 
COVID‑19 diagnosis was the 0.5 value; the uninfected 
people was considered <0.5 (0.5 ≤ x) and positive 
outputs were classified more than 0.5 (0.5 > x).

Results

The result of determining the most important diagnostic 
criteria based on the phi coefficient at P < 0.05 is 
demonstrated in Table 1.

Figure 1: Flowchart describing patient selection Figure 2: The schema of an artificial neural network used in diagnosing COVID-19
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Based on the information provided in Table 1, the cough 
(φ = 0.621) (P = 0.00405), fever (φ = 0.545) (P = 0.00512), 
lung lesion existence (φ = 0.6) (P = 0.00258), and body 
temperature (φ = 0.554) (P = 0.005405) had obtained 
the most amount of correlation coefficient at P < 0.05; 
therefore, in this research, they were considered as the 
most important diagnostic for diagnosing the COVID‑19. 
In general, the 18 diagnostic criteria acquired the 
determined correlation coefficient at P < 0.05.

After comparing different configurations of ANNs by 
evaluating the three mentioned comparison criteria 
[Table 2], the most common architecture of ANN was 
obtained [Figure 3]. Indeed, the architecture of 18‑28‑20‑2 
(28 and 20 neurons in hidden layer 1 and hidden layer 2, 
respectively) had been gotten as the best configuration 
for designing the ANN for diagnosing the COVID‑19 
disease.

Table 1: The key diagnostic criteria at P<0.05
Input variable Variable type Variable features with frequency Correlation coefficient P
Respiratory rate Binominal ≤24 (128)

>24 (272)
0.245 0.000265

Body temperature Polynomial <37.3 (199)
37.3‑38 (116)
38‑39 (40)
>39 (45)

0.554 0.005405

SPO2 Polynomial >95% (274)
85%‑95% (86)
<0.85% (40)

0.327 0.0093105

Shortness of breathing Binominal Haven’t (285)
Have (115)

0.198 0.00124

Fever Binominal Haven’t (244)
Have (156)

0.545 0.00512

Cough Binominal Haven’t (229)
Have (171)

0.621 0.00405

Digestive sign (diarrhea) Binominal Haven’t (296)
Have (104)

0.114 0.0269847

Chest pain Binominal Haven’t (285)
Have (115)

0.074 0.0301

Weakness Binominal Haven’t (280)
Have (120)

0.138 0.002515

Contact type Polynomial Haven’t (272)
Person–the person (62)
Contaminated surface–the person (24)
Water/food consumption (12)
Air‑breathing (8)
Other (22)

−0.479 0.007755

Contact number Binominal Complete (100)
Relative (45)
Haven’t (255)

−0.411 0.00695

Contact history Binominal Haven’t (276)
Have (124)

0.172 0.019

History of respiratory failure Nominal Haven’t (262)
Have (138)

0.3 0.0159

History of taking the blocker drugs Nominal Haven’t (301)
Have (99)

0.130 0.0219

Pulmonary lesion existence Nominal Haven’t (235)
Have (165)

0.6 0.00258

Pulmonary infection Nominal Haven’t (288)
Have (112)

0.146 0.000125

History of traveling to high‑risk 
COVID‑19 occurrence

Nominal Haven’t (302)
Have (98)

0.130 0.0212

Age Polynomial Young (<45) (125)
Middle‑aged (45‑55) (143)
Adult (>55) (132)

0.110 0.0105

SPO2=Oxygen saturation in the blood rate
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This ANN was trained by 24 iterations (Epochs), and 
the results of evaluating the ANNs by mean squared 
error (MSE) [Figure 4] have demonstrated that in the 
18th epoch of the ANN training, the ANN’s error rate 
had been reached to the least amount (MSE = 0.04). In 
fact, in the six steps prior (in the 12th step), this ANN 
model had obtained the best performance to diagnose 
the COVID‑19.

The result of the sample classification based on the 
confusion matrix for all processes of developing the 
ANN such as training, validating, and testing the ANN 
is demonstrated in Figures 5 and 6. We considered 
the total cases (total confusion matrix [TCM]) 
for evaluating the performance of the ANN, in 
this research. Based on the TCM, the 241 positive 
COVID‑19 cases (96%) were classified as positive out 
of 250 positive cases (true positive [TP] = 241), 136 
non‑COVID‑19 samples (91%) were classified truly 
as negative (true negative [TN] = 136) by ANNs, 
also about the misclassified cases, the ANNs falsely 
classified 14 non‑COVID‑19 cases (9%) as positive (false 
positive [FP] = 14), and classified 9 records (4%) about 
the positive people as negative (false negative [FN] = 
9). Based on the TCM, the sensitivity, specificity, and 
accuracy of the ANN have been obtained 96.4%, 90.6%, 
and 94%, respectively.

The receiver operating characteristic (ROC) plot of the ANN 
is depicted in Figure 5, and the result of calculating the area 
under the curve (AUC) demonstrated that these ANNs 
had an efficient classification strength (AUC = 0.982) in 
diagnosing the COVID‑19 and non‑COVID‑19 cases with 
being closed the curve to the true positive rate (perfect 
classifier than the random type); on the other hand, the 
AUC plot indicated that the ANN diagnosing model had 
a high diagnostic power with the high TP and TN rate and 
low FN and FP rate. This curve also was the best in terms 
of efficiency among all the ANN configurations.

In Figure 7, the Clinical Decision Support System 
User Interface for COVID‑19 diagnosis was designed 
by MATLAB v 2013a software (The MathWorks, Inc., 
Natick, Massachusetts, USA), in which, the users such 
as a physician could enter the data about their patients, 
then the system suggests the best recommendation about 
having COVID‑19 disease or not.

Discussion

The high risk of infection, vague characteristics, 
the uncertainty of nature, long incubation period, 
vigorous progression, and difficulties for conduct 
laboratory tests make COVID‑19 a critical public health 
issue that raised intense attention internationally.[65] 
In this situation, a timely and accurate diagnosis can 
provide a better plan for health policymakers and 
clinicians to mitigate disease outbreaks and improve 
patient survival probability.[56] To this end, developing 
intelligent models for COVID‑19 diagnosis is very 
crucial in determining their likely new cases at an early 

Figure 4: The artificial neural networks mean squared error for error rate evaluation

Figure 3: Final artificial neural network architecture used for COVID-19 diagnosis with the best performance

Figure 5: The receiver operating characteristic of artificial neural networks in 
diagnosing COVID-19
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stage.[23,66] The purpose of this study was to develop an 
intelligent model for detecting the presence or absence 
of COVID‑19 based on ANN techniques.

So far, several types of research have been focused 
on applying and evaluating the ANN techniques in 
COVID‑19 early prognosis, risk assessment, and trend 

Figure 6: All situations of the artificial neural networks confusion matrix

Figure 7: The Clinical Decision Support System User Interface is based on artificial neural networks for COVID-19 diagnosis
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estimation. Abdulaal et al. in their study developed an 
ANN model for COVID‑19 mortality risk prediction 
that yielded a sensitivity, specificity, and ROC of 
87.5%, 85.94%, and 90.12%, respectively.[67] Toraman 
et al. proposed a novel ANN (Convolutional CapsNet) 
for detecting COVID‑19. Their suggested technique 
attained an accuracy of 97.24% and 84.22% for twofold 
and multiclasses, respectively.[68] Chowdhury et al. 
showed that the convolutional neural networks (CNNs) 
for COVID‑19 screening had accuracy, precision, 
sensitivity, and specificity of 99.7%, 99.7%, 99.7%, and 
99.5%, respectively.[69] Hassantabar et al. in their study 
showed that the CNN method with an accuracy of 
93.2% and sensitivity of 96.1% is the better model for 
diagnosis and detection of COVID‑19 when compared 
to the deep neural network (DNN) method with an 
accuracy of 83.4% and sensitivity of 86%.[70] Alakus et al. 
compared the predictive performance of selected deep 
learning algorithms including ANN, CNN, LSTM, RNN, 
CNNLSTM, and CNNRNN for COVID‑19 diagnosis. 
Finally, LSTM deep learning model was recognized as the 
best model with an accuracy of 86.66%, recall of 99.42%, 
and AUC score of 62.50. Torrealba‑Rodriguez et al.[11] and 
Moftakhar et al.,[71] compared the prediction performance 
of statistical (regression) and computational (ANN) 
models in COVID‑19 diagnosis, and finally, the ANN 
exhibits better performance than the regression model.

The results of the current study illustrated that the 
designed ANN model can appropriately identify the 
COVID‑19 cases using parameters that are readily 
available in clinical practice. To that end, the data were 
balanced and then used as contributor predictors for 
the ANNs. Later, the models were developed and 
their performance was evaluated. The key findings of 
our study, first, identify the most important clinical 
predictors using logistic regression, and then a promising 
performance level with an AUC of 0.982. In the first 
step, we identified 18 significant predictors [Table 1] 
which were independently associated with COVID‑19. 
However, the sensitivity, specificity, and accuracy were 
96.4%, 90.6%, and 94%, respectively.

The ANN model has robust error tolerance; thus, it can be 
extensively used in the fields of prediction and analysis.[72] 
Furthermore, leveraging the potential of an ANN‑based 
CDSS would assist health‑care providers to make better 
decisions concerning COVID‑19 (diagnosis, classification, 
etc.). Despite standard statistical approaches (e.g., logistic 
regression) that need further modeling processes, 
ANNs do not necessitate distributional assumptions.[73] 
In addition, contrasting to traditional statistical‑based 
prediction methods, this study offers a new technique 
for modeling complex nonlinear relationships in spatial 
epidemiology. Such a prediction model can be employed 
even for analyzing noisy, imbalanced, and inadequate 
datasets.

Several limitations need to be addressed. First, the dataset 
was obtained from a single center that limits the external 
validity of the results; thus, future multi‑central datasets 
and external validation possibly will improve the 
developed model. Second, only the data of 400 patients 
were included to devise the model. It is considered a 
small population and the probability of an overfitting 
problem. To overcome these limitations and improve 
the results, we recommend prospective, multicenter 
teamwork, with a great dataset.

In this research, by introducing a scientific and 
noninvasive evidence‑based method, we will be able 
to propose the best ANN configuration for COVID‑19 
detection based on the most effective diagnostic 
criteria. The proposed configuration appears to have a 
higher performance than the conventional evaluation 
approaches, and also can be used by physicians to 
improve their diagnostic performance.

We rely on that, in future, an ANN‑based CDSS risk 
assessment will be existing for use in the health‑care 
facilities, which will be straightforward for clinicians to 
use. We anticipate that this technique may apply to wider 
fields of medicine, facilitating the complex and nonlinear 
information processing about patients, and leading to the 
establishment of personalized risk profiles.

Conclusion

We have created and tested an ANN model for 
COVID‑19 diagnosis based merely on patient history 
and exposure parameters commonly available in 
inpatient medical records. Our results reveal that ANN 
can offer high specificity and good sensitivity for the 
diagnosis of COVID‑19. The results also disclosed that 
ANN could discriminate COVID‑19 from other viral 
pneumonia and flu‑like diseases with high accuracy. 
While our neural network could be potentially used 
as a clinical tool for COVID‑19 diagnosis, further 
development with more clinical variables included and 

Table 2: The performance of some artificial neural 
network configuration
Network type Layer 1 Layer 2 Sensitivity Specificity Accuracy
1 1 0 0.212 0.91 0.6125
2 2 0 0.532 0.9 0.6725
3 3 0 0.996 0.02 0.63
4 4 0 0.992 0.02 0.6275
5 5 0 0.74 0.33 0.5875
6 6 0 0.996 0 0.6225
7 7 0 0.884 0.12 0.6
8 8 0 0.804 0.42 0.66
9 9 0 0.42 0.8 0.565
10 10 0 1 0.02 0.635
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more evaluation would be required. This study could 
develop other diseases to help the health‑care system 
respond more effectively during the present and even 
future pandemics.
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