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SUMMARY

The contribution of the different waves and sites of developmental hematopoiesis to fetal and adult 

blood production remains unclear. Here, we identify lymphatic vessel endothelial hyaluronan 

receptor-1 (LYVE1) as a marker of yolk sac (YS) endothelium and definitive hematopoietic stem 

and progenitor cells (HSPCs). Endothelium in mid-gestation YS and vitelline vessels, but not the 

dorsal aorta and placenta, were labeled by Lyve1-Cre. Most YSHSPCs and erythro-myeloid 

progenitors were Lyve1-Cre lineage traced, but primitive erythroid cells were not, suggesting that 

they represent distinct lineages. Fetal liver (FL) and adult HSPCs showed 35%–40% Lyve1-Cre 
marking. Analysis of circulation-deficient Ncx1−/− concepti identified the YS as a major source of 

Lyve1-Cre labeled HSPCs. FL proerythroblast marking was extensive at embryonic day (E) 11.5–

13.5, but decreased to hematopoietic stem cell (HSC) levels by E16.5, suggesting that HSCs from 

multiple sources became responsible for erythropoiesis. Lyve1-Cre thus marks the divergence 

between YS primitive and definitive hematopoiesis and provides a tool for targeting YS definitive 

hematopoiesis and FL colonization.
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In Brief

Lee et al. identify LYVE1 as a marker that is highly enriched in yolk sac endothelium and 

definitive HSPCs during mid-gestation. Lyve1-Cre-labeled hematopoietic cells initiate fetal liver 

erythropoiesis and give rise to more than one-third of fetal and adult HSCs. The primitive 

erythroid lineage develops from LYVE1 negative precursors.

INTRODUCTION

Developmental hematopoiesis is composed of temporally orchestrated programs that 

generate both the differentiated blood cells to support embryonic growth and the 

undifferentiated hematopoietic stem cells (HSCs) to sustain post-natal hematopoiesis. This 

challenge is met by segregating hematopoiesis into multiple waves that occur in different 

anatomical locations. The earliest (“primitive”) hematopoietic wave starts in the extra-

embryonic yolk sac (YS) at embryonic day (E) 7.5 and gives rise to erythroid cells that 

fulfill the immediate metabolic needs of the embryo (EM) (Moore and Metcalf, 1970). They 

are characterized by the expression of embryonic β globin (betaH1 in mice) (Haar and 

Ackerman, 1971). At E8.5–9.5, the YS also generates an intermediate (“transient-

definitive”) wave of erythro-myeloid progenitors (EMPs) (McGrath et al., 2015; Mikkola 

and Orkin, 2006; Palis et al., 1999) that produce red cells expressing “definitive” adult type 

β globins (beta-major in mice) (McGrath et al., 2003). However, YS EMPs lack self-renewal 

ability and lymphoid potential, the hallmarks of HSCs. It has been proposed that EMPs 

initiate fetal liver (FL) definitive hematopoiesis and play roles in supporting embryonic 

survival (Chen et al., 2011), inflammatory signaling during HSC emergence (Es-pín-Palazón 

et al., 2014), and adult tissue-resident macrophage development (Gomez Perdiguero et al., 

2015). However, the duration and significance of this intermediate hematopoietic wave are 

not fully understood.
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The final (“definitive”) wave generates self-renewing, multipotent HSCs that sustain lifelong 

production of all blood cell types. Transplantable HSCs are first identified at E10.5–11.5 in 

the intra-embryonic para-aortic splanchnopleural/aorta-gonad-mesonephros region (pSP/

AGM) and the vitelline and umbilical vessels that connect the pSP/AGM to extra-embryonic 

tissues (Medvinsky and Dzierzak, 1996; Müller et al., 1994). Several studies suggest that the 

YS and the placenta (PL) can also generate multipotent hematopoietic stem and progenitor 

cells (HSPCs) de novo (Inlay et al., 2014; Rhodes et al., 2008; Samokhvalov et al., 2007; 

Weissman et al., 1977, 1978; Zeigler et al., 2006). Observations from direct transplantation 

of pre-circulation YS into congenic embryos and inducible Runx1 lineage-tracing studies 

supported the hypothesis that YS contributes to adult hematopoiesis (Samokhvalov et al., 

2007; Weissman et al., 1977, 1978). Furthermore, in vitro experiments with placental tissues 

isolated before or without the onset of blood circulation demonstrated multi-lineage 

hematopoietic potential (Rhodes et al., 2008; Zeigler et al., 2006). However, the degree to 

which each organ contributes to the post-natal HSC pool is unknown.

Lineage tracing and time-lapsed imaging of HSPC emergence in vitro and in vivo evidenced 

that definitive HSPCs arise from specialized endothelial cells, named hemogenic 

endothelium (Bertrand et al., 2010; Boisset et al., 2010; Chen et al., 2009; Eilken et al., 

2009; Lancrin et al., 2009; Zovein et al., 2008). Hemogenic competence in the endothelium 

is established by the stem cell leukemia gene/T cell acute leukemia gene 1 (Scl/Tal1), which 

activates a broad transcriptional network of hematopoietic regulators and prevents 

misspecification of the endothelium to cardiac fate (Van Handel et al., 2012). SCL activates 

RUNX1 and other transcription factors that enable HSPC emergence from hemogenic 

endothelium (Org et al., 2015). SCL is also essential for the generation of primitive erythroid 

cells and controls the terminal maturation of erythroid cells at all stages of ontogeny 

(Mikkola et al., 2003a; Schlaeger et al., 2005; Shivdasani et al., 1995). The identity of the 

precursors for the primitive erythroid cells and the timing when they diverge from the 

definitive hematopoietic lineages are not known. The presumption that primitive and 

definitive hematopoietic waves represent distinct lineages that arise from their own 

precursors (“lineage switch” model) has been challenged by studies that show sequential 

expression of both the primitive and definitive globins (“maturational switch” model) during 

erythroid maturation (Kingsley et al., 2006; McGrath et al., 2011; Palis, 2008;Qiu et al., 

2008).

Although the fundamentals of the developmental hematopoietic hierarchy are gradually 

being revealed, the contributions of each wave and hemogenic tissue to fetal and post-natal 

hematopoiesis remain poorly defined because of the lack of wave- and tissue-specific tools 

that would enable prospective isolation and tracking of the progeny of the temporally and 

spatially overlapping blood precursors. Most surface antigens expressed in the hemogenic 

endothelium or emerging HSPCs–e.g., Flk1, CD31, VE-Cadherin, Tie2, CD41, ckit, and 

Sca1–are developmentally regulated but not specific to any individual wave or anatomical 

site (McKinney-Freeman et al., 2009; Mikkola and Orkin, 2006). The use of inducible 

lineage-tracing studies using regulatory elements of hematopoietic transcription factors (e.g., 

Runx1) is complicated by the fact that the expression of such factors is not restricted to a 

particular hemogenic tissue (Samokhvalov et al., 2007). Thus, there are no robust methods to 

separate or genetically target in vivo individual hematopoietic waves or hemogenic tissues.
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Here, we identify the lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) as a 

marker that is differentially and highly expressed in YS endothelium during HSPC 

development. Lineage tracing by reporter gene expression and conditional deletion of the 

hematopoietic regulators Scl and Runx1 by Lyve1-Cre distinguished YS endothelium, 

EMPs, and definitive HSPCs from the primitive erythroid lineage. Our data suggest that 

Lyve1-Cre-labeled cells primarily originate from the YS and/or vitelline vessels and 

contribute to 35%–40% of fetal and adult HSC compartments. At E11.5, the FL pro-

erythroblast pool is dominated by LYVE1-lineage cells, whereas by late gestation, the level 

of marking is similar to the HSC compartment, implying a temporal switch in the 

composition of precursors responsible for FL erythropoiesis. Lyve1-Cre thus provides a 

unique tool to investigate the contribution of YS hemogenic endothelium to fetal and adult 

hematopoiesis and the factors that regulate the fate of these cells.

RESULTS

LYVE1 Protein Is Expressed in YS Endothelium and Definitive Hematopoietic Cells

To define the precursors and respective contributions of the different waves to fetal and adult 

hematopoiesis, we sought for cell surface markers expressed in hemogenic endothelium that 

are tissue or wave specific. From a list of genes encoding surface proteins highly expressed 

in YS endothelium (Van Handel et al., 2012), Lyve1 emerged as a promising candidate. 

Initially reported as a marker for lymphatic vessels, LYVE1 expression was later 

documented also in mid-gestation YS vasculature, FL sinusoids, intersomitic vessels, and 

the cardinal vein, while being minimal in the dorsal aorta (DA) (Banerji et al., 1999; Gordon 

et al., 2008).

Because LYVE1 expression has not been assessed in the context of developmental 

hematopoiesis, LYVE1 protein expression was surveyed in hemogenic organs by 

immunostaining and flow cytometry (FACS). Immunofluorescence (IF) at E10.5 

demonstrated robust LYVE1 protein expression in YS and vitelline vasculature, whereas no 

signal was observed in the PL, umbilical vessels, and DA (Figure 1A). As reported 

previously, LYVE1 was also expressed in the cardinal vein at E10.5. At E9.5, LYVE1 

protein expression in CD31+ endothelial cells was ubiquitous in the YS, but minimal in the 

EM and PL (Figures 1B and 1C). Scant LYVE1 protein was discernible in PL vasculature 

during HSPC emergence (E11.5) and expansion/maturation (E13.5); however, some LYVE1 

protein could be detected at late gestation (E16.5) when the PL HSC pool has already 

diminished (Gekas et al., 2005) (Figure S1A). At E13.5, LYVE1 expression was also 

abundant in FL sinusoids and the azygous vein – tissues incapable of de novo HSPC 

generation–but not the aorta (Figure S1B).

Analysis of the early concepti revealed LYVE1 expression in Tie2+CD31+ angioblasts 

already by E7.5 (Figure S1C). At E8.5, LYVE1 was present in YS Tie2+CD31+ angioblasts, 

but excluded from Ter119+ primitive erythroid cells (Figure S1C), the embryo, and allantois 

(data not shown). These data identify the YS and the vitelline vessels as the primary sites 

harboring LYVE1-expressing endothelium during HSPC emergence. Moreover, these data 

imply that LYVE1 protein is already expressed in the YS at the time when primitive 
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hematopoiesis begins and the endothelium that gives rise to YS definitive lineages is 

specified.

We next assessed the expression of LYVE1 protein in YS hematopoietic cells. IF and FACS 

analyses showed that Ter119+ primitive erythroid cells were devoid of LYVE1 expression 

(Figures 1D, 1E, and 1I). In contrast, LYVE1 expression was observed in 47.0% ± 19.1% 

SD of E9.25–9.5 YS CD41midcKit+Ter119− HSPC population (Figures 1F, 1G, and 1I), 

which consists predominantly of EMPs (Ferkowicz et al., 2003; Mikkola et al., 2003b). Co-

staining for the EMP marker CD16/32 (McGrath et al., 2015) suggested that most LYVE1+ 

HSPCs in E9.25 YS are EMPs (Figure 1G). In contrast to YS HSPCs and EMPs, the E13.5 

FL LSK (Lin−Sca1+cKit+) CD150+ HSC subset showed minimal LYVE1 expression 

(Figures 1H and 1I).

To assess the origin of LYVE1+ HSPCs, LYVE1 expression was examined in concepti that 

were devoid of blood circulation due to a defective sodium calcium exchanger (Ncx1) 

required for cardiac activity (Koushik et al., 2001). FACS analysis of Ncx1−/− tissues 

showed that LYVE1 expression was robust in CD41midcKit+ HSPCs in the YS, but minimal 

in the PL or EM (Figures 1J and 1K). Comparable results were observed with 

CD16/32+CD41midcKit+ EMPs (Figure S1D). These data suggest that the YS is the primary 

source of LYVE1+-expressing HSPCs, including EMPs, in mid-gestation concepti.

Lyve1-Cre Labels YS Endothelium and Vitelline Vessels

To define the contribution of LYVE1+ candidate hemogenic endothelial cells to fetal and 

adult hematopoiesis, lineage tracing was performed by breeding Lyve1-eGFP-hCre knockin 

mice (Pham et al., 2010) (referred as “Lyve1-Cre” hereafter) with reporter mouse lines. As 

originally reported, endogenous eGFP signal from the Lyve1-Cre line was weak and did not 

interfere with the signal from the reporter GFP. We first used RosamT/mG fluorescent 

reporter mice (Figure 2A), in which all cells of the conceptus initially express tdTomato. 

Upon activation of Cre re-combinase, the floxed membrane-targeted tdTomato cassette is 

excised, allowing the expression of the downstream membrane-targeted EGFP in Cre-

expressing cells and their progeny (Muzumdar et al., 2007). Maternal blood cells in the PL 

could be separated from the cells of the conceptus because they were devoid of any 

fluorescence.

Analysis of Lyve1-Cre;RosamT/mG concepti by fluorescence microscopy demonstrated 

Lyve1-Cre labeling already in E8.5 YS (Figure 2B). By E10.5, marking was apparent in YS 

and vitelline vessels as well as the FL (Figures 2Ci, 2Ciii, and 2Civ), but absent from 

umbilical and placental large vessels (Figure 2Cii). In contrast to the robust labeling of 

CD31+ YS and vitelline vessels, the dorsal aorta showed minimal Lyve1-Cre labeling 

(Figures 2C and 2D).

FACS analysis of hemogenic tissues from Lyve1-Cre; RosamT/mG concepti at E9.5–E11.5 

further documented that VE-Cad+CD31+ endothelial cells were GFP labeled abundantly in 

the YS but minimally in the PL and EM (the latter includes the caudal half at E9.5 and the 

aorta-gonad-mesonephros region at later ages) (Figures 2E and 2F). These data raised the 

hypothesis that Lyve1-Cre labels YS hemogenic endothelium.
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Lyve1-Cre Lineage Traces YS Definitive HSPCs but Bypasses the Primitive Erythroid 
Lineage

We next interrogated the contribution of LYVE1 lineage cells to the different hematopoietic 

compartments. Lyve1-Cre was crossed with a R26-stop-YFP strain, where deletion of the 

transcriptional stop preceding the YFP sequence in the Rosa26 locus leads to marking of all 

progenies with YFP (Figure 3A) (Friedrich and Soriano, 1991).

FACS analysis of E8.5 Lyve1-Cre;YFP YS showed labeling in one-third of angioblasts, 

whereas none of the Ter119+ primitive erythroid cells were marked (Figure 3B). Likewise, 

no labeling was observed in Ter119+ cells in E9.0 Lyve1-Cre;YFP YS, although 90% of 

erythroid cells were labeled when the YFP reporter strain was crossed with Tie2/Tek-Cre 
mouse, in which Cre is activated in hemato-vascular precursors after gastrulation (Figure 

3C) (Kisanuki et al., 2001). 100% labeling was observed with the germ-cell-specific Vasa-
Cre mouse, in which Cre is active during fertilization, enabling Cre recombination in all 

cells of the conceptus (data not shown) (Gallardo et al., 2007). Hence, using two different 

Cre lines, we verified that the absence of YFP signal in Lyve1-Cre;YFP E9.0 primitive 

erythroid cells was not explained by silencing of the Rosa26 locus. Later in development, 

however, Lyve1-Cre tracing of primitive erythroid cells could not be tracked because 

reporter expression from the Rosa26 locus was silenced as the primitive erythroid cells 

matured, irrespective of the Cre line used (data not shown).

Lack of Lyve1-Cre labeling in primitive erythroid cells was confirmed by analyzing E9.5 

Lyve1-Cre;RosamT/mG concepti. Although many CD43+ hematopoietic cells in YS had 

switched from tdTomato to GFP expression, CD71+Ter119+ primitive erythroid cells 

retained tdTomato expression (Figure S2A), documenting absent Lyve1-Cre marking, 

despite intact activity of the Rosa26 locus. These data confirm that the primitive erythroid 

lineage does not originate from LYVE1-expressing hemogenic endothelium.

In contrast to the unlabeled primitive erythroid cells, 69.7% ± 14.8% SD of CD41midcKit+ 

HSPCs in E9.5 Lyve1-Cre;YFP YS was marked by YFP (Figures 3D and 3G). These data 

imply that Lyve1-Cre marks the stage when the precursors generating YS definitive 

hemogenic endothelium and HSPCs have separated from the primitive erythroid lineage.

Lyve1-Cre Labels a Subset of Fetal and Adult HSCs

To investigate whether Lyve1-Cre marking is restricted to EMPs or includes HSCs, we 

assessed the contribution of lineage-traced cells to fetal and adult HSCs. At E13.5, when the 

FL HSC compartment has become established and is rapidly expanding, 38.9% ± 11.6% SD 

of the LSK CD150+ HSCs were YFP marked (Figures 3E and 3G). In the adult, comparable 

fractions of YFP labeling were found among LSK CD150+ HSCs (37.4% ± 11.1% SD) and 

Mac1+Gr1+ myeloid cells (38.2% ± 6.0% SD) in the bone marrow (BM) and CD4+CD8+ T 

lymphocytes (39.4% ± 3.5% SD) in the thymus (Figures 3F and 3G). The uniform degree of 

post-natal Lyve1-Cre marking in all major lineages is in stark contrast to the absent or low 

expression of LYVE1 protein in HSCs or in cells committed to the different hematopoietic 

lineages (Figure S2B). These data establish that more than one-third of long-term 
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repopulating HSCs derive from the Lyve1-Cre lineage, and that they were labeled during 

embryonic development.

YS Is the Primary Source of Lyve1-Cre Lineage-Derived HSPCs at Mid-gestation

Although the YS was the only hemogenic organ that showed extensive Lyve1-Cre labeling 

of endothelium during HSPC emergence (Figure 2F), the PL (Figures 3H and 3I) and EM 

(data not shown) also harbored CD41midcKit+ HSPCs with reporter expression. To examine 

how circulating cells contribute to the HSPC census in each hemogenic organ, YFP 

fluorescence was examined in blood cells of heartbeat-deficient Ncx1−/− concepti. Although 

the YS maintained the richly labeled HSPC pool (79% ± 2.8% SD), the absence of 

circulation in Ncx1−/− mutants depleted YFP+ labeled HSPCs from the PL (Figures 3H and 

3I). The CD16/32+ EMP subset in Ncx1−/− mutants also showed a similar redistribution of 

YFP+ fractions (Figure S2C). These data suggested that the YS is the main source of Lyve1-
Cre-line-age-traced HSPCs and EMPs at mid-gestation. Due to the severely defective 

generation of HSPCs in the Ncx1−/− mutant embryos, labeling of HSPCs generated in this 

organ could not be reliably assessed.

To target the hematopoietic cells derived from the LYVE1 lineage, Lyve1-Cre was used to 

delete the Runt-related transcription factor 1 (Runx1) gene, which is required for the 

generation of EMPs and HSCs. Comparison of Lyve1-Cre;Runx1fl/− concepti to control 

tissues at E9.5 showed near depletion of CD41midckit+ HSPCs in the conditional knockout 

YS. Both the PL and EM showed a partial reduction in their HSPC populations, likely 

reflecting the lack of migration of Lyve1-Cre-depleted HSPCs from the YS. The HSPC 

populations observed in the PL and EM likely represent the HSPCs generated in situ, which 

were unaffected by Lyve1-Cre mediated Runx1 deletion (Figure 3J). A parallel defect in 

myelo-erythroid colony formation was evident in Lyve1-Cre;Runx1fl/− YS (Figure 3K). As 

expected from the known function of Runx1 in hemogenic endothelium (Chen et al., 2009), 

genotyping of YS colonies confirmed that only rare cells that had escaped Lyve1-Cre-

mediated Runx1 deletion formed colonies (Figure 3L). These genetic labeling and gene 

ablation data verified that YS HSPCs are efficiently targeted by Lyve1-Cre, whereas the PL 

and EM harbor native HSPCs that do not originate from the LYVE1 lineage.

Lyve1-Cre Lineage Tracing Identifies a Temporal Switch in the Precursors Responsible for 
FL Erythropoiesis

To investigate the contribution of Lyve1-Cre lineage cells to FL hematopoiesis, we assessed 

the fraction of lineage-traced cells in different hematopoietic populations from mid to late 

gestation. Lyve1-Cre marking in the FL Lin−cKit+CD34+Sca1+ HSC compartment peaked at 

E11.5 (61.3% ± 17.8% SD), when the FL seeding by HSCs begins, and leveled to 36.4% 

± 11.7% SD at E13.5 and 41.4% ± 10.4% SD at E16.5 (Figures 4A and 4D). Of note, 

CD150, the Slam family marker associated with long-term reconstituting HSCs in mice 

(Kiel et al., 2005) was not used in E11.5 FL because it is not reliably expressed in HSCs 

during early FL colonization (McKinney-Freeman et al., 2009). However, incorporating 

CD150 expression to further characterize HSCs at E13.5 did not change their fraction of 

Lyve1-Cre marking (data not shown). These data suggest that LYVE1-lineage cells are 

major contributors to initially colonize the FL HSC compartment, whereas by E13.5, non-
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lineage-traced HSCs co-seed the FL. The uniform degree of HSC marking from E13.5 to 

adult implies that the respective contributions of Lyve1-Cre labeled and non-labeled HSCs to 

the HSC pool remains stable after the FL HSC compartment has been established by E13.5.

In addition to serving as a site for HSC expansion, the FL supports definitive erythropoiesis 

through most of the fetal life. Whereas the primitive erythroid cells differentiate in the YS 

and undergo maturation in circulation, the progenitors for definitive erythroid cells must 

transit through the FL to differentiate and enucleate (McGrath et al., 2011). It has been 

proposed that the precursors that first colonize the FL and initiate definitive erythropoiesis 

derive from the YS, but their origin and the duration of their contribution have not been 

experimentally proven.

FACS analysis of Lyve1-Cre;YFP FL at E11.5 revealed that it contained CD71+Ter119− pro-

erythroblasts (ProE) and ckit+ CD34− hematopoietic progenitor cells (HPCs) with extensive 

YFP marking (76.7% ± 4.7% SD and 79.3% ± 3.0% SD, respectively) (Figures 4A and 4D), 

which was comparable to the level measured in E9.5 YS CD41midcKit+ HSPCs (Figures 3D 

and 3G). This suggests that the YS supplies the precursors that first colonize the FL to 

initiate definitive erythropoiesis. By E13.5, 63.2% ± 8.7% SD of the ProE and 51.0% 

± 5.5% SD of FL HPCs derived from the LYVE1 lineage (Figures 4B and 4D). These 

compartments displayed significantly higher marking than the Lin−Sca1+cKit+CD34+ HSC 

subset (36.4% ± 11.7% SD), implicating that the progenitors responsible for FL-definitive 

erythropoiesis derive from a different source than most HSCs at this stage. By E16.5, the 

ProE- and HSC-enriched populations exhibited similar degrees of Lyve1-Cre marking 

(41.2% ± 8.1% SD and 41.4% ± 10.3% SD, respectively), suggesting that by late gestation, 

HSCs become responsible for FL erythropoiesis (Figures 4C and 4D).

Lyve1-Cre-Mediated Deletion of Scl/Tal1 Targets Early FL Definitive Erythropoiesis but 
Spares the Primitive Erythroid Lineage

To confirm that the Lyve1-Cre strain can be used to manipulate early definitive 

erythropoiesis without affecting primitive erythropoiesis, we created a Lyve1-Cre-mediated 

conditional knockout of the transcription factor SCL. Although SCL is essential for the 

specification of hemogenic endothelium (Porcher et al., 1996; Van Handel et al., 2012), it is 

dispensable for HSC maintenance (Mikkola et al., 2003a) because of redundancy with LYL1 

(Souroullas et al., 2009). Because SCL is required for the terminal differentiation of all 

erythroid cells, inactivation of Scl by Tie2-Cre results in defects in both primitive and 

definitive erythropoiesis (Schlaeger et al., 2005). As previously reported, May-Grunwald 

Giemsa stain of E12.5 peripheral blood from Tie2-Cre;Sclfl/− mutants displayed abnormal 

primitive erythroid cells that were mitotic, binucleated, or had a larger nucleus-to-cytoplasm 

ratio than control littermates, implying defective maturation (Figure 5A). Furthermore, 2-hr 

5-Bromo-2’-deoxyuridine (BrDU) pulse analysis showed a high fraction of mutant erythroid 

cells undergoing DNA replication (Figure 5B). In contrast, when Scl was excised in Lyve1-
Cre-expressing cells, the primitive erythroid cells did not show abnormal morphology or 

proliferation, indicating that they had been spared from Scl inactivation (Figures 5A and 

5B).
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Both Tie2-Cre;Sclfl/− and Lyve1-Cre;Sclfl/− E12.5 fetal livers showed an increase in the 

CD71+Ter119− ProE fraction (Figures 5C and 5E), consistent with delayed maturation 

reported in Scl-deficient definitive erythroid cells (Mikkola et al., 2003a; Schlaeger et al., 

2005). This defect was ameliorated by E13.5 (Figures 5D and 5E), likely due to 

replenishment of the FL ProE pool by a new source of unaffected precursors. These data 

verify that Lyve1-Cre deletes Scl specifically from the transient-definitive, but not primitive 

erythroid cells, enabling studies that address the impact of the different erythroid waves on 

embryonic development.

DISCUSSION

The challenge of tracking the origin and contribution of the different waves of 

developmental hematopoiesis in vivo has limited the understanding of their unique roles in 

the embryo and adult. We report that LYVE1 expression and lineage tracing can be used to 

specifically examine the definitive hematopoiesis originating from the YS and/or vitelline 

vessels without targeting the primitive erythroid lineage or the majority of the HSC 

compartment generated elsewhere in the conceptus.

LYVE1 protein expression and Lyve1-Cre fate mapping distinguished endothelial cells from 

the YS and vitelline vessels from those from other hemogenic organs at the developmental 

window when HSPCs emerge. Although LYVE1+ EMPs and HSPCs could be detected in all 

hemogenic organs in concepti with normal circulation, analysis of heartbeat-deficient 

Ncx1−/− concepti implied that the YS is the main source of LYVE1+ HSPC and EMPs. 

These data propose that some, if not all, HSCs of Lyve1-Cre lineage, which constitute more 

than one-third of the fetal and the adult HSC pools, originate from the YS and/or vitelline 

vessels. However, because LYVE1 protein expression appears in PL vasculature at late 

gestation and a low level of Lyve1-Cre marking is noted in PL and EM endothelium at mid-

gestation, our data do not exclude the possibility that other hemogenic organs may also 

contribute to the LYVE1-lineage-traced HSC pool. The Ncx1−/− model cannot be used to 

assess adult-repo-pulating HSC activity of Lyve1-Cre-marked cells because these embryos 

die by E10.0–before transplantable HSCs can be har-vested–and because heartbeat is critical 

for proper HSC development (North et al., 2009). Hence, the question of whether all or most 

of the 35%−40% Lyve1-Cre-marked fetal and adult HSPCs arise from the YS and/or 

vitelline vessels requires further studies using different experimental systems. Nevertheless, 

because the YS generates predominantly Lyve1-Cre-marked HSPCs, while the PL and the 

EM produce mostly unmarked ones, our data propose that HSCs from multiple anatomical 

sites contribute to adult hematopoiesis. How these different lineages of HSCs contribute to 

the various hematopoietic subsets in the adult can now be approached experimentally in vivo 

using the Lyve1-Cre model. This is important because HSCs are heterogeneous and can 

show cell intrinsic biases to different hematopoietic lineages in an age-dependent manner 

(Beerman et al., 2010; Benz et al., 2012; Pang et al., 2011; Sieburg et al., 2006; Yamamoto 

et al., 2013).

Our data document that the LYVE1+ endothelium in the YS does not give rise to primitive 

erythroid cells. The absence of LYVE1 protein expression and marking in the primitive 

erythroid cell contrasts with the abundant protein expression and marking in YS definitive 
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HSPC. These data imply that these two hematopoietic lineages have separated from a 

common mesodermal precursor before Lyve1-Cre becomes active. The YS thus gives rise to 

at least two lineages of erythroid cells that originate from distinct precursors. The Lyve1-Cre 
lineage trace may thus provide clarity to studies that challenged the “lineage switch model” 

by reporting that the types of globins expressed in primitive or definitive erythroid lineages 

are not mutually exclusive because the cells undergo “maturational globin switch” during 

erythroid differentiation (Kingsley et al., 2006; McGrath et al., 2011; Palis, 2008; Qiu et al., 

2008).

LYVE1 expression and lineage tracing offer a powerful tool to separate primitive erythroid 

lineage from early fetal definitive erythropoiesis. The defects in both primitive and definitive 

erythroid cell differentiation caused by the conditional deletion of Scl by Tie2-Cre 
(Schlaeger et al., 2005) were uncoupled using Lyve1-Cre, which disrupted only the early FL 

definitive erythropoiesis. Selective inactivation of key hematopoietic regulators in Lyve1-Cre 
progenies makes it possible to study the requirement of such factors in early FL 

erythropoiesis without the confounding effects of early embryonic lethality, as in Scl null 

embryos (Porcher et al., 1996; Shivdasani et al., 1995), or primitive erythroid defects, as in 

Tie2-Cre;Sclfl/− concepti.

The Lyve1-Cre model also provides in vivo evidence that the earliest progenitors seeding 

and initiating FL erythropoiesis are products of a distinct lineage that likely emerges from 

the YS. However, the deletion of Scl in LYVE1-lineage cells causes only a temporary effect 

on FL erythropoiesis, possibly because progenitors from other sources that were spared from 

Lyve1-Cre deletion also converge to the FL and replenish the initially attenuated erythroid 

compartment. Future studies will inform whether the erythroid progenitors or HSCs 

belonging to the LYVE1 lineage exhibit different properties than those arising from non-

LYVE1-lineage precursors.

LYVE1 is expressed abundantly in lymphatic vessels and lymph node sinus endothelial 

cells, but its expression has also been described in other cell types, such as liver blood 

sinusoids and tissue macrophages (Mouta Carreira et al., 2001; Pham et al., 2010; 

Schledzewski et al., 2006). In the YS, LYVE1 expression is not related to lymphatic identity 

because the YS does not contain lymphatic vasculature (Banerji et al., 1999; Gordon et al., 

2008). It is unknown how the YS- and vitelline-vessel-restricted expression pattern of 

LYVE1 among hemogenic vessels is established, and whether this is intrinsically regulated 

or if it involves signals from the microenvironment. It will be interesting to determine 

whether LYVE1 expression is also enriched in YS and vitelline vessels and HSPCs during 

human development, and how the expression pattern is preserved during ESC differentiation.

The functional significance of LYVE1 expression in YS endothelial or hematopoietic cells is 

unknown. Although it was suggested to serve in cell adhesion/transmigration and as a 

scavenger for hyaluronan turnover, mouse knockout studies in either 129/C57BL/6 or 

C57BL/6 background were unable to demonstrate a critical function for LYVE1 in these 

processes or in embryonic development in general (Gale et al., 2007). The Cre cassette was 

inserted into the 3′UTR of the endogenous Lyve1 locus, avoiding disruption in the LYVE1 

protein. Hence, our model cannot be used to answer whether loss of LYVE1 causes subtle 
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effects in hematopoiesis that would be observed upon more detailed examination or 

backcrossing to other genetic backgrounds. However, because of the hematopoietic wave- 

and tissue-restricted expression of LYVE1, the Lyve1-Cre model can be exploited to uncover 

new functions for the different blood progenitor lineages and HSC sources during 

developmental and adult hematopoiesis.

EXPERIMENTAL PROCEDURES

Mouse Models

Lyve1-eGFP-hCre knockin mice (C57BL/6) (Pham et al., 2010) were crossed with two 

reporter lines: (1) R26-YFP carrying a floxed transcriptional stop upstream of the YFP in 

Rosa26 locus (Srinivas et al., 2001), and (2) double-fluorescent reporter (RosamT/mG), where 

cells express Tomato constitutively but switch to GFP upon excision (Muzumdar et al., 

2007). Whereas YFP or GFP fluorescence rendered from crossing with the reporter lines 

could clearly highlight the Cre-excised cells, eGFP from Lyve1-eGFP-hCre alone could not 

be discerned by fluorescence microscopy, as previously reported (Pham et al., 2010). FACS 

analysis confirmed the low eGFP signal from Lyve1-eGFP-hCre, which did not overlap with 

the intense YFP or GFP signal. Hence, for simplicity, the Lyve1-eGFP-hCre is referred as 

Lyve1-Cre. To label the entire hemato-vascular compartment, Tie-2/Tek-Cre mice (Kisanuki 

et al., 2001) were bred with the R26-YFP line. To label all cells of the conceptus, the germ-

cell-specific Vasa-Cre was crossed with the R26-YFP line. Lyve1-Cre;YFP mice were 

further crossed with Ncx1+/− mice (Koushik et al., 2001) to generate Ncx1−/− mutants that 

underwent Lyve1-Cre labeling and lacked circulation. Although some contaminating 

embryonic red blood cells (RBCs) could occasionally be found in the embryo proper of 

Ncx1−/− concepti, only embryos with less than 5% RBC contamination were used in the 

analysis. Lyve1-Cre was also bred with Runx1fl/− (Growney et al., 2005; Wang et al., 1996) 

and Sclfl/− (Mikkola et al., 2003a; Shivdasani et al., 1995). Embryos were not separated 

based on sex, and both female and male embryos were studied. Mice were maintained 

according to protocols of Animal Research Committee at the University of California, Los 

Angeles, and the University of California, Irvine, who approved these studies.

See the Supplemental Experimental Procedures for preparation of tissue sections, 

immunostaining, flow cytometry, clonogenic progenitor assay, cytospin, cell proliferation 

assay, and statistical analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• LYVE1 is expressed in yolk sac endothelium and hematopoietic stem and 

progenitor cells

• Lyve1-Cre marks yolk sac definitive hematopoiesis but bypasses primitive 

erythropoiesis

• LYVE1 lineage cells initiate fetal liver definitive erythropoiesis

• A subset of fetal and adult hematopoietic stem cells are derived from the 

LYVE1 lineage
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Figure 1. LYVE1 Protein Is Expressed in Yolk Sac Endothelium and Hematopoietic Stem and 
Progenitor Cells
(A) LYVE1 protein is detected by IF in E10.5 YS, vitelline vessels (VVs), and the cardinal 

vein (CV), but is absent from the PL, umbilical vessels (UVs), and DA. Representative 

images from three independent experiments. Scale bar, 100 μm.

(B) IF staining shows co-localization of LYVE1 in E9.5 YS CD31+ endothelium. 

Representative image from three independent experiments. Scale bar, 100 μm.

(C) FACS analysis of CD31+CD41−Ter119− endothelium in YS, PL, and caudal half of the 

EM of one representative E9.5 conceptus. Corresponding histograms of LYVE1+ endothelial 

cells show robust LYVE1 expression in YS endothelium only. Data from n = 11 from three 

independent experiments are represented as mean ± SD; ***P ≤ 0.001.

(D) LYVE1 protein is not discernible by IF in Ter119+ primitive erythroid cells in E10.5 YS. 

Representative image from two independent experiments is shown. Scale bar, 50 μm.
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(E) Representative FACS plots indicate that Ter119+ primitive erythroid cells (pRBCs) do 

not express LYVE1 in E9.5 YS or E11.0 peripheral blood (PB).

(F) IF staining of E9.5 YS shows co-expression of LYVE1 protein with HSPC marker 

CD41. Representative image from three independent experiments is shown. Scale bar, 50 

μm.

(G) Representative FACS plots show LYVE1 expression in CD41midcKit+Ter119− HSPCs 

and its subset, CD16/32+ EMPs in E9.25 YS.

(H) Representative FACS plots of E13.5 FL document minimal LYVE1 expression in Lin
−Sca1+cKit+ CD150+ HSC compartment.

(I) LYVE1 expression is prominent in mid-gestation YS HSPCs and EMPs. Data from n = 8, 

three independent experiments for YS pRBC; n = 28,10 independent experiments for YS 

HSPC; n = 8, three independent experiments for YS EMP; and n = 6, two independent 

experiments for FL HSC subset are shown as mean ± SD.

(J) Representative FACS plots of hemogenic tissues in Ncx1−/− E9.5 concepti demonstrate 

the enrichment of LYVE1-expressing CD41midcKit+Ter119− HSPCs in the YS.

(K) Significantly higher HSPC fraction in the YS than in the PL or EM expresses LYVE1 

protein in Ncx1−/− concepti. Quantification of n = 23 for control and n = 11 for Ncx1−/− 

from five independent experiments is represented as mean ± SD. p values refer to the 

difference between LYVE1+ fractions; ****P ≤ 0.0001.

See also Figure S1 and Table S1.
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Figure 2. Lyve1-Cre Labels Yolk Sac Endothelium and Vitelline Vessels
(A) Schematic of mouse model for tracing Lyve1-Cre lineage cells using the RosamT/mG 

reporter line.

(B) Brightfield and whole mount fluorescence microscopy images of Lyve1-Cre;mTmG 
E8.5 concepti show the replacement of Tomato (red) by GFP (green) expression in the YS. 

Representative image from n = 8 concepti from two independent experiments. Scale bar, 500 

μm.

(C) Brightfield and whole mount fluorescence microscopy images of YS, EM, and PL at 

E10.5. (i) shows GFP expression in the fetal liver (FL; dashed outline) and the vitelline 

vessels (VV; green arrow). (ii) shows intact Tomato activity in PL and umbilical vessels 

(UV; red arrow) and in the dorsal aorta (DA). GFP+ hematopoietic cells (green arrowheads) 

are found in PL vasculature (ii), heart (H) and limb bud (LB; dashed outline) (iii), and YS 
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(iv). GFP expression is prominent throughout YS vasculature (iv). Representative image of n 

= 18 embryos from three independent experiments. Scale bar, 500 μm.

(D) At E10.5, GFP labeling is widespread in YS and VV CD31+ endothelium, but minimal 

in the DA. Representative image from two independent experiments. Scale bar, 250 μm.

(E) Representative FACS plots of GFP labeling of VE-Cad+CD31+ endothelial cells in E9.5 

YS, PL, and caudal half of the EM.

(F) Bar graphs of endothelial cells show robust Lyve1-Cre lineage tracing in YS at E9.5–

E11.5. EM refers to the caudal half of the embryo at E9.5 and the aorta-gonad-mesonephros 

region at E10.5 and E11.5. Data are from pools of embryos from three (E9.5), seven (E10.5), 

and three (E11.5) independent experiments and are represented as mean ± SD.

See also Table S1.
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Figure 3. Lyve1-Cre Targets Yolk-Sac-Definitive Hematopoiesis
(A) Schematic of mouse model for tracing Lyve1-Cre-marked cells using the R26-stop-YFP 
reporter.

(B) Representative FACS plots of E8.5 conceptus show Lyve1-Cre;YFP labeling in 

Tie2+CD31+ angioblasts, but not in Ter119+ primitive erythroid cells (pRBCs).

(C) Representative FACS plots of E9.0 YS demonstrate labeling of Ter119+ pRBC by Tie2-
Cre, but not by Lyve1-Cre.

(D) Representative FACS plots of E9.5 YS demonstrate labeling of YS CD41midcKit
+Ter119− HSPCs and CD16/32+ EMPs by Lyve1-Cre.

(E and F) Representative FACS plots display similar YFP marking in the Lin−Sca1+cKit
+CD150+ HSC of E13.5 FL (E) and 8-month-old adult BM (F).

(G) Quantification shows a contrast of YFP marking between pRBCs (n = 4, two 

independent experiments) and YS HSPCs (n = 15, 7 independent experiments). Lyve1-Cre 
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marking in E13.5 FL Lin−Sca1+cKit+CD150+ HSCs (n = 15, 4 independent experiments) is 

similar to 8-month-old adult BM HSCs, BM Mac1+Gr1+ myeloid cells (n = 8, two 

independent experiments), and thymus CD4+CD8+ T lymphocytes (n = 7, two experiments). 

No comparison of marking between populations yielded statistical difference. Data are 

represented as mean ± SD.

(H) Representative FACS plots of E9.5 Lyve1-Cre;YFP Ncx1−/− concepti show preservation 

of YFP+ HSPCs in the YS but near depletion in the PL when blood circulation is absent.

(I) Quantification of YFP+ fraction in HSPCs of E9.5 Ncx1−/− concepti with impaired 

circulation. Data from n = 16 for Ncx1CTR and n = 5 for Ncx1−/− from three independent 

experiments are represented as mean ± SD; **p value of the difference in YFP+ fractions at 

≤ 0.01.

(J) Representative FACS plots and quantification of HSPCs in hemogenic organs of E9.5 

LYve1-Cre;Runx1fl/− tissues show depletion of HSPCs from the YS upon conditional 

deletion of Runx1 in LYVE1 lineage cells. The loss in HSPCs is partial in the PL and 

insignificant in the EM. Data from n = 4 for mutants and n = 9 for controls from three 

independent experiments are represented as mean ± SD. p values are shown as ns if > 0.05; 

*P ≤ 0.05; **P ≤ 0.01.

(K) Quantification of myelo-erythroid colonies per embryo equivalent (ee) from each organ. 

Data from n = 4 for mutants and n = 3 for controls from two independent experiments are 

represented as mean ± SD.

(L) Genotyping of Runx1 alleles in representative colonies.

See also Figure S2 and Table S1.
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Figure 4. Progenitors of Lyve1-Cre Lineage Initiate Fetal Liver Hematopoiesis
(A) Representative FACS plots of Lyve1-Cre marking in hematopoietic subpopulations in 

one representative E11.5 FL: Ter119− CD71+ proerythroblasts (ProEs), Ter119−cKit+ HPCs, 

and Ter119−CD34+cKit+Sca1+ HSPCs.

(B) Representative FACS plots of FL subsets at E13.5.

(C) Representative FACS plots of FL subsets at E16.5.

(D) Comparative analysis of E11.5, E13.5, and E16.5 FL illustrates a shift in hematopoietic 

populations derived from the Lyve1-Cre lineage. Data from n = 9, three independent 

experiments for E11.5, n = 18, three independent experiments for E13.5, and n = 13, two 
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independent experiments for E16.5, are represented as mean ± SD. p values are shown as ns 

if > 0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001.

See also Table S1.
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Figure 5. Lyve1-Cre Targets Early Fetal Liver Definitive Hematopoiesis
(A) May-Grunwald Giemsa stain of E12.5 peripheral blood (PB) shows primitive erythroid 

defects in Tie2-Cre;Sclfl/− blood cells (arrows), but not in Lyve1-Cre;Sclfl/− blood. 

Representative images from three independent experiments are shown.

(B) Representative FACS plots of BrDU staining of E12.5 PB illustrate excessive 

proliferative activity in Tie2-Cre;Sclfl/− primitive erythroid cells, but not in Lyve1-Cre;Sclfl/− 

cells. Bar graphs from n = 22 controls and n = 4 knockouts from three independent Tie2-
Cre;Sclfl/− experiments and n = 6 controls and n = 3 knockouts from two independent 

Lyve1-Cre;Sclfl/− experiments are shown as mean ± SD.

(C) E12.5 FLs from both Tie2-Cre;Sclfl/− (upper panel) and Lyve1-Cre;Sclfl/− (lower panel) 

embryos exhibit accumulation of proerythroblasts (ProEs).

Lee et al. Page 25

Cell Rep. Author manuscript; available in PMC 2020 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) At E13.5, the defect in ProE fraction in Lyve1-Cre;Sclfl/− FL has corrected.

(E) Quantification of ProE fractions in E12.5 and E13.5 FL. Data from n = 2 (E12.5 Tie2-
Cre;Sclfl/−) and n = 6 (control), n = 3 (E12.5 Lyve1-Cre;Sclfl/−) and n = 7 (control), and n = 

4 (E13.5 Lyve1-Cre; Sclfl/−) and n = 14 (control) from two independent experiments for 

each genotype and age are shown as mean ± SD.

See also Table S1.
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