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Objectives: Convolutional neural network (CNN) is a deep-learning method for image
classification and recognition based on a multi-layer NN. In this study, CNN was used to
accurately assess cavernous sinus invasion (CSI) in pituitary adenoma (PA).

Methods: A total of 371 patients with PA were enrolled in the retrospective study. The
cohort was divided into the invasive (n = 102) and non-invasive groups (n = 269) based on
surgically confirmed CSI. Images were selected on the T1-enhanced imaging on MR
scans. The cohort underwent a fivefold division of randomized datasets for cross-
validation. Then, a tenfold augmented dataset (horizontal flip and rotation) of the
training set was enrolled in the pre-trained Resnet50 model for transfer learning. The
testing set was imported into the trained model for evaluation. Gradient-weighted class
activation mapping (Grad-CAM) was used to obtain the occlusion map. The diagnostic
values were compared with different dichotomizations of the Knosp grading system
(grades 0-1/2-4, 0-2/3a-4, and 0-3a/3b-4).

Results: Based on Knosp grades, 20 cases of grade 0, 107 cases of grade 1, 82 cases of
grade 2, 104 cases of grade 3a, 22 cases of grade 3b, and 36 cases of grade 4 were
recorded. The CSI rates were 0%, 3.7%, 18.3%, 37.5%, 54.5%, and 88.9%. The predicted
accuracies of the three dichotomies were 60%, 74%, and 81%. The area under the receiver
operating characteristic (AUC-ROC) of Knosp grade for CSI prediction was 0.84; the cutoff
was 2.5 with a Youden value of 0.62. The accuracies of the CNN model ranged from 0.80 to
0.96, with AUC-ROC values ranging from 0.89 to 0.98. The Grad-CAM saliency maps
confirmed that the region of interest of the model was around the sellar region.

Conclusions: We constructed a CNN model with a high proficiency at CSI diagnosis. A
more accurate CSI identification was achieved with the constructed CNN than the Knosp
grading system.

Keywords: pituitary adenoma, deep learning, magnetic resonance imaging, cavernous sinus invasion,
transfer learning
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INTRODUCTION

Pituitary adenomas (PAs) are common intracranial tumors.
Although considered benign, 25%–55% of PAs present invasive
behavior, characterized by the invasion of adjacent structures,
including sphenoid sinus, diaphragm sellae, and cavernous sinus
(CS) (1). Cavernous sinus invasion (CSI) is a significant risk factor
for incomplete resection, and it is responsible for the failure of
endocrinological remission and high rate of tumor recurrence (2–
4). Hence, CSI is an important concern in clinical practice. Gross
total resection is a challenge in PAs with CSI, considering the ease
of surgical injury in the trunk and branches of the internal carotid
artery (ICA). In addition, invasiveness is an essential biological
behavior of aggressive PAs, in which temozolomide is
recommended. The European Endocrine Association guidelines
emphasize the importance of radiological invasiveness for
aggressive PAs (5). Therefore, a radiological assessment for CSI
is essential for the diagnosis and management of PAs.

Considering the close relationship of ICAs, the histological
specimens of the medial wall of CS are not routinely available.
Intraoperative observations are still the gold standard for CSI.
Currently, the application of endoscopes in transsphenoidal
surgery enables the surgeon to inspect the medial wall of CS
directly and clearly and thus make a reliable judgment about CSI.
Pre-operative prediction relies on the Knosp grading system. In
1993, the classification was proposed to quantify the CSI pre-
operatively (6). However, the full scale only underwent minor
modification (dividing grade 3 into 3A and 3B) during the 30
years (7). This grading system could not accurately predict CSI,
especially the intermediate grade (grades 2–3) (8, 9). Even false-
positive CSI was present in cases with Knosp grade 4 (9, 10).
According to the results of a recent meta-analysis, grades 2, 3A,
and 3B presented the CSI rates of 30%, 62%, and 81%,
respectively (11). Hence, the dichotomization of the scale into
invasive and non-invasive PA is inappropriate. Moreover, the
poor percentage agreement among raters for the full scale
is disputed.

Consequently, a method that can accurately predict CSI and
reduce observer bias is highly required. Deep learning is an
essential branch of machine learning (ML) and has improved
image recognition and classification (12–14). Machine
identification and classification can efficiently facilitate imaging
assessment, and it can well avoid observer bias. Thus, this study
aimed to construct a deep learning model for radiological CSI
diagnosis combined with surgical observations.
MATERIALS AND METHODS

Patient Cohort
All data were obtained from patients with PA who underwent
transsphenoidal surgery between 2016 and 2020 at two centers,
namely, the Fuzhou General Hospital and Peking Union Medical
College Hospital. The review boards of the two medical centers
approved this study. The requirement for informed consent was
waived because of the retrospective nature of the study.
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Patients with clear T1-enhanced imaging suitable for analysis, a
surgical record of CSI, and a pathological diagnosis of PA were
included. Cases with other intracranial tumors, a previous history of
surgery or trauma in the sellar region, and artifacts were excluded.

Knosp Grading System and Surgical
Findings
The Knosp grading system was assessed on the coronal magnetic
resonance imaging (MRI) scans. Three lines that connect the
cross-section of the intracavernous and supracavernous ICAs
(e.g., medial tangent, cross-sectional line, and lateral tangent)
distinguish four grades of parasellar adenoma extension. Grade 3
could be subclassified because the tumors extended into the
superior CS compartment (3A) or inferior CS compartment
(3B). Intracavernous ICAs completely encased by a tumor are
defined as grade 4 (7). An experienced neurosurgeon and
radiologist assessed Knosp grades together to reduce personal
observation error, and the maximum grade was recorded.

CSI was diagnosed based on surgical evidence. If the medical
wall of CS is vague, and CS structures are visible, or an invasion
was directly visible, CSI is confirmed. If the medial wall is smooth
and intact after resection, CSI is considered to be absent. A total
of 102 patients were classified into the invasive group, and 269
patients were included in the non-invasive group.

Image Selection
All imaging data were extracted on the coronal T1 contrast-
enhanced scans. Images were evaluated by two senior
neurosurgeons with over 10 years of experience in the PA
diagnosis and management of performed CSI radiological
evaluation. Only one image that was evaluated with potential
CSI was enrolled in a case with surgically confirmed CSI. Images
with the maximum area of the tumor were selected in PAs
without CSI. In the cohort, 371 images were subjected to a
fivefold division of the randomized dataset for cross-validation.

The principal investigator from each center assessed and
collected images separately. Patient information was filtered
and eliminated, and only the acquired images were retained.
Finally, the adjudicator screened these images for proofreading
and adjudicating to reduce observer bias. The acquisition process
is illustrated in Figure 1. The imaging parameters of the two
centers are shown in the Supplementary Material.

Image Pre-Processing
The image pre-processing procedure is summarized as follows:
1) all images were converted into 256 × 256 square images by
using zero padding and image resizing as appropriate, and
2) augmentation procedure was carried out by using the
horizontal flip and rotation (within 90°) in the training and
validation sets. The augmented dataset was obtained for model
training (15).

Transfer Learning Methods
Convolutional neural networks (CNNs) are among the deep
learning models used to recognize and classify images, and they
are characterized by multiple layers of feature maps, including
convolution (a method in computer vision and signal
April 2022 | Volume 12 | Article 835047
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processing) and pooling (replacing redundant information with
representative values) (16). At the end of the network, feature
maps are connected to the fully connected layer as the network’s
output. The parameters of deep learning models need to be
adjusted by backpropagation with respect to the loss function.
These models require vast amounts of data for training and
millions of parameters for fitting. However, obtaining clinical
data is label intensive, especially for rare diseases. Transfer
learning could achieve a satisfying model performance with
limited samples by using a pre-trained model. The pre-trained
models have been trained on a large dataset. The use of a feed-
forward approach to adjust partial weights based on input data
can rapidly and efficiently train models (17).

The model framework was constructed, and fine-tuning was
performed using the pre-trained Resnet50 model. Resnet was
proposed in 2015; it is a CNN with a 50-layer network structure
consisting of a series of residual modules, and it essentially solves the
problem in which multi-layer network models lead to vanishing or
exploding gradients, which is conducive to the convergence of
network models (18). The Resnet50 model was pre-trained on
ImageNet containing 1,000 classes and over 14million images in the
present study. The output of CNN’s fully connected layer was
modified into two nodes for final classification to PAs with or
without CSI (Figure 1, Supplementary Figure 1) . Except for the
fully connected layer, all weights in Resnet50 were fixed during
training. The CNNmodel was trained with a learning rate of 0.0001
based on the training and validation sets. After constructing the
classification model, the testing set was used to evaluate the
diagnostic accuracy. The above models were trained and tested
using fivefold cross-validation.

Statistical Analysis
SPSS (version 25) was used for statistical analysis. Categorical
variables were expressed as numbers (percentages) and analyzed
using the chi-square test. Statistical significance was considered at
p < 0.05.
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Confusion matrices were constructed according to intra-
operative diagnosis and pre-operative prediction. The
contingency tables of the Knosp grading system were
constructed using three dichotomizations (0-1/2-4, 0-2/3a-4,
and 0-3a/3b-4). True positives, true negatives, false positives,
and false negatives were recorded. The diagnostic index included
sensitivity, specificity, a positive likelihood ratio (+LR), a
negative likelihood ratio (-LR), precision, and predictive
accuracy. The summary of diagnostic odds ratio (DOR), F-
score, and area under the receiver operating characteristic
(AUC-ROC) were used as the composite index to evaluate the
diagnostic performance. DOR is the ratio of +LR to -LR. F-score
is the harmonic mean of precision and recall. Gradient-weighted
class activation mapping (Grad-CAM) was used to identify the
features deduced with the convolutional filter application.

All imaging data-processing and model methods were
implemented using Pytorch (version1.8.1, https://pytorch.org) and
operated in JupterNotebook (version 6.4.0, https://jupyter.org).
RESULT

Knosp Grading System and Cavernous
Sinus Invasion
The cohort of 371 patients included 212 males and 159 females
with a mean age of 55.52 ± 11.71 years. A total of 102 (27.5%)
patients were surgically confirmed with CSI, and 269 (72.5%)
patients were surgically confirmed without CSI (Table 1).
According to the Knosp classification, 20 cases (5.4%) of grade
0, 107 cases (28.8%) of grade 1, 82 cases (22.1%) of grade 2, 104
cases (28.0%) of grade 3A, 22 cases (5.9%) of grade 3B, and 36
cases (9.7%) of grade 4 were recorded with the invasion rates of
0%, 3.7%, 18.3%, 37.5%, 54.5%, and 88.9%, respectively. A
significant difference was found in the CSI at different Knosp
grades (p < 0.001). By comparison, the reliability for the middle
grades was weak.
A B

FIGURE 1 | Image selection (A) and model structures (B). BN, batch normalization; BTNK, bottleneck; CON, convolution.
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The details of the diagnostic indicators of the Knosp grading
system are summarized in Table 2 and Figure 2. The grades 0–1
presented the high reliability of the cases without CSI, with a
sensitivity of 0.96 and -LR of 0.09. However, low reliability was
observed for this dichotomization to recognize positive CSI, with
poor specificity (0.46), +LR (1.77), precision (0.4), and predictive
accuracy (60%). The assessment criterion for CSI (grades 3b–4)
in the modified Knosp classification had high reliability among
cases with CSI, with a specificity of 0.97 and +LR of 8.29. By
contrast, this dichotomization had weak reliability in negative
CSI recognition, with poor sensitivity (0.43) and -LR (0.60). The
dichotomization of 0-2/3a-4 had an F-score of 0.63, which is
higher than the two other dichotomizat ions . The
dichotomization of 0-1/2-4 had a higher DOR value of 20.59,
which can be attributed to the low -LR.

Finally, the Knosp grading system had an AUC-ROC value of
0.84, with a maximum Youden index of 0.62 and a cutoff value of
2.5. The overall reliability for the full Knosp grading system was
strong in the low (0–1) and high (4) grades.

Predictive Models for Cavernous Sinus
Invasion Recognition
The predictive capabilities of the CNN model were presented
after fivefold cross-validation, as shown in Table 2. An AUC-
ROC value of 0.98 was recorded for the optimal model
(Figure 3). The model performance was considerably higher
than that of the three dichotomizations of the Knosp grading
system. The confusion matrixes of the results of the five-fold
cross-validation are shown in Supplementary Figure 2.

The sensitivity and specificity of the optimal model were 0.95
and 0.96, respectively. The DOR (16.61–503.50) and F-score
Frontiers in Oncology | www.frontiersin.org 4
(0.69–0.93) of the deep learning model were higher than those of
the dichotomizations of the Knosp grading system (DOR: 13.81–
20.59, F-score: 0.55–0.63). The AUC-ROC value of the model
(0.89–0.98) was higher than that of the Knosp grading system.
Therefore, the CNN model has higher diagnostic reliability than
the Knosp grading system. Grad-CAM saliency maps showed
that CSI prediction was made by the attention to the large area
around the sellar region, unanimous with the contributing areas
in tumor location.
DISCUSSION

Radiological characteristics are essential for the pre-operative
prediction in CSI. Currently, the pre-operative diagnosis of CSI is
mainly based on Knosp grading and modified Knosp grading. In
the studied cohort, Knosp grades 0–1 and 4 have high accuracy
in recognizing positive CSI. The low and high Knosp grades can
effectively facilitate CSI evaluation. However, intermediate
grades (grades 2–3) presented weak reliability, especially grades
2–3A (11). PAs in intermediate grades are common in clinical
practice. In the series, the PAs are of grades 2–3 in 208 (55.4%)
and grades 2–3A in 186 (49.5%). Therefore, the PAs are
inappropriate to be classified into invasive and non-invasive
groups according to the dichotomizations of the Knosp grading
system. The weak diagnostic reliability of the intermediate grades
leads to a gradual decrease in the dependence of neurologists and
radiologists on the radiological diagnosis of CSI based on
Knosp grades.

ML enables the use of existing imaging facilities and common
sequences to capture information per pixel through computer
TABLE 1 | Summary of results of Knosp grades.

Knosp Grading System CSI Total n (%) Invasion rate %

No Yes

Grade 0 20 0 20 (5.4) 0
Grade 1 103 4 107 (28.8) 3.7
Grade 2 67 15 82 (22.1) 18.3
Grade 3a 65 39 104 (28.0) 37.5
Grade 3b 10 12 22 (5.9) 54.5
Grade 4 4 32 36 (9.7) 88.9
Total 269 102 371
April 2022 | Volume 12
TABLE 2 | Dichotomization of Knosp grades and the deep learning model for CSI.

Group TP FP TN FN Sen. Spe. +LR -LR DOR Precision F-score Accuracy

Knosp Grading System Grade 0-1/2-4 98 146 123 4 0.96 0.46 1.77 0.09 20.59 0.40 0.57 0.60
Grade 0-2/3a-4 83 79 190 19 0.81 0.71 2.77 0.26 10.51 0.51 0.63 0.74
Grade 0-3a/3b-4 44 14 255 58 0.43 0.95 8.29 0.60 13.81 0.76 0.55 0.81

Deep Learning Model Testing Fold 1 17 11 43 4 0.61 0.91 7.13 0.43 16.61 0.61 0.69 0.80
Testing Fold 2 19 1 53 2 0.95 0.96 26.13 0.05 503.50 0.95 0.93 0.96
Testing Fold 3 16 7 47 4 0.70 0.92 8.87 0.33 26.86 0.70 0.74 0.85
Testing Fold 4 17 3 51 3 0.85 0.94 15.3 0.16 96.33 0.85 0.85 0.92
Testing Fold 5 16 6 47 4 0.73 0.92 9.27 0.30 31.33 0.73 0.76 0.86
| Arti
DOR, diagnostic odds ratio. FN, false negatives. FP, false positives. -LR, negative likelihood. +LR, positive likelihood ratio. sen., sensitivity; spe., specificity; TN, true negatives.
TP, true positives.
cle 835047
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algorithms and accurately classify diseases, thus reducing the
hardware and time costs required to optimize image quality.
Deep learning models have been applied for the examination of
intracranial tumor in processes such as the diagnosis and
classification of PAs (19–21). The latest study on CSI
identification with the use of the support vector machine
model included 194 PA image data with Knosp grades 2–3 (1).
The AUC-ROC values of the training and testing sets were 0.85
and 0.83, respectively. Results show that the ML model could
determine cases with CSI in the intermediate Knosp grades and
confirm the feasibility of an ML model for PA classification.
However, radiomics rely on manual delineation and
Frontiers in Oncology | www.frontiersin.org 5
segmentation, which involve rater bias. Furthermore, the
cumbersome operation of manual segmentation is not
conducive to clinical promotion.

Our study describes a CNN model based on T1 contrast-
enhanced MRI sequences to achieve high-accuracy CSI
prediction. With the development of algorithms and computer
modules, a transfer learning method that uses a pre-trained
model can reduce the training burden (22, 23). Our model is
based on the Resnet50 model pre-trained on a massive number
of extract images. Deep learning has some applications in PAs
(23). In the present study, the diagnostic values of the CNN
model for CSI are more reliable than the Knosp grading system.
A B

DC

FIGURE 2 | Dichotomizations of grades 2–4 (A), grades 3–4 (B), and grades 3B–4 (C) for CSI prediction and ROC of Knosp grades (D). pos., positive; neg., negative.
A B

FIGURE 3 | The ROC curves (A) and regions of interest (B) of the deep learning model for CSI diagnosis.
April 2022 | Volume 12 | Article 835047
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Moreover, the ML model can effectively avoid interrater and
intrarater bias.

The accurate identification of PA invasiveness can facilitate the
formulation of diagnosis and management and the prognostic
evaluation. CSI is an essential indicator for whether
chemotherapy or post-operative adjuvant chemotherapy should
be considered (24). Therefore, the pre-operative assessment of
tumor invasiveness is related to therapy strategies and
communication with patients before therapy. In addition, PAs
with CSI are not easily carried out for inexperienced endoscopists
to achieve gross total resection. In cases with a pre-operative
diagnosis of CSI, experienced senior neurosurgeons are
recommended to perform tumor resection for a high resection
rate. Hence, the accurate radiological diagnosis of CSI can facilitate
effective communication and therapy strategy adjustment. The
present study focused on a CNN model that can identify CSI
more accurately than the conventional imaging grading system.
This model can also compensate for the low manual reading
efficiency and interrater and intrarater bias.

Strength and Limitations
The CSI was evaluated based on the T1-enhanced MRI sequences.
The image samples are readily available without the additional
particular sequences or expensive advanced equipment. Sample
collection is convenient for multicenter applications and studies.
The ML model could increase radiological diagnostic accuracy and
unify the pre-operative radiological diagnosis to reduce rater bias.
After model classification, neurologists and radiologists can focus on
the misidentified cases to determine more radiographic findings of
PAs with negative and positive CSI. Furthermore, conventional
imaging grading systems have limitations in terms of updating rates,
thus decreasing the reliability with the innovation of medical
technologies. By contrast, the ML model has a high learning
ability, which is characterized by fast updating and adjustment.
With the expansion of the image library, the model can be trained to
improve the diagnostic accuracy and generalization ability.

However, this study has some limitations. For example, although
the diagnostic accuracy of the model is higher than that of the
Knosp grading system, the diagnostic accuracy and generalization
ability should be further improved. In addition, the retrospective
nature of the study leads to some limitations. For example, in the
absence of complete surgical videos and detailed surgical records of
the CSI location and area, image selection relied on a senior
neurosurgeon to improve the reliability of whether CSI exists in
the selected image. Therefore, the observer error still exists. These
factors might influence the predictive performance of the CNN
model in the study. Therefore, prospective studies with a reliable
record of CSI are required for the ML model training. Nevertheless,
our study can demonstrate the feasibility of the CNNmodel for pre-
operative CSI diagnosis.
CONCLUSIONS

CSI can be accurately identified by using the conventional MR
sequences as input into the pre-trained CNN model. We
Frontiers in Oncology | www.frontiersin.org 6
constructed a CNN model that can more reliably determine
the CSI than the Knosp grading system. Moreover, the rater bias
of the Knosp scale could be reduced effectively.
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