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1  |  INTRODUC TION

Soils hold most of the organic carbon stored in terrestrial ecosys-
tems (Scharlemann et al.,  2014), hence relatively small changes in 
the amount of soil organic carbon (SOC) can have a large influence 
on future climate (Jones & Falloon, 2009). Furthermore, humans can 
directly affect SOC at a global scale. For instance, agricultural lands 
may have lost approximately 8% of their SOC due to cultivation 

over human history (Sanderman et al., 2017). Restoring a portion of 
this lost SOC would benefit soil fertility (Tiessen et al., 1994), and 
has also become a hotly debated strategy for mitigating fossil car-
bon emissions (Baveye et al.,  2018; Paustian et al.,  2016; Rumpel 
et al., 2020). Estimating the potential for active SOC management 
at global to regional scales is of broad interest to a wide range of 
environmental stakeholders (Oldfield et al., 2022). Regional or global 
scale predictions of SOC dynamics should ideally be geographically 
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Abstract
Changes in soil organic carbon (SOC) storage have the potential to affect global 
climate; hence identifying environments with a high capacity to gain or lose SOC is of 
broad interest. Many cross-site studies have found that SOC-poor soils tend to gain or 
retain carbon more readily than SOC-rich soils. While this pattern may partly reflect 
reality, here we argue that it can also be created by a pair of statistical artifacts. First, 
soils that appear SOC-poor purely due to random variation will tend to yield more 
moderate SOC estimates upon resampling and hence will appear to accrue or retain 
more SOC than SOC-rich soils. This phenomenon is an example of regression to the 
mean. Second, normalized metrics of SOC change—such as relative rates and response 
ratios—will by definition show larger changes in SOC at lower initial SOC levels, even 
when the absolute change in SOC does not depend on initial SOC. These two artifacts 
create an exaggerated impression that initial SOC stocks are a major control on SOC 
dynamics. To address this problem, we recommend applying statistical corrections to 
eliminate the effect of regression to the mean, and avoiding normalized metrics when 
testing relationships between SOC change and initial SOC. Careful consideration of 
these issues in future cross-site studies will support clearer scientific inference that 
can better inform environmental management.
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informed, identifying which underlying soil properties set the poten-
tial for SOC sequestration or loss in different environments.

A number of cross-site studies—multi-site experiments and 
meta-analyses—have identified a major factor that appears to gov-
ern accrual and loss of SOC: standing SOC stocks. For instance, 
improved agricultural management seems to enhance SOC most 
strongly in SOC-poor soils, while having a weakly positive—or 
even negative—effect on SOC in SOC-rich soils (Arndt et al., 2022; 
Berhane et al.,  2020; Deng et al.,  2016; Hübner et al.,  2021; 
Iwasaki et al., 2017; Lessmann et al., 2022; Li et al., 2018; Minasny 
et al., 2017). In a different context, a prominent meta-analysis of soil 
warming experiments found that SOC-rich soils exhibited stron-
ger losses than SOC-poor soils (Crowther et al., 2016, but see van 
Gestel et al., 2018), and several regional surveys have indicated that 
SOC-poor soils tend to retain SOC more readily than SOC-rich soils 
(Capriel, 2013; Hanegraaf et al., 2009; Riley & Bakkegard, 2006). In 
aggregate, these studies all point to a general pattern: that changes 
in SOC are often negatively related to initial SOC stocks, with SOC-
poor soils gaining or retaining SOC most readily, and SOC-rich soils 
exhibiting weaker gains or stronger losses. This pattern may emerge 
because the capacity of soils to store SOC saturates due to biophys-
ical factors, particularly the amount of silt and clay-sized minerals 
that protect SOC from microbial decomposers. Consequently, after 
accounting for the quantity and type of minerals, SOC-poor soils 
may on-average be farther from saturation and more likely to accrue 
additional SOC than SOC-rich soils (Cotrufo et al., 2019; Georgiou 
et al., 2022; Stewart et al., 2007).

The tendency of SOC-poor soils to gain or retain SOC more read-
ily than SOC-rich soils appears to be widespread and has some basis 
in the carbon saturation concept. However, we suspect that this pat-
tern is often exaggerated by a pair of statistical artifacts. These are: 
(1) a phenomenon termed regression to the mean; and (2) artifacts 

that result from normalizing changes in carbon by baseline carbon 
levels. Here, we illustrate these artifacts using simulated data and 
suggest more robust approaches to test the relationship between 
initial SOC stocks and changes in SOC going forward.

2  |  REGRESSION TO THE ME AN

Regression to the mean occurs when random variation affects re-
peated observations. When initial observations are collected, ran-
dom variation will tend to produce some extreme low or high values. 
When follow-up observations are collected on these extreme cases, 
the second observations will—more likely than not—produce less 
extreme values, simply because extreme values are by definition 
unlikely. This tendency, where extreme values tend to be followed 
by moderate values that “regress” to the population mean, was clas-
sically described by Francis Galton in relation to the inheritance of 
height in human populations (Galton, 1886). Regression to the mean 
is a general phenomenon that can occur when paired samples are 
collected sequentially or simultaneously, regardless of the distribu-
tion of a random process. For instance, it can be illustrated by si-
multaneously rolling two dice of different colors and subtracting the 
value of one die from the other across repeated trials (Figure 1a). We 
may safely assume that the dice rolls are independent—and yet, re-
gression to the mean will create a negative relationship between the 
individual dice rolls and the difference between the rolls (Figure 1b).

Regression to the mean emerges in SOC surveys because all SOC 
stock estimates are affected by randomness to some degree. This is 
in part because the measurements required for calculating the SOC 
stock—carbon content, bulk density, and rock fraction—all carry sig-
nificant levels of uncertainty (Goidts et al., 2009). In addition to mea-
surement error, soil sampling is inherently random because samples 

F I G U R E  1  Regression to the mean illustrated with 20-sided dice. A red and a blue 20-sided dies were rolled 75 times (panel a). In panel 
(b), the difference (blue–red) was plotted against the red die roll. When the red die roll is high, it is most likely that the blue die roll will be 
lower, and so the difference (blue–red) will tend to be negative. When the red die roll is low, it is most likely that the blue die roll will be 
higher, and so the difference (blue–red) will tend to be positive. Consequently, random chance will generate a negative relationship between 
blue–red and red die rolls. In this example, the red die is analogous to an initial SOC estimate, and the blue die is analogous to a final SOC 
estimate. SOC, soil organic carbon.
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are collected at the centimeter scale (e.g. by coring), while SOC 
stocks can vary substantially (10% or more) at the scale of meters 
(Goidts et al., 2009; Maillard et al., 2017). In combination, measure-
ment and sampling error will inevitably cause the mean SOC stock 
estimate at a given site to vary randomly from one sampling cam-
paign to the next. Increasing the number of replicate soil samples 
taken at a site will reduce this variation, but can never eliminate it 
completely.

Random variation between sampling events can explain appar-
ent negative relationships between the initial SOC stock (SOCinitial) 
and change in SOC (SOCfinal − SOCinitial; ∆SOC). Estimates of SOCinitial 
that are extremely high due to chance will likely coincide with more 
moderate follow-up estimates, and these paired measurements will 
hence tend to generate low or negative values of ∆SOC. Conversely, 
extremely low SOCinitial estimates will likely coincide with more 
moderate follow-up estimates, and will hence yield high values of 
∆SOC. This pattern can develop even when samples are not taken 
sequentially—for instance, regression to the mean will occur in 
cases where SOC estimates from control plots are substituted for 
SOCinitial, or in cases where SOCinitial is approximated using paired 
“across the fence” or chronosequence sampling designs. The process 
of extreme baseline values regressing to the mean during repeated 
sampling will on average produce the appearance that baseline SOC 
stocks—however, they are defined—are a control on SOC change, 
regardless of whether any real relationship exists.

The effect of regression to the mean on the interpretation of SOC 
dynamics has gone largely unnoticed to date. In a notable exception, 
regression to the mean was discussed in 2006 in the context of re-
peated soil surveys across the United Kingdom (Lark et al., 2006). 
These surveys initially indicated that SOC-rich soils were losing car-
bon, while SOC-poor soils were not (Bellamy et al., 2005), but this 
pattern was later partly attributed to regression to the mean (Lark 
et al., 2006; Potts et al., 2009). Several studies have followed the 
suggestion of Lark et al.  (2006) by correcting for regression to the 

mean or at least estimating its effect size (Callesen et al., 2015; Hong 
et al., 2020; Saby et al., 2008; Senthilkumar et al., 2009). However, a 
large number of studies published since 2006 have not performed a 
correction when relating ∆SOC (or ∆SOC/time) to SOCinitial or SOC 
in paired control plots. These studies include analyses focused on ag-
ricultural practices and land-use change (Arndt et al., 2022; Berhane 
et al.,  2020; Deng et al.,  2016; Fujisaki et al.,  2018; Haddaway 
et al., 2017; Hübner et al., 2021; Iwasaki et al., 2017; Sun et al., 2010) 
but also purely observational studies (Capriel,  2013; Hanegraaf 
et al., 2009), and meta-analyses of warming experiments (Crowther 
et al., 2016; van Gestel et al., 2018). The majority of these studies 
found that ∆SOC and SOCinitial are negatively related. This con-
vergence is striking: If the patterns reported in these studies were 
caused by actual biological processes, this would imply that SOC-
rich soils lose carbon under a wide range of conditions—including 
high C input scenarios (Arndt et al.,  2022; Berhane et al.,  2020)—
while SOC-poor soils remain unchanged or gain carbon under an 
equally large range of conditions. However, the extent to which this 
pattern can be attributed to regression to the mean remains unclear. 
The dice example that we presented earlier (Figure 1) is an extreme 
case; in practice, the effect of regression to the mean might be mod-
erated by several of factors, such as the range of initial SOC values 
included in the analysis, or the variance associated with site-level 
SOC estimates.

To explore the effect of regression to the mean in a more realistic 
set of scenarios, we used simulated data to replicate the error struc-
ture of a typical cross-site study (Figure 2a). To achieve this, we first 
created a distribution of “true” SOCinitial values, which represented 
the site level mean SOC stocks across a set of hypothetical sites 
(n = 200). We generated these data by randomly drawing a set of 200 
values from a lognormal distribution with a mean value of 30 tC ha−1, 
which is roughly representative of the distribution of SOCinitial values 
featured in several cross-site studies (Arndt et al.,  2022; Berhane 
et al., 2020; Sun et al., 2010). We varied the width of the distribution 

F I G U R E  2  Simulated SOC data illustrating regression to the mean. (a) Shows a simulated data set in which the true values of SOCinitial 
and SOCfinal were defined to be equal, and random error was added to each variable before relating SOCinitial to ∆SOC (coefficient of 
variation = 0.1). (b) Shows bias attributable to regression to the mean as a function of the coefficient of variation. Red lines show mean 
bias when ordinary least squares (OLS) is used to fit the data. The solid lines show results for a “broad” simulated data set, representing a 
regional- to global-scale analysis with high population variance. The dashed lines show bias for a “narrow” simulated data set, representing a 
local analysis with low population variance. The yellow lines show bias after applying the correction from Blomqvist (1977).
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because regression to the mean has a stronger effect when the pop-
ulation variance (i.e., the variance of SOCinitial across sites, or s2

z
) is 

small relative to the variance associated with individual estimates 
(i.e., the variance of SOCinitial within sites, s2

u
) (Blomqvist, 1977). We 

explored two cases with differing types of variance 
(

s2
z

)

: (1) a “broad” 
cross-site study representing a regional-scale analysis with a larger 
(

s2
z

)

 (standard deviation [SD] of SOCinitial = 10 tC ha−1), and (2) a “nar-
row” cross-site study representing a local survey with a smaller 

(

s2
z

)

 
(SD of SOCinitial = 5 tC ha−1) (Figure 2b, red lines). SOC distributions 
were bounded between 10 and 100 tC ha−1 to avoid sampling ex-
tremely high or negative values. After generating SOCinitial values, we 
defined the “true” value of SOCfinal to equal SOCinitial, assuming zero 
management effect. We then added error to SOCinitial and SOCfinal to 
represent measurement uncertainty plus natural variability in SOC 
across the sampled area. We generated errors from a normal distri-
bution by varying the coefficient of variation (CV) of the sampling 
distribution of the mean SOC value at each site between the values 
of 0 and 0.2. Importantly, this range of values represented the CV 
of the sampling distribution, that is, the ratio of the standard error 
to the mean—hence, in practice, larger sample sizes would generate 
lower CV values. After generating errors, we calculated ∆SOC and 
modelled its dependence on SOCinitial using ordinary least squares 
regression. We calculated bias by taking the mean difference be-
tween the true slope (units of tC tC−1, defined as 0, i.e., no change) 
and the fitted slope across 10,000 iterations of the simulation for 
each combination of parameters.

The simulations showed that the effect of regression to the mean 
increases as the CV increases (Figure 2b). Real-world studies likely 
fall within the middle of the range of CV values that we explored 
in our simulations. For instance: a global synthesis of SOC change 
in perennial cropping systems found within-site population CV val-
ues (SD/mean) of 0.05–0.30 (Ledo et al., 2019); a systematic survey 
of variation in SOC stocks in Belgium reported field scale popula-
tion CV values of 0.11–0.26 (Goidts et al., 2009); and an extensive 
survey of SOC change after afforestation in Northern China re-
ported a mean within-site population CV of 0.19 (Hong et al., 2020). 
Assuming a typical population CV of 0.20 and a typical sample size 
of four replicates per site, the CV of the sampling distribution would 
be 0.10, which is approximately in the middle of the range of values 
that we simulated.

In addition to site-level error, the effect of regression to the 
mean is sensitive to the overall breadth of SOCintial values across 
sites. Specifically, our simulations confirmed that bias increases 
when the distribution of SOC values is narrow, and decreases when 
the distribution is broad (Figure 2b, solid vs. dashed lines). Assuming 
a typical CV for the sampling distribution of 0.10, these results indi-
cate that regression to the mean might generate slopes in the range 
of −0.1 to −0.3 (tC tC−1) when ∆SOC is regressed against SOCinitial. 
This result will ultimately depend both on the actual within-site 
sample errors and overall breadth of SOC stocks included in a cross 
site study.

The simulations demonstrate that regression to the mean has 
the potential to generate negative relationships between ∆SOC and 

SOCinitial under conditions typical of cross-site studies. To apply this 
approach to a real-world example, we downloaded the data from a 
global soil warming synthesis study (van Gestel et al., 2018). We found 
that this data set was somewhat broader than the “broad” example 
explored above (mean SOC stock = 36 tC ha−1, SD = 27 tC ha−1). We 
simulated the effect of regression to the mean given these param-
eters and assumed a within-site CV for the sampling distribution of 
0.10. Given the assumed error level, the simulation yielded a slope of 
−0.04 tC tC−1. This slope was similar to the slope of the ∆SOC versus 
SOCinitial regression line that we calculated for the entire data set 
(−0.05 tC tC−1), and a significant fraction (24%) of the slope obtained 
when we fit a regression to the subset of the data from an earlier 
synthesis (Crowther et al., 2016; −0.17 tC tC−1). This result suggests 
that regression to the mean partly explains the apparent relationship 
between ∆SOC and SOCinitial in this data set (if one exists, see van 
Gestel et al., 2018). Clearly, future meta-analyses should correct for 
regression to the mean when testing whether initial carbon stocks 
mediate changes in SOC.

3  |  CORREC TING FOR REGRESSION TO 
THE ME AN

Disentangling the effect of regression to the mean from the true 
underlying relationship between ∆SOC and SOCinitial is possible 
given the right statistical approach. In fact, several studies have 
found persistent negative relationships between ∆SOC and SOCinitial 
after applying a statistical correction (Hong et al.,  2020; Lark 
et al.,  2006; Senthilkumar et al.,  2009). One correction approach 
relies on calculating the regression line between the change value 
(final − initial) and the initial value, and then correcting the slope 
derived from this regression (�̂′) using variance estimates to generate 
an unbiased estimate (�̂) (Blomqvist, 1977):

where � is the ratio of s2
u
 (the within-site variance of the initial values) to 

s2
z
 (the across-site population variance of the initial values). This equa-

tion shows that if s2
z
≫ s2

u
, (i.e., � approaches 0) as in in a large cross-site 

study, then �̂ approaches �̂′. This corrected slope value can be calcu-
lated manually by estimating s2

z
 and an average value of s2

u
 across the 

data set, dividing these values to obtain �, and obtaining �̂′ from a re-
gression of ∆SOC against SOCinitial [e.g., using a standard regression 
calculator, such as the lm() function in R]. In our simulated example, this 
approach substantially reduced bias in the relationship between ∆SOC 
and SOCinitial (Figure 2b; yellow lines). The usefulness of this correc-
tion is limited in the case of soil survey data because it requires knowl-
edge of the uncertainty at individual sampling sites (Lark et al., 2006). 
However, in the case of cross-site studies, sampling is often replicated 
at each site, and so reported SDs and sample sizes can be used to cal-
culate site-level standard errors, and hence the average value of s2

u
 

across the data set.

(1)�̂ =
�̂� + �

1 − �



    |  1243SLESSAREV et al.

For hypothesis testing, it may also be valuable to estimate the 
variance associated with �̂ (var

(

�̂
)

). This value can be used to con-
struct confidence intervals and determine whether �̂ differs signifi-
cantly from zero. We have provided R code for performing these 
calculations and obtaining confidence intervals (see Supplementary 
Information; Appendix  S1). If SOCinitial is normally distributed, this 
variance can be calculated from �̂, the variance of �̂′ (obtained 
from ordinary least squares regression), the coefficient of vari-
ation of s2

z
 (CV(s2

z
)) and the coefficient of variation of s2

u
 (CV[s2

u
]) 

(Blomqvist, 1977):

To parametrize this equation, CV(s2
z
) must be obtained from the SD 

of SOCinitial (sz) and the overall sample size (total number of sites, n):

In this equation, the term �4 represents the fourth central mo-
ment of SOCinitial. The value of CV(s2

u
) can be obtained by estimating 

the standard error of the error variance across sites and dividing it 
by s2

u
. It is important to note that in practice, SOCinitial may not be 

normally distributed, and s2
u
 may be correlated with SOC initial (as 

was the case in our simulated data sets). Consequently, both �̂ and 
var

(

�̂
)

 will remain somewhat biased, albeit to a relatively small de-
gree (Figure 2b, yellow lines). While these corrections reduce the ar-
tifact caused by regression to the mean to almost zero, clearly there 
is a need to develop statistical approaches that are tailored for error 
structures typical of SOC data sets. In the meanwhile, an imperfect 
correction (Equations 1–3) is preferable to no correction.

Study design can also minimize the effect of regression to the 
mean when relating ∆SOC to SOCinitial. For instance, in the case of 
cross-site studies that involve collecting new samples (e.g., locally rep-
licated experiments), ensuring the close proximity of final and initial 
soil samples will reduce variation between sampling events, limiting 
the effect of regression to the mean. Similarly, increasing the number 
of samples collected within experimental strata will result in smaller 
within-site standard errors, further limiting bias. Granted, these rem-
edies will often not be available in cross-site studies that rely on data 
that have already been collected (i.e., meta-analyses). In these cases, 
increasing the breadth of initial SOC values across sites (i.e., increasing 
the population variance, s2

z
) will dilute the effect of regression to the 

mean (Equation 1; Figure 2b). Importantly, study design will only incre-
mentally reduce the effect of regression to the mean, and so statistical 
corrections are essential.

4  |  NORMALIZ ATION ARTIFAC TS

The problem of regression to the mean affects studies that relate 
differences in SOC stocks to initial SOC, but many studies express 

changes in SOC in terms of ratios rather than differences. Here, 
we briefly discuss three types of analysis relying on ratios that are 
prone to statistical artifacts: (1) analyses that normalize changes 
in SOC by the initial SOC level (e.g., SOCfinal/SOCinitial, or change 
in SOC in % or ‰ year−1; Li et al.,  2018; Minasny et al.,  2017); 
(2) analyses that normalize changes in SOC by the time since a 
treatment was imposed and then regress this average rate against 
time (Cai et al., 2022; Han et al., 2016; Liu et al., 2014; Minasny 
et al., 2017; West & Six, 2007; Xu et al., 2019); and (3) analyses 
that normalize changes in SOC by SOC levels in an experimental 
control (as opposed to the initial SOC level), and then relate this 
value to initial SOC level. (Gross & Glaser, 2021; Han et al., 2016; 
Liu et al.,  2014). We expect that all three of these cases are 
susceptible to artifacts when relating changes in SOC to initial 
SOC levels.

Analyses that normalize changes in SOC by the initial SOC level 
are prone to strong statistical artifacts. These artifacts occur be-
cause relative changes in SOC—whether positive or negative—will 
by definition tend to appear larger in SOC-poor soils, simply due to 
the fact that the denominator is smaller in these soils. For instance, 
consider a case in which a positive relative change SOC change in 
% (100 × ∆SOC/SOCinitial) is regressed against SOCinitial. Quite pre-
dictably, if the change in SOC is on-average positive, this calculation 
will generate a decreasing concave curve (a hyperbola) relating the 
relative rate of change and SOCinitial, even when ∆SOC is entirely 
independent of SOCinitial (Figure 3a,b). This pattern is tautological: a 
fixed increase in carbon will by definition be large relative to a small 
value of SOCinitial, or vice versa, will be small relative to a large value 
of SOCinitial. Consequently, while it may often be true that relative 
changes in SOC appear larger at low SOC levels, this fact is in no way 
diagnostic of the actual relationship between the mass balance of 
SOC and initial SOC levels.

Similarly, analyses that normalize changes in SOC by the time and 
then regress this average rate against time can produce normalization 
artifacts. This type of analysis is common in studies of SOC dynam-
ics in agricultural experiments (Cai et al., 2022; Han et al., 2016; Liu 
et al., 2014; Minasny et al., 2017; West & Six, 2007; Xu et al., 2019), 
which often aim to characterize the time it takes for changes in SOC 
to level off after changes in management. Time-averaged sequestra-
tion or loss rates are calculated by dividing ∆SOC (Figure 3c, y axis) 
by the amount of time that has elapsed since new land management 
practices were adopted. Because time is used as a denominator in 
this calculation, the average rate will by definition tend to be re-
lated to time by a hyperbolic curve that approaches zero, even when 
∆SOC is unrelated to time (Figure 3c,d). Consequently, an apparent 
decline in the average SOC sequestration or loss rate over time is 
not necessarily indicative of gradual SOC equilibration or saturation; 
rather, it may emerge even when ∆SOC and time do not have a clear 
functional relationship.

The third—and most subtle—case that we consider includes 
analyses that divide SOC values in treatment plots (SOCtreat) or 
treatment effects (SOCtreat − SOCcontrol) by values in control plots 
(SOCcontrol), and then relate this ratio or its logarithm to SOCinitial 

(2)

var

(

�̂
)

= var

(

�̂�
)

(

1+ �̂

1+ �̂
�

)2

+

(

�

1−�

)2[

CV
(

s
2

z

)2
+ CV

(

s
2

u

)2
](

1+ �̂
)2

(3)CV
(

s
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z
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=
1

s2
z

×
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n − 1
× s4
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(Han et al., 2016; Li et al., 2018; Liu et al., 2014). Response ratios of 
this type are invaluable for synthesizing data that are reported on 
different measurement scales, and it would seem that they are less 
prone to artifacts, given that SOCinitial is not used in calculating the 
ratio. However, closer consideration indicates that response ratios 
will often be related to SOCinitial when the absolute treatment ef-
fect (SOCtreat – SOCcontrol) is unrelated to SOCinitial. This possibility 
emerges because changes in SOC are typically small relative to SOC 
stocks; consequently, the denominator in the response ratio will tend 
to be highly correlated with SOCinitial. For instance, we can imagine 

a simplified example in which SOCtreat and SOCcontrol always differ 
by a fixed value, and diverge symmetrically from SOCinitial across a 
range of sites (Figure 4a). In this simplified case, SOCtreat − SOCcontrol 
will be unrelated to SOCinitial (Figure 4b), whereas SOCtreat/SOCcontrol 
will tend to be higher at SOC-poor sites and lower at SOC-rich sites 
(Figure 4c). Similar (but potentially inverted) patterns will emerge if 
the pattern of gains and losses across the treatment or control val-
ues are changed, provided that SOCtreat − SOCcontrol is non-zero and 
constant across sites. While this example is highly simplified in that 
it assumes a fixed management effect without error, it shows that a 

F I G U R E  3  Normalization artifacts. 
(a) Shows constant values of ∆SOC as 
a function of SOCinitial. When these 
constant values are normalized by 
SOCinitial (e.g., as a percentage value), the 
relationship between the normalized value 
and SOCinitial will by definition be negative 
(b). Similarly, even if ∆SOC is unrelated 
to time (c), the average rate of change of 
SOC will decline as a function of time (d). 
SOC, soil organic carbon.
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relationship between SOCtreat/SOCcontrol and SOCinitial does not nec-
essarily indicate dependence of SOC sequestration or loss on initial 
SOC levels.

5  |  CORREC TING FOR NORMALIZ ATION 
ARTIFAC TS

The best way to avoid normalization artifacts is to avoid 
normalizing response variables in cases when the independent 
variable of interest is the same as (or strongly correlated with) the 
normalizing factor. Absolute metrics like SOCtreat − SOCcontrol or 
∆SOC are thus likely to be more informative than response ratios 
in specific cases when SOCcontrol or SOCinitial is being used as an 
independent variable. If ∆SOC is used as a response variable in 
this context, applying a correction for regression to the mean 
(Equations 1–3) would be appropriate. In cases where the effect 
of time on SOC accrual is of interest, the best solution is to treat 
∆SOC as a response variable and time as a predictor without first 
dividing ∆SOC by time (Luo et al.,  2010; Poeplau & Don, 2015). 
If visualizing the instantaneous rate of change in SOC over time 
is of interest, the modeled relationship between ∆SOC and time 
can then be differentiated to visualize SOC dynamics without 
generating normalization artifacts.

6  |  CONCLUSIONS

We used simulated data to illustrate that changes in SOC will tend 
to be negatively correlated with initial SOC due to random chance 
alone. Furthermore, simple calculations indicate that normalized 
metrics of SOC change will tend to show larger responses at low 
initial SOC levels, even when the soil carbon balance is insensitive 
to initial SOC. These statistical artifacts exaggerate the appearance 
that initial SOC levels are a major control on SOC change, regardless 
of whether there is a strong underlying relationship.

This is far from a purely academic issue. Carbon sequestration in 
agricultural soils is the object of major policy initiatives, and the basis 
for contentious new carbon crediting schemes (Oldfield et al., 2022). 
Cross-site studies are an important source of information inform-
ing these policy debates; hence statistical artifacts in these stud-
ies might skew regional estimates of SOC sequestration potential, 
adversely affecting environmental management and actual climate 
change mitigation. The scientific community can play a constructive 
role in environmental management debates not only by synthesiz-
ing data but also by adopting existing countermeasures against sta-
tistical bias like those outlined here, and developing new statistical 
approaches that can be applied to cross site studies going forward.
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