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The profiling of 16S rRNA revolutionized the exploration of microbiomes, allowing to
describe community composition by enumerating relevant taxa and their abundances.
However, taxonomic profiles alone lack interpretability in terms of bacterial metabolism,
and their translation into functional characteristics of microbiomes is a challenging task.
This bottom-up approach minimally requires a reference collection of major metabolic
traits deduced from the complete genomes of individual organisms, an accurate method
of projecting these traits from a reference collection to the analyzed amplicon sequence
variants (ASVs), and, ultimately, an approach to a microbiome-wide aggregation of
predicted individual traits into physiologically relevant cumulative metrics to characterize
and compare multiple microbiome samples. In this study, we extended a previously
introduced computational approach for the functional profiling of complex microbial
communities, which is based on the concept of binary metabolic phenotypes encoding
the presence (“1”) or absence (“0”) of various measurable physiological properties in
individual organisms that are termed phenotype carriers or non-carriers, respectively.
Derived from complete genomes via metabolic reconstruction, binary phenotypes
provide a foundation for the prediction of functional traits for each ASV identified
in a microbiome sample. Here, we introduced three distinct mapping schemes for
a microbiome-wide phenotype prediction and assessed their accuracy on the 16S
datasets of mock bacterial communities representing human gut microbiome (HGM) as
well as on two large HGM datasets, the American Gut Project and the UK twins study.
The 16S sequence-based scheme yielded a more accurate phenotype predictions,
while the taxonomy-based schemes demonstrated a reasonable performance to
warrant their application for other types of input data (e.g., from shotgun metagenomics
or qPCR). In addition to the abundance-weighted Community Phenotype Indices (CPIs)
reflecting the fractional representation of various phenotype carriers in microbiome
samples, we employ metrics capturing the diversity of phenotype carriers, Phenotype
Alpha Diversity (PAD) and Phenotype Beta Diversity (PBD). In combination with CPI, PAD
allows to classify the robustness of metabolic phenotypes by their anticipated stability in
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the face of potential environmental perturbations. PBD provides a promising approach
for detecting the metabolic features potentially contributing to disease-associated
metabolic traits as illustrated by a comparative analysis of HGM samples from healthy
and Crohn’s disease cohorts.

Keywords: predictive functional profiling, metagenomic, 16S rRNA sequencing, metabolic phenotypes,
microbiome, phenotype diversity

INTRODUCTION

Microbial communities are known to colonize various habitats,
such as water, soil, and higher organisms including humans.
Understanding various types of interactions within microbial
communities (or microbiomes) and with an environmental niche
is of obvious fundamental and practical importance, especially
in the field of human health and disease. Thus, the problems
of development and homeostasis of the human gut microbiome
(HGM) attracted the most attention from many research groups
due to many established associations between dysbiosis and
various pathological conditions such as obesity (Cani and Van
Hul, 2020), diabetes (Gurung et al., 2020), cancer (Guven
et al., 2020), inflammatory bowel diseases (IBD) (Caruso et al.,
2020), and neurological disorders (Grochowska et al., 2019).
Additional tentative associations of HGM and human health
include the regulation of blood pressure (Marques et al., 2018),
neurodevelopment (Borre et al., 2014), bile acid metabolism
(Ramirez-Perez et al., 2017), and immune homeostasis (Wang
et al., 2019). The knowledge of HGM taxonomic composition
and functional profiles would enable the identification of relevant
features associated with such conditions, opening new diagnostic
and therapeutic opportunities.

Rapid advancement of genomic technology enabled a
comprehensive coverage of HGM by thousands of completely
sequenced reference genomes (O’Leary et al., 2016; Forster et al.,
2019; Poyet et al., 2019; Zou et al., 2019). Likewise, massive
amounts of fecal samples from a variety of clinical and population
studies have been taxonomically profiled by amplicon (16S
rDNA) sequencing methodology. A comparative and correlative
analysis of these taxonomic profiles versus various types of
clinical and other metadata provides new powerful approaches
toward the diagnostic and rational selection of probiotics.
However, taxonomic profiles alone, no matter how useful for
certain practical tasks, lack interpretability in terms of functional,
most importantly metabolic, properties and interactions of
microbial communities. A genome-based reconstruction of
bacterial metabolic pathways and networks (Rodionov et al.,
2010; Ravcheev et al., 2013; Khoroshkin et al., 2016; Romine et al.,
2017) is a well-established methodology enabling a predictive
metabolic modeling (Zhang et al., 2009; Pan and Reed, 2018).
However, the extension of this methodology toward complex
and widely variable microbial communities, despite some first
encouraging steps (Zhang and Reed, 2014; Magnusdottir et al.,
2017), represents a substantial challenge. To establish a reliable
quantitative description (let alone mathematical model) of the
metabolic potential of a microbial community from the 16S
amplicon sequencing data using a bottom-up approach (from

genome-wide to microbiome-wide metabolic reconstruction), we
need to successfully address at least three critical issues.

First, a scalable functional profiling approach should adopt
a standard language, i.e., a set of functional traits that can be
confidently deduced from the genomes of individual species
reflecting their measurable physiological, biochemical, or other
properties. These traits (or rather presence and absence thereof)
assigned to each genome in a representative collection of
reference genomes would provide a foundation for converting
the 16S rRNA gene profiles to functional profiles of microbial
communities. The commonly used state-of-the-art tools, e.g.,
PICRUSt2 (Douglas et al., 2020) and Tax4Fun2 (Wemheuer
et al., 2020), report the abundance of either gene families or
automatically assigned metabolic pathways, deriving reference
data from existing genomic databases of biochemical pathways
such as the KEGG (Kanehisa et al., 2012). Previously, we
introduced a different approach to the predictive metabolic
profiling of microbial communities based on the concept of
binary metabolic phenotypes (Rodionov et al., 2019), which are
deduced from the complete genomes of reference bacteria using
a subsystems-based metabolic reconstruction (Overbeek et al.,
2005). Binary phenotypes represent measurable physiological
properties (traits) of individual species such as the ability or
inability to produce or consume certain metabolite or nutrient
and encoded as “1” for a particular phenotype’s carriers and
as “0” for non-carriers. The main distinctive aspect of this
approach [originally introduced and described for the example
of predicted B-vitamin prototrophy and auxotrophy (Rodionov
et al., 2019)] is in aggregating data on reconstructed and curated
metabolic pathways into a single binary (1 or 0) encoding
of a particular functional trait, which has a straightforward
biological interpretation.

A second challenge of genomic reference-based functional
profiling is the limited coverage of the HGM species by complete
reference genomes (amenable to metabolic reconstruction)
exacerbated by an even more limited precision of 16S profiling.
Indeed, even in the most studied environmental niches such
as HGM, taxonomic profiling of detected amplicon sequence
variants (ASVs) provides only a partial strain-level resolution,
with many ASVs having taxonomic descriptions at the species,
genus, or even family level. It leads to a bioinformatic
problem of accurate projection of the current knowledge on
the presence/absence of functional features from reference
genomes of individual strains to real-life ASVs (ensembles
of taxonomically unresolved species and strains). Due to the
intrinsic variations of many features within microheterogeneous
ASVs, for computational purposes, such projection should be
considered probabilistic and corresponding maps of ASVs to
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reference genomes should be accompanied by an estimated error
reflecting the uncertainty due to these variations.

In previous studies, we have used a simple taxonomy-
based mapping approach, which projects ASVs to the reference
database of genomes with their respective binary phenotypes
(termed Binary Phenotype Matrix or BPM) using a level-by-
level comparison of the ASV’s taxonomic description with
the taxonomies of the reference genomes. BPM entries with
the best match were then taken to form the ASV-to-BPM
map, with weights equally distributed across unique species.
Furthermore, for each binary phenotype and ASV, a Phenotype
Index (PI, a value between 0 and 1) was calculated as
the map-weighted average binary phenotype of reference
organisms across the ASV-to-BPM map. Each PI represents
a probability for a given binary phenotype to be associated
with the ASV and is accompanied by the corresponding
prediction error due to an imprecise mapping. To improve
the precision (minimize the uncertainty) of PI assignment to
ASVs, we have introduced two additional mapping methods,
the first of which relies on the so-called Multi-Taxonomic
Assignment (MTA) scheme. In contrast to the commonly used
Consensus-Based Taxonomic Assignment (CBTA) scheme [e.g.,
in consensus-blast plugin in QIIME2 (Bolyen et al., 2019)], where
ambiguities are resolved by keeping taxonomic descriptions with
sufficient consensus, MTA preserves multiple best-match species-
level taxonomies in order to enhance taxonomic resolution.
Alternatively, the second, sequence-based approach (SEQ) does
not rely on intermediate taxonomies and aligns ASVs directly
to the 16S reference database, thus, allowing to obtain a
strain-level resolution for some ASVs. Here, we report the
benchmarking of our phenotype prediction approach using
all the above mapping schemes. For a dataset of 1,000
mock bacterial communities representing HGM with defined
taxonomic composition and functional profiles, SEQ scheme
demonstrated overall insignificant prediction uncertainties and,
as anticipated, largely outperformed the CBTA and MTA
schemes. The taxonomy-based schemes, however, showed a
reasonable prediction accuracy for a subset of phylogenetically
homogeneous phenotypes, thus justifying their use in the
phenotypes-based analysis of taxonomic profiles in the absence
of the 16S sequencing data (e.g., originating from whole genome
shotgun sequencing).

Finally, a third critical aspect of functional bottom-up
profiling methodology is the robust computational method
of microbiome-wide aggregation of the functional traits of
individual species into the community’s cumulative metrics,
which should have an explicit biological interpretation. Such
method would enable a computational comparative analysis of
multiple HGM samples to support applications in diagnostics and
rational development of dietary supplements for the prevention
or correction of dysbiosis-related syndromes. A potential
practical utility of such analysis based on binary phenotype
encoding of metabolic properties can be illustrated by studies
of defined microbial consortia in gnotobiotic mice model aimed
at developing therapeutic food supplements for infants with
dysbiosis triggered by malnutrition (Blanton et al., 2016; Gehrig
et al., 2019; Raman et al., 2019).

Recently, we have introduced the computational approach to
a microbiome-wide aggregation of metabolic properties assigned
to ASVs (as outlined above) by calculating the Community
Phenotype Indices (CPIs), i.e., abundance-weighted PIs. For a
given phenotype, the CPI value corresponds to a fractional
representation of the phenotype carriers in a microbiome
sample. This simple metric was applied to the analysis of
B-vitamin biosynthetic potential over large collections of 16S-
profiled HGM samples from the Human Microbiome Project
and American Gut Project studies (Human Microbiome Project
Consortium, 2012; McDonald et al., 2018) and allowed us
to detect a significant abundance of B-vitamins auxotrophs,
in accordance with the micronutrient sharing hypothesis
(Rodionov et al., 2019). This hypothesis was further supported
by the studies in humanized gnotobiotic mice model and
via anaerobic in vitro culturing in the context of extreme
variations of B-vitamin supply (Sharma et al., 2019). The
CPI-based functional profiling of HGM samples was applied
to several other 16S rRNA metagenomic datasets, including
the in vitro fermentation of fecal microbiomes (Peterson
et al., 2019; Elmen et al., 2020) and the comparative analysis
of metabolic properties in microbiomes of infants as a
function of breast-feeding vs. formula (Jones et al., 2020),
allowing us to link the metabolic phenotypes with variable
environmental/growth conditions. Finally, predicted metabolic
phenotypes were used for the classification of HGM samples
from healthy versus IBD patients providing interpretable
insights into the host-microbiome mechanisms of disease
(Iablokov et al., 2021).

Here, we extended this bioinformatics approach for the
metabolic phenotype profiling of HGM samples by incorporating
novel metrics for a diversity-based description of the phenotype
carriers, namely, Phenotype Alpha Diversity (PAD) and
Phenotype Beta Diversity (PBD). These metrics were applied for
the metabolic phenotype profiling of several large metagenomic
datasets, with PAD serving as a measure of stability for a given
functional trait (phenotype) and PBD being a promising method
for identification of driving phenotypes.

MATERIALS AND METHODS

Raw Data Analysis
Raw 16S rRNA gene sequencing data from two large
metagenomic studies representing the general population,
namely, from the American Gut Project (AGP) (McDonald
et al., 2018) and the UK Twins study (UKT) (Goodrich et al.,
2016), as well as from three IBD-related studies conducted
in China (CHN) (Zhou et al., 2018), Spain (ESP) (Pascal
et al., 2017), and Netherlands (NLD) for the IBD group
(Imhann et al., 2018) and for healthy controls (Tigchelaar
et al., 2015), were analyzed using the QIIME2’s dada2
plugin (Bolyen et al., 2019). 16S amplicons were quality-
filtered and dereplicated into amplicon sequence variants
(ASVs) with default parameters. Samples with reads counts
below a certain threshold were discarded. For the AGP
dataset, we additionally removed samples with high levels of

Frontiers in Microbiology | www.frontiersin.org 3 May 2021 | Volume 12 | Article 653314

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-653314 May 18, 2021 Time: 19:12 # 4

Iablokov et al. Metabolic Phenotype Metrics for Microbiomes

blooms. Summary for the analyzed datasets, with read count
thresholds and the remained number of samples, is presented in
Table 1.

In silico Mock Communities
A set of 1,000 mock communities was randomly generated
(in silico) from the reference collection of 2,662 bacterial HGM
genomes (Rodionov et al., 2019; Iablokov et al., 2021) that
are available in the SEED database (Overbeek et al., 2014).
The number of unique species (S) for each community was
sampled from the normal distribution (mean = 30, std = 5)
with the restriction 10 < S < 60. Unique species names
were then sampled from the list of 120 most abundant
species in the UKT dataset, with weights equal to their mean
abundance (A) across the dataset. For each unique species-
level description, N organisms (strains) with the corresponding
taxonomy were uniformly sampled from the reference HGM
genome database. The number N was uniformly sampled
between 1 and the ceiling value of the square root of
the total number of organisms with the given species-level
description. The respective relative abundance (R) of each
species in a given mock community was sampled from a
normal distribution (mean = A, std = A × 0.4) with the
restriction A × 0.1 < R < A × 3. Values of R for each
community were then rescaled to sum up to 1. The respective
relative abundance fractions (Q) of strains within a species were
uniformly sampled and rescaled to sum up to 1. Total amplicon
count (T) for each community was sampled from a normal
distribution (mean = 20,000; std = 4,000) with the restriction
4,000 < T < 40,000. Individual 16S amplicon counts (C) for
the organisms (strains) in each community were then obtained
as C = Q × R × T. These generated bacterial communities
comprised the MOCK TRUE dataset with a confidently known
one-to-one association (map) between each 16S sequence and
the reference genome database. To model a real experiment, the
corresponding 16S rRNA gene sequences were further truncated
to the V3–V4 variable regions (flanked by 341F/806R primers).
Truncated amplicons with identical sequences were collapsed
into a single amplicon sequence variant (ASV) with aggregated
abundance, comprising the MOCK AGGR dataset. The resulting
ASV abundance tables and respective 16S sequences (for
both the TRUE and AGGR mock datasets) are presented in
Supplementary Table 1.

TABLE 1 | Summary on the number of samples retained in each analyzed dataset
after filtration by the minimum number of reads threshold.

Dataset Number of samples Min. number of reads

AGP 2,868 10,000

UKT 3,288 10,000

CHN 134 HC/75 CD 4,000

ESP 154 HC/140 CD 15,000

NLD 966 HC/163 CD 15,000

For the IBD-related datasets (CHN, ESP, and NLD), the respective numbers are
given for healthy (HC) and Crohn’s disease (CD) cohorts separately.

Taxonomic Profiling and Abundance
Renormalization
Taxonomic profiling of ASV representative sequences was
performed following the Multi-Taxonomic Assignment (MTA)
scheme. Specifically, 16S amplicons were aligned using NCBI
BLAST+ (Camacho et al., 2009) against a joined reference 16S
rRNA database with sequences from the RDP database version
11.5 (Cole et al., 2014) and NCBI 16S database version of
December 2019. Alignment results were sorted according to the
fraction (from 0 to 1) of their identity F, with the maximum
F value for the alignment denoted as M. Top alignment hits
with value of F in the range from M to M-(1-M)/S and a
threshold greater than the value D were selected for MTA.
Here, S acts as a scaling parameter, which controls the list
of taxonomic descriptions accepted for MTA based on the F
value of the alignment, and was taken equal to 4. The drop
threshold parameter D limits the alignment quality from below,
and was taken equal to 0.85. The strict choice of value for
S is motivated by the necessity to investigate 16S sequences
(and their corresponding organisms) in a small neighborhood
of the top match, while keeping the MTA description compact.
The value of D was chosen to discard the ASVs with a
poor taxonomic resolution, for which metabolic phenotype
predictions are highly inaccurate due to the high degree of
phenotype heterogeneity within a broader phylogenetic group.
The resulting multi-taxonomy for each ASV was a list of unique
species-level taxonomic descriptions with equal weights assigned
to each item. String representations for MTA consisted of slash-
separated names of taxa on each taxonomic level, e.g., Bacteroides
ovatus/vulgatus or Escherichia coli/Salmonella enterica.

Based on the MTA profile, we additionally performed
a Consensus-Based Taxonomic Assignment (CBTA) by
choosing 51%-consensus on each taxonomic level, leaving
blank the assignment entries for taxonomic levels with an
insufficient consensus.

Original dada2-derived 16S amplicon counts were further
renormalized to account for the different 16S rRNA gene copy
numbers (GCN) in microbial genomes. Average GCN values for
taxonomic entities at different ranks were extracted from the
rrndb-5.6 database (Stoddard et al., 2015) and mapped to ASVs
using their MTA-based taxonomic descriptions. For each ASV, a
simple mean GCN value was calculated and used as a factor to
normalize the ASV’s abundance. Thus, obtained abundances were
then re-scaled to sum up to 1.

Binary Phenotypes for Reference
Genomes
The comparative genome analysis and reconstruction of target
metabolic pathways in the reference genome database containing
2,662 HGM genomes (representing∼770 individual species) was
previously conducted using the subsystems approach (Overbeek
et al., 2005; Osterman et al., 2010) implemented in the
SEED/RAST platform (Overbeek et al., 2014) as previously
described (Rodionov et al., 2019; Iablokov et al., 2021). Briefly, the
metabolic subsystems were manually built as groups of functional
roles for enzymes, transporters, and transcriptional regulators
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that are involved in a specific aspect of the cellular machinery
such as a metabolic pathway. Functional gene assignments and
metabolic reconstructions were performed using the following
three genome context techniques to functionally link a set
of genes to a single pathway: (i) clustering of genes on the
chromosome (operons), (ii) co-regulation of genes by a common
regulator [regulons, as captured in the RegPrecise database
(Novichkov et al., 2013)], and (iii) co-occurrence of genes in a
set of related genomes (Overbeek et al., 2007). For the functional
gene annotation and building metabolic subsystem in SEED,
we combined the existing annotations with information from
literature accessed via the PaperBLAST tool (Price and Arkin,
2017) and reference databases including the UniProtKB/Swiss-
Prot for characterized proteins (Boutet et al., 2016), KEGG for
reference metabolic pathways (Kanehisa et al., 2012), TCDB for
transporter classification (Elbourne et al., 2017), and CAZy for
classification of Glycosyl Hydrolases (Lombard et al., 2014).

Curated across HGM genomes metabolic subsystems include
the central biochemical pathways classified into four categories:
(i) biosynthesis of vitamins and cofactors, (ii) biosynthesis of
protein-forming amino acids, (iii) utilization of carbohydrates
and other carbon sources, and (iv) production of fermentation
products including short-chain fatty acids (SCFAs) such as
acetate, butyrate, and propionate. In many subsystems, we
captured distinct biochemical pathway variants and numerous
non-orthologous enzymes and transporters. Using pathway-
specific logical rules that account for both the variable
pathway and signature genes, we assigned binary phenotypes
(1/0) for each metabolic phenotype and target genome.
The resulting Binary Phenotype Matrix (BPM) contained 94
metabolic phenotypes reflecting the presence/absence of a
complete catabolic or biosynthetic pathway. The following 24
representative phenotypes were a subject of analysis in this
work (Figure 2): biosynthesis of B-vitamins (B1, B2, B3,
B5, B6, B7, B9, B12), lipoate, and vitamin K; production of
SCFAs (butyrate and propionate); utilization of carbohydrates
(glucose, galactose, fructose, mannose, xylose, arabinose, fucose,
rhamnose, ribose, lactose); and biosynthesis of amino acids (His,
Trp). These phenotypes were chosen by a combination of criteria
such as physiological relevance, extensive knowledge ensuring
confidence of phenotype inference, and significant and variable
representation across microbiome samples.

ASV Mapping
To obtain the phenotype profiles for the analyzed 16S rRNA
samples, we utilized a development version of the Phenotype
Profiler tool provided by PhenoBiome Inc. (Walnut Creek, CA,
United States1). Mapping of ASVs to the BPM was performed
using three different schemes. Two of them are taxonomy-based
(CBTA and MTA), and they use a level-by-level comparison of
the ASV taxonomic descriptions with taxonomies of the reference
genomes. Matches on the deepest taxonomic level were added
to the ASV-to-BPM map with weights equally distributed (and
summing up to 1) across unique species. Within each unique
species, the weights were equally distributed between all strains.

1www.phenobiome.com

ASVs with a match on at least the family level were considered as
mapped, with the rest being non-mapped. For multi-taxonomies,
this procedure was applied for each simple taxonomic description
in the MTA with additional weighting using the MTA weights.
The third scheme is sequence-based (SEQ) and employs an
ASV sequence alignment against the 16S database for reference
genomes (from which phenotypes were derived). This process
mirrors the MTA scheme with the same values for S and D
parameters. ASVs with F values greater than D were considered as
mapped. ASVs with all reference sequences having their F value
below D were considered as non-mapped. The average values
of ASV coverage by reference genomes, i.e., the abundance of
mapped ASVs, for all analyzed datasets is presented in Table 2.

Assignment of Phenotype Indices
For each ASV and metabolic phenotype, we assigned a
corresponding Phenotype Index (PI, from 0 to 1), representing
the probability for the phenotype to be associated with the given
ASV. PIs were calculated using the ASV-to-BPM map as the map-
weighted averages of binary phenotypes from the BPM: PI =∑

Wi × Pi, where Wi and Pi are the mapping weight (from
0 to 1) and respective binary phenotype value (0 or 1) for
the ith organism in the ASV-to-BPM map. Assuming that the
binary phenotypes follow the binomial distribution, we calculated
variance of Var (PI) = PI × (1− PI), and have taken it as an
estimate of PI prediction uncertainty. To measure the cumulative
properties of microbial communities with respect to a given
phenotype, we computed the Community Phenotype Indices
CPIs as abundance-weighted average PIs for all phenotypes,
CPI =

∑
Ai × PIi, where Ai and PIi are the relative abundance

(from 0 to 1) and respective Phenotype Index (from 0 to 1) of the
ith ASV in the sample. Under the assumption of independent co-
occurrence of ASVs, we calculated variance of CPI, Var(CPI) =∑

A2
i × Var (PIi), and have taken it as an estimate of CPI

prediction error. The relative CPI prediction uncertainty (rSTD)
was then calculated as the ratio of its standard deviation (square
root of variance) and CPI itself. The computed CPI values
for the in silico mock, AGP, and UKT datasets, as well as for
the three IBD-related studies are provided in Supplementary
Tables 2A,B, 7, respectively.

Phenotype Diversity
The Phenotype Alpha Diversity (PAD) and Phenotype Beta
Diversity (PBD) were estimated as, respectively, the alpha
and beta diversity of the sub-communities of carriers of a
particular phenotype. Briefly, a multiple alignment of ASV

TABLE 2 | Mapping coverage for the analyzed datasets.

Scheme AGP UKT CHN ESP NLD

CBTA 81% 89% – – –

MTA 84% 93% – – –

SEQ 79% 86% 99% 97% 94%

For each dataset (and mapping scheme where appropriate), the average
abundance of ASVs mapped to the BPM is shown as percentage.
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FIGURE 1 | Flowchart of the phenotype profiler pipeline.

representative sequences was performed using MUSCLE (Edgar,
2004), followed by the construction of an unrooted phylogenetic
tree with FastTree 2 (Price et al., 2010). The resulting tree
was rooted according to the midpoint strategy and used
(with ASV abundances and ASV-to-BPM map) in calculation
of both PAD and PBD metrics with the Python’s scikit-bio
package2. Sub-communities of the respective phenotype carriers
were determined according to a PI > 0.6 threshold, with the
abundances of selected ASVs normalized to 1 for each sample.
Faith Phylogenetic Diversity (Faith, 1992) and Weighted UniFrac
(Lozupone and Knight, 2005) were chosen as the respective alpha
and beta diversity metrics. The computed PAD values for AGP
and UKT datasets are provided in Supplementary Table 4.

RESULTS AND DISCUSSION

A computational pipeline for metabolic profiling of complex
microbial communities represented by the 16S amplicon
sequencing data is based on the probabilistic prediction of

2http://scikit-bio.org

metabolic phenotypes for each ASV identified in the microbiome
sample (see Methods). Thus, for each phenotype, an ASV is
assigned a respective Phenotype Index (PI, from 0 to 1), i.e.,
a probability for the phenotype to be associated with a given
ASV. The principal computational scheme of our pipeline is
shown in Figure 1. It includes the following steps: (i) filtering
of 16S rRNA amplicons and their dereplication into ASVs;
(ii) taxonomic profiling; (iii) abundance renormalization due
to variations in 16S rRNA gene copy numbers (GCN) among
different taxa; (iv) mapping of ASVs to the reference genomes;
(v) phenotype prediction; and (vi) calculation of community’s
cumulative characteristics, including the Community Phenotype
Index (CPI), Phenotype Alpha Diversity (PAD), and Phenotype
Beta Diversity (PBD). For characteristics requiring phylogenetic
data (PAD and PBD), the additional procedures of ASV multiple
alignment and tree construction are implemented (not shown).
In the following section, we assess the phenotype prediction
method using the in silico generated mock communities with
precisely known taxonomic composition and functional profiles
and compare different approaches for the mapping of ASVs to the
collection of reference genomes. Next, we discuss the potential
application of the recently introduced Phenotype Alpha Diversity

Frontiers in Microbiology | www.frontiersin.org 6 May 2021 | Volume 12 | Article 653314

http://scikit-bio.org
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-653314 May 18, 2021 Time: 19:12 # 7

Iablokov et al. Metabolic Phenotype Metrics for Microbiomes

FIGURE 2 | CPI value distributions for 1,000 in silico generated mock communities. Phenotype Indices (PI) are predicted according to four ASV-to-BPM mapping
schemes: (i) TRUE, with true Pis; (ii) CBTA and MTA, with PIs predicted using taxonomy-based mapping schemes; (iii) SEQ, with PIs predicted using a
sequence-based mapping scheme.

(PAD) metric as a measure of phenotype stability with respect
to environmental change. Finally, we propose a similar concept
of Phenotype Beta Diversity (PBD), which provides a diversity-
based approach for the detection of metabolic features which are
presumably associated with clinical status.

ASV Mapping and Phenotype Prediction
Throughout previous studies, we used three different schemes
for the prediction of phenotypes, one scheme being an upgrade
of another. Two of them employ taxonomic assignments
to map ASVs to reference genomes (ASV-to-BPM map),
with the level-by-level comparison of respective taxonomic
strings (see Methods). The naivest scheme makes use of the
Consensus-Based Taxonomic Assignment (CBTA) approach,
which resolves ambiguities by keeping the descriptions only for
the taxonomic levels with a sufficient consensus. A somewhat
advanced scheme is based on the Multi-Taxonomic Assignment
(MTA) approach, which retains all relevant simple taxonomic
descriptions equally weighted, with string representations
for MTA consisting of slash-separated taxonomies, e.g.,
Bacteroides ovatus/vulgatus or Escherichia coli/Salmonella
enterica. Lastly, the third scheme utilizes the sequence-based
(SEQ) mapping approach, which relies on the alignment
of ASVs directly against the 16S rRNA sequences of the
reference organisms.

In this study, we assessed the performance of our
computational approach by analyzing the accuracy of
phenotype prediction for 1,000 in silico generated mock

bacterial communities representing HGM with defined
taxonomic composition and functional profiles. We calculated
the Community Phenotype Indices, i.e., abundance-weighted PIs,
and relative CPI prediction uncertainties (see Methods) for the
three proposed ASV mapping schemes (CBTA, MTA, and SEQ)
as well as for the true mapping scheme (TRUE) known upon the
generation of mock communities (Supplementary Table 2A).
The obtained CPI distributions (Figure 2) demonstrated a high
degree of similarity, therefore, making a dataset-wise description
of functional traits independent of the mapping scheme. From
a sample-by-sample comparison of the predicted CPIs with
their true values (Figure 3), it is apparent that the SEQ mapping
scheme significantly outperforms (Supplementary Table 3) the
taxonomy-based schemes (CBTA and MTA). This is somewhat
an expected result, because the V3–V4 variable regions of
the 16S rRNA gene allows for a partial strain-level taxonomic
resolution, thus, decreasing the phenotype prediction error.
Among the latter two schemes, MTA showed overall lower values
in the relative change of CPI, most likely due to the phenotype
averaging across a phylogenetically narrower group of organisms
as compared to CBTA.

Despite the generally poorer performance of the taxonomy-
based mapping approaches, they nonetheless demonstrated a
reasonable phenotype prediction accuracy for the majority of
the considered phenotypes, with typical discrepancies from the
true values of the order of 5%. This suggests the potential
use of the taxonomy-based mapping for functional profiling
of metagenomic samples lacking a 16S sequencing data,
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however, described by taxonomic profiles derived from, e.g.,
shotgun whole-metagenomic sequencing. This seems especially
promising for the profiling of highly conservative phenotypes

(such as B-vitamin or amino acid biosynthesis), i.e., functional
traits with less variability in taxonomically close microbial
genomes. Another important observation is that for some

FIGURE 3 | Distributions of the relative change in the CPI values for 1,000 in silico generated mock communities. CPI values are calculated using three ASV-to-BPM
mapping schemes (CBTA, MTA, SEQ) and compared with true CPIs.

FIGURE 4 | Distributions of the relative CPI prediction uncertainties calculated for 1,000 in silico generated mock communities using three mapping schemes.
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phenotypes, namely, fucose degradation (Fuc) and ribose
degradation (Rib), even the SEQ mapping scheme demonstrated
inaccurate phenotype predictions of the order of 10% and
larger. This is due to the high degree of their phylogenetic
microheterogeneity which is straightforwardly observed when
considering the corresponding distributions for the relative

CPI prediction uncertainties (Figure 4). Unlike the genuine
prediction errors (Figure 3) estimated with respect to the true
CPI values of mock communities, the relative CPI uncertainties
were calculated based solely on the ASV mapping schemes
(CBTA, MTA, and SEQ). The observed correlation between the
true phenotype prediction errors and relative CPI uncertainties

FIGURE 5 | Distributions of CPI values (A) and their relative uncertainty values (B) for the AGP and UKT datasets calculated using three ASV-to-BPM mapping
schemes.
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strongly suggests the use of the latter as a measure of phenotype
prediction ignorance.

To assess the performance of our computational approach
for functional profiling of complex microbial communities on
real metagenomic data, we analyzed gut samples from two
large HGM datasets, namely the American Gut Project (AGP)
and UK Twins study (UKT). We calculated the respective CPI
values (Figure 5A) and corresponding relative CPI prediction
uncertainties (Figure 5B) using three ASV-to-BPM mapping
schemes, namely, CBTA, MTA, and SEQ (Supplementary
Table 2B). The resulting CPI distributions showed a striking
similarity between these mapping schemes for both datasets,
which is in good agreement with our previous discussion. The
magnitudes of relative CPI prediction uncertainty for both
datasets mirror those observed for the mock communities, with
the SEQ mapping scheme demonstrating an overall greater
performance. The only minor exception is that of small, however,
non-zero, values of the relative CPI prediction uncertainty, that
were measured in both datasets even for the phenotypes with
a high level of phylogenetic homogeneity. These uncertainties
are driven by the presence of taxa, which are poorly covered by
reference genomes, thus, leading to the ambiguous ASV-to-BPM
maps. Finally, the overall level of CPI prediction uncertainty was
usually higher for the AGP samples than for the UKT samples,
which is due to the lower length of the sequenced 16S rRNA
gene region in the AGP dataset (150 nts) as compared to the
UKT study (292 nts), thus, explaining the superior taxonomic
resolution in the latter case.

In summary, both taxonomy-based (CBTA and MTA)
and sequence-based (SEQ) mapping schemes demonstrated
a reasonable phenotype prediction accuracy for the majority
of the metabolic phenotypes in both in silico generated
mock communities and samples from large HGM studies
(AGP and UKT), with the SEQ mapping scheme significantly
outperforming the taxonomy-based approaches. It is expected

TABLE 3 | Phenotype categories and their observed characteristics.

Category I II III IV

Phenotypes B7, Lipoate, K,
Xyl, Ara, Rha,
Propionate

Man, Rib, Lac,
Butyrate

B2, B3, B6, B9,
Glc, Gal, Trp

B1, B5, B12,
Fru

CPI
variation

Moderate to
large
(35.6–49.5)

Moderate
(27.7–33.0)

Moderate to
small
(21.4–32.5)

Moderate
(35.1–40.1)

Median PAD Small (3.3–6.4) Small to
moderate
(5.1–7.6)

Large
(9.8–11.4)

Moderate to
large (7.9–10.2)

that the use of full-length 16S amplicons will further increase
the prediction accuracy of SEQ, thus, allowing for the reliable
profiling of metabolic phenotypes even with a high degree of
phylogenetic microheterogeneity. In further analysis, the use of
the SEQ mapping scheme is assumed.

Phenotype Alpha Diversity
In a recent paper (Iablokov et al., 2021), we introduced a concept
of Phenotype Alpha Diversity (PAD), which serves to describe the
alpha diversity for a sub-community of carriers of a particular
phenotype, thus, reflecting how phylogenetically broad or narrow
this sub-community is. To further develop this concept, we
computed the PAD values for the AGP and UKT datasets
(Supplementary Table 4) and investigated the CPI-vs.-PAD
relationship. The respective scatterplots are shown in Figure 6
for six selected phenotypes and in Supplementary Figure 1
for the rest of the phenotypes. Based on a set of descriptive
statistics for the CPI and PAD distributions (Supplementary
Table 5), we clustered 22 phenotypes into four categories
according to the shapes of their respective CPI-vs.-PAD clouds,
described by median PAD values (PAD Q50), median CPI values
(CPI Q50), and 10–90 percentile range (10–90 PR) of CPI

FIGURE 6 | CPI-vs.-PAD scatterplots for six selected metabolic phenotypes calculated for the AGP and UKT datasets.
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variation (Table 3). The remaining two phenotypes (Fuc and His)
remained unclassified since they demonstrated marginal features.

The CPI and PAD metrics allow us to relate the variation
of phenotype abundance with its diversity, the latter
likely accounting for the phenotype stability in the face of
environmental perturbations. For phenotypes with a generally
low PAD (e.g., as in categories I and II), one expects moderate to
large variations in the respective CPI values due to taxonomic
shifts caused by such environmental changes. At the same time,
well-diversified phenotypes (such as in category III and His) are
expected to demonstrate large median CPI values, leaving little
room for a significant CPI variation. This hypothesis is indeed
supported by the overall decreasing trend in the CPI 10-90 PR
vs. median PAD plot (Figure 7A) for the analyzed phenotypes.

We also notice that phenotypes with large PAD values
(categories III and IV) have a strong tendency to show large
PAD variations (Figure 7B) across the analyzed samples. Thus,
for these phenotypes, PAD itself can be used as a non-redundant
description of microbial communities. However, this is not
entirely true for the histidine biosynthesis (His) phenotype.
Despite the great variation in its PAD values (10–90 PR = 8),
Phenotype Alpha Diversity for the His phenotype becomes a
less efficient metabolism-driven description due to its significant
correlation with the total alpha diversity. This conclusion should
also hold for the majority of other amino acid biosynthesis
phenotypes, which are even more abundant than His. Lastly, the
fucose utilization (Fuc) phenotype has both a low diversity (PAD
Q50 = 3.5) and abundance (CPI Q50 = 19.3). It also demonstrates
an exceptionally low CPI variation (10–90 PR = 25.9), thus,
not entirely following the “low diversity–high variation” pattern
observed for other phenotypes. This is probably due to the fact
that fucose is a rare monosaccharide, which is present as a minor
constituent in host-derived glycans such as mucin (Tailford et al.,
2015) and human milk oligosaccharides (Bode, 2009), and fucose
utilization represents a somewhat rare functional capability
among HGM bacteria. Similar PAD vs. CPI dependence is
expected for other phenotypes describing the utilization of rare
carbohydrates (data not shown).

TABLE 4 | Intragroup similarity of carriers of selected three metabolic phenotypes
in the HC and CD groups.

Dataset BD (HC) BD (CD) PBD (HC) PBD (CD) rPBD (HC) rPBD (CD)

(A) Butyrate producers

CHN 0.44 0.39 0.36 0.46 0.92 1.29

ESP 0.47 0.49 0.27 0.44 0.65 0.99

NLD 0.44 0.46 0.26 0.45 0.64 1.00

Mean 0.45 0.44 0.30 0.45 0.73 1.10

(B) Lactose utilizers

CHN 0.44 0.39 0.34 0.39 0.85 1.10

ESP 0.47 0.49 0.21 0.39 0.51 0.85

NLD 0.44 0.46 0.29 0.39 0.69 0.88

Mean 0.45 0.44 0.28 0.39 0.68 0.94

(C) Vitamin B12 producers

CHN 0.44 0.39 0.37 0.41 0.91 1.09

ESP 0.47 0.49 0.28 0.42 0.67 0.87

NLD 0.44 0.46 0.25 0.36 0.62 0.79

Mean 0.45 0.44 0.30 0.40 0.73 0.92

Pairwise mean values for total beta diversity (BD), Phenotype Beta Diversity
(PBD), and relative Phenotype Beta Diversity (rPBD) are shown for each IBD
dataset for both healthy (HC) and Crohn’s disease (CD) groups. Bold font was
used to emphasize the last row with mean values. Coloring of cells reflects the
corresponding magnitudes in order to facilitate visual perception.

Overall, Phenotype Alpha Diversity provides a measure of
diversity for the sub-communities of phenotype carriers, similar
to the functional redundancy index (FRI) used in Tax4Fun2
(Wemheuer et al., 2020). Despite the conceptual resemblance
with PAD, the latter employs data on gene families [such as from
the KEGG database (Kanehisa et al., 2012)], while in the present
computational approach, the considered functional traits are
the actual biological phenotypes, e.g., a capability for a vitamin
biosynthesis or a sugar utilization. It should be noted that the
PAD metric has an important application for sample classification
tasks. For classifiers with phenotype metrics (such as CPI) used
as features, PAD can serve as a filtering criterion, allowing one to
discard phenotypes with insufficient diversity of carriers across

FIGURE 7 | Mutual dependence of the CPI and PAD values obtained for the AGP and UKT datasets. (A) Dependence between median PAD (PAD Q50) and variation
of CPI (CPI 10–90 percentile range). A total 22 metabolic phenotypes are clustered into four categories, with two phenotypes remained unclassified. (B) Dependence
between median PAD (PAD Q50) and variation of PAD (PAD 10–90 percentile range).
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FIGURE 8 | Distributions of the CPI values calculated for samples from heathy (HC) and Crohn’s diseases (CD) cohorts in the CHN, ESP, and NLS datasets.

the analyzed samples. We successfully applied this approach to
construct classifiers for healthy vs. Crohn’s disease subjects with
only phylogenetically well-diversified phenotypes (Iablokov et al.,
2021). This permitted us to interpret the classification outcome
in a truly metabolism-driven manner, i.e., in terms of potentially
driving phenotypes.

Phenotype Beta Diversity
In a complete analogy to Phenotype Alpha Diversity, we
introduce the concept of Phenotype Beta Diversity (PBD) as
the beta diversity (i.e., distances between samples) for the
sub-communities of phenotype carriers. To show the potential
applications of PBD, we analyzed gut samples in the healthy
(HC) and Crohn’s disease (CD) groups from three inflammatory
bowel disease (IBD) studies conducted in China (CHN), Spain
(ESP), and Netherlands (NLD). The respective PBD values for
the analyzed phenotypes, as well as the total beta diversity
(BD), were calculated using the Weighted UniFrac beta diversity
metric. To estimate the intragroup similarity between samples
within the HC and CD groups, we computed the respective
mean pairwise distances using both BD distance matrix and PBD
distance matrices for each phenotype (Supplementary Table 6).
To account for the inheritance of the diversity scale by the
phenotype carriers’ sub-community from the total community,
we also calculated the relative PBD (rPBD) as the ratio of the
PBD value for a given phenotype over the total BD, for each of
the HC and CD groups.

The values of rPBD that are close to 1.0 correspond to the
same level of dissimilarity between samples for either of the
two approaches, BD or PBD. Any deviation from 1.0 serves

as an indicator for an increase or decrease in dissimilarity
when passing from the total microbial communities to the
sub-communities of phenotype carriers. Among all analyzed
phenotypes, the butyrate synthesis (Butyrate), lactose (Lac)
degradation, and B12 vitamin synthesis (B12) demonstrated a
significant drop in both PBD and rPBD values for the HC
samples when compared with the CD samples (Tables 4A–C).
This observation suggests that in healthy subjects, the sub-
communities of each of the above phenotype carriers are more
similar to one another than the respective sub-communities
in Crohn’s disease patients, as if following the famous “Anna
Karenina” principle for microbiomes. This principle states that
gut bacterial communities of healthy people are alike, while
disease-associated microbiomes are different in their own way.
Notably, here, this principle is valid not for the entire microbial
communities but rather for the sub-communities of Butyrate-,
Lac-, and B12- phenotype carriers.

Remarkably, the level of PBD-dissimilarity between samples
within the HC and CD groups is not explicitly associated
with the corresponding differences in CPI (Figure 8 and
Supplementary Table 7). For Butyrate, the mean CPI is greater
in the HC group for all datasets. The converse is true for
B12, while for the Lac phenotype, there is no obvious pattern.
Moreover, for other phenotypes with significant CPI differences
between the HC and CD groups in all datasets (such as for
B7, Lipoate, Propionate, Man, Fuc), almost identical levels
of intragroup PBD-dissimilarity are observed (Supplementary
Table 6). These evidences suggest that Phenotype Beta Diversity
acts as another complimentary (to CPI) dataset-wise description
of microbial communities. PBD accounts for the phylogenetic
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data and provides a diversity-based approach for the detection
of metabolic features that are presumably associated with
clinical status.

CONCLUSION

In this study, we further developed our computational approach
for the predictive functional profiling of complex microbial
communities, which is based on the concept of binary metabolic
phenotypes. Phenotype prediction accuracy was assessed using
both (i) the in silico generated mock bacterial communities
representing HGM with defined taxonomic composition and
functional profiles, and (ii) two large metagenomic HGM
datasets. The sequence-based scheme for ASV mapping to
reference genomes demonstrated overall insignificant prediction
uncertainties and outperformed the taxonomy-based mapping
schemes. However, for phenotypes which are largely conserved at
least on the level of species (such as B-vitamin synthesis), even
the taxonomy-based predictions were of reasonable accuracy.
It suggests the applicability of our approach for the metabolic
profiling of samples that lack a 16S sequencing data and that
are described by taxonomic profiles (e.g., originating from
shotgun metagenomic sequencing or qPCR). In addition to the
abundance-based description of functional traits (phenotypes) in
terms of their Community Phenotype Indices, we also considered
two diversity-based metrics, Phenotype Alpha Diversity and
Phenotype Beta Diversity, that describe the diversity of sub-
communities of phenotype carriers. Overall, greater variations
of CPI were observed for phenotypes with a low PAD and vice
versa, phenotypes with large PAD values demonstrated moderate
to low variation of CPI. This makes PAD likely accounting for the
phenotype stability in the face of environmental perturbations.
Being also a useful criterion for the selection of phylogenetically
well-diversified phenotypes for classification tasks (Iablokov
et al., 2021), PAD metric itself represents a complementary (to
CPI) description of microbial communities, and, when used as
feature, is expected to improve the performance of classification
and provide additional insights based on phenotype diversity.
The PBD metric introduced in this study was used in the
comparative analysis of HGM samples from healthy vs. Crohn’s
disease cohorts. Notably, PBD values for a subset of phenotypes
(Butyrate, Lac, B12) were much lower for the healthy subjects as
compared to Crohn’s disease patients. This illustrates a potential
diagnostic utility of PBD metric for a diversity-based detection

of metabolic features associated with a particular syndrome. Both
phenotype diversity metrics (PAD and PBD) can be also adopted
to the sub-communities of phenotype non-carriers such as in the
analysis of auxotrophy for essential nutrients (e.g., B-vitamins).
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