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Abstract: Orf virus (OV) is a zoonotic parapoxvirus that causes highly proliferative skin lesions
which resolve with minimal inflammation and scarring. OV encodes two immunomodulators,
vascular endothelial growth factor (VEGF)-E and interleukin-10 (ovIL-10), which individually
modulate skin repair and inflammation. This study examined the effects of the VEGF-E and
ovIL-10 combination on healing processes in a murine wound model. Treatments with viral
proteins, individually and in combination, were compared to a mammalian VEGF-A and IL-10
combination. Wound biopsies were harvested to measure re-epithelialisation and scarring (histology),
inflammation, fibrosis and angiogenesis (immunofluorescence), and gene expression (quantitative
polymerase chain reaction). VEGF-E and ovIL-10 showed additive effects on wound closure and
re-epithelialisation, and suppressed M1 macrophage and myofibroblast infiltration, while allowing
M2 macrophage recruitment. The viral combination also increased endothelial cell density and
pericyte coverage, and improved collagen deposition while reducing the scar area. The mammalian
combination showed equivalent effects on wound closure, re-epithelialisation and fibrosis, but did
not promote blood vessel stabilisation or collagen remodeling. The combination treatments
also differentially altered the expression of transforming growth factor beta isoforms, Tgfβ1 and
Tgfβ3. These findings show that the OV proteins synergistically enhance skin repair, and act in
a complimentary fashion to improve scar quality.
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1. Introduction

Orf virus (OV) is the type species of the Parapoxvirus genus of the family Poxviridae [1]. This virus
infects skin wounds in ungulates and humans, causing lesions that are remarkable for their extensive
epidermal hyperplasia and blood vessel formation [2,3]. Despite inducing such proliferative
lesions, OV infection causes only a transient increase in skin inflammation, with impairment of
innate immune cell trafficking [4–6]. Intriguingly, even the hyper-proliferative lesions reported in
immune-compromised hosts resolve with minimal inflammation and scarring [7]. These features of
OV lesions suggest that the virus manipulates the wound healing response of the skin.

Wound healing is a complex process involving three overlapping but interconnected phases:
inflammation, proliferation and remodeling [8]. Following clot formation, inflammatory and innate
immune cells enter the wound site. These cells produce soluble mediators, such as growth factors and
cytokines, which direct the proliferation and migration of keratinocytes to re-epithelialise the wound
surface, and fibroblasts and blood vessels to form the new granulation tissue. The soluble mediators

J. Clin. Med. 2020, 9, 1085; doi:10.3390/jcm9041085 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-0646-8424
http://www.mdpi.com/2077-0383/9/4/1085?type=check_update&version=1
http://dx.doi.org/10.3390/jcm9041085
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2020, 9, 1085 2 of 22

also stimulate the differentiation of fibroblasts into myofibroblasts, leading to wound contraction.
The fibroblasts direct the remodeling process as well, producing the collagen matrix that forms the
residual scar tissue. The three phases are tightly regulated by the timing of the expression and the
abundance of growth factors and cytokines [9]. Dysregulation of these mediators can cause the healing
process to stall in the inflammatory phase, resulting in wounds that fail to heal, or to remain in
the proliferative phase, which leads to impaired remodeling and the formation of hypertrophic or
keloid scars.

The proliferative nature of OV lesions is due to the expression of a viral growth factor, a homologue
of vascular endothelial growth factor (VEGF) [3,10,11]. VEGF-A, the prototype and most studied
member of the mammalian VEGF family, promotes wound re-vascularisation and re-epithelialisation
through its interactions with the VEGF receptor (VEGFR)-2 [12]. However, through its interactions with
VEGFR-1, VEGF-A also contributes to wound inflammation and oedema [13], detrimentally influencing
scar formation [14]. The viral VEGF homologue, designated VEGF-E, like VEGF-A, interacts with
VEGFR-2 promoting wound re-epithelialisation [15–17] and blood vessel formation in intact and
wounded skin [15,18–21]. VEGF-E, differs from VEGF-A, as it does not bind VEGFR-1, which mediates
the recruitment of inflammatory monocytes [21–23]. VEGF-E also exerts immunomodulatory effects,
inducing the expression of anti-inflammatory cytokine interleukin (IL)-10, and limiting inflammation
and fibrosis in wounded skin [17,24].

The transient inflammatory and immune response to OV infection has been attributed, in part,
to the expression of a viral cytokine, a homologue of IL-10 [1]. In mammals, IL-10 plays a major
role in the limitation and termination of wound inflammation, and its anti-fibrotic effects contribute
to scar-free healing [25]. The viral protein, ovIL-10, has equivalent immunosuppressive activity to
mammalian IL-10, reducing pro-inflammatory cytokine production [26–29] and limiting the recruitment
of monocytes, dendritic cells and mast cells to inflamed skin [30]. When applied to wounded skin,
the ovIL-10 protein dampened macrophage infiltration and fibrosis, reducing scar tissue formation to
an equivalent extent to the mammalian IL-10 [29].

Given the successful resolution of OV lesions following the concurrent expression of VEGF-E
and ovIL-10, we hypothesise that, in the absence of OV infection, this combination of proteins may
improve skin repair to a greater extent than the individual proteins. This study therefore examined the
combined effects of VEGF-E and ovIL-10 on healing and scarring processes in a murine full-thickness
cutaneous wound model. These effects were also compared to those of the equivalent combination of
murine proteins, VEGF-A and IL-10. The dosing schedule chosen mimicked the expected timing of
IL-10 and VEGF-E expression during viral infection, while the amount of each protein administered
was chosen based on their reported effects in ovine and murine skin [11,16,29,30]. A subcutaneous
route of administration was also chosen, as its efficacy had been demonstrated with the individual
proteins [16,17,29]. The findings from this study suggest that the combination of VEGF-E and ovIL-10
exerts synergistic and complimentary effects on wound healing responses. While both the mammalian
and viral combination increased skin repair, the viral combination of VEGF-E and ovIL-10 showed the
greatest reduction in scar formation.

2. Experimental Section

2.1. Recombinant Proteins

Recombinant FLAG-tagged murine VEGF-A isoform164 and IL-10, and viral VEGF-E and ovIL-10
were expressed in HEK293-EBNA cells, purified and quantitated as previously described [20,27].

2.2. Ethics Statement

Animal procedures were conducted following approval from the Animal Ethics Committee of
the University of Otago (#67/08) dated 11 December 2008. Animals were sourced and housed in the
Hercus-Taieri Resource Unit (Dunedin, New Zealand).
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2.3. Full-Thickness Skin Wound Model

C57BL/6 mice (female, 8 weeks of age) were anaesthetised and shaved, then two full-thickness
excisional wounds were made on the dorsal skin using a sterile 4 mm biopsy punch [17]. Animals were
separated into five groups, control (vehicle only), VEGF-E-treated, ovIL-10-treated, VEGF-E and
ovIL-10-treated and VEGF-A and IL-10-treated. Day 2 post-wounding, each wound was treated with
50 µL subcutaneous (SC) injection of vehicle (phosphate-buffered saline (PBS)) or VEGF-E (1 µg),
ovIL-10 (100 ng), VEGF-E and ovIL-10 (1 µg/100 ng) or VEGF-A and IL-10 (1 µg/100 ng) diluted in
PBS. The initial injection was administered 0.5 cm from the lateral edge, aiming towards the wound.
Repeat treatments administered on days 4, 6 and 8, were applied to the caudal, medial, then cranial
wound edges, respectively. Digital photographs were captured with a ruler aligned next to the wound
while mice were immobilised with inhaled isoflurane (1%–5%). The wound size was quantified using
ImageJ (http://imagej.nih.gov/ij/), with changes expressed as a percentage of the original wound size.
Mice were euthanised on day 3, 6, 9 and 16, wounds surgically excised, then bisected at the centre
of the wound along the medial–lateral axis. The bisected skin was fixed in 0.5% zinc salts solution,
processed into paraffin wax then sectioned (4 µm) or stored in RNAlater RNA Stabilisation solution
(Qiagen, Hilden, Germany).

2.4. Histology

Paraffin-embedded skin sections (4 µm) were stained with Martius scarlet blue then visualised
under bright light, or with picrosirius red visualised under a dark-field with a polarised filter [31].
Images were taken of the section at 10X magnification then converted into panoramas using Photoshop
(Adobe Systems, San Jose, CA, USA).

Using ImageJ, measurements of the wound width, between the cut ends of the panniculus
carnosus, and the proportion covered with neo-epidermis, were taken in images of MSB-stained skin
harvested at day 3 post-wounding. Re-epithelialisation was calculated as a percentage of the wound
width covered by neo-epidermis [16,29]. From images of MSB-stained sections of skin harvested day
16 post-wounding, three epidermal thickness measurements within the cut edge of the panniculus
carnosis were taken using ImageJ, and the average of these measurements calculated [32]. Fibrotic scar
tissue extending to the depth of the panniculus carnosis was outlined and measured.

Collagen density within the scar tissue was examined in images of the picrosirius red-stained
sections from skin harvested at day 16 post-wounding [17]. Images were converted to 8 bit in ImageJ,
scar tissue was outlined, the threshold adjusted automatically to highlight the stained collagen,
then measurements were taken as a percentage of the total scar tissue area. Collagen complexity was
examined in images of picrosirius red-stained sections from skin harvested at day 16 post-wounding
taken at 40× magnification. Fast Fourier transform (FFT) statistical analysis was conducted on the
images using ImageJ. The collagen orientation index was determined by calculating the width/length
ratio of the zero-order maximum in the generated plot of the image [31]. In normal skin, the collagen
bundles form a basket weave-like pattern that results in a circular power spectrum and an orientation
index approaching 1. In mature scar tissue, however, the collagen bundles tend to be parallel in nature,
leading to an elongated power spectrum and a small orientation index.

2.5. Immunohistochemistry

Paraffin-embedded skin sections (4 µm) were incubated with antibodies to F4/80 (AlexaFluor®

488-BM8; #14-4801, eBioscience, San Diego, CA, USA; dilution 1:100, or AlexaFluor® 594-BM8; #123140,
Biolegend, San Diego, CA; dilution 1:100), CD206 (#ab64693, Abcam; dilution 1:200) followed by
incubation with AlexaFluor® 488-conjugated antibody (#A-11008, Invitrogen, Carlsbad, CA, USA; 1:500
dilution), calprotectin (fluorescein isothiocyanate-MAC387, #ab7492, Abcam, Cambridge, England,
dilution 1:200), inducible nitric oxide synthase (iNOS; #ab3523, Abcam; dilution 1:100) with AlexaFluor®

594-conjugated antibody (#A-11037, Invitrogen; dilution 1:500), CD31 (#ab28364, Abcam; dilution

http://imagej.nih.gov/ij/
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1:200) or von Willebrand factor (vWF; #A 0082, DakoCytomation, Glostrup, Denmark; dilution 1:200)
with AlexaFluor® 488-conjugated antibody, alpha smooth muscle actin (αSMA; Cy3-1A4; #C6198,
Sigma-Aldrich, St Louis, MO, USA; dilution 1:400), or vimentin (AlexaFluor® 488-D21H3; #5741,
Cell Signaling Technology, Danvers, MA; dilution 1:100). Nuclei were stained with DAPI (#D3571,
Invitrogen, 75 nM) and slides mounted with SlowFade Gold (Invitrogen). Images were taken of the
stained section at 40×magnification, then converted into panoramas using Photoshop.

Macrophages were quantitated in images taken of F4/80-stained sections from skin harvested
at day 3, 6, and 9 post-wounding. The wound margin and bed to a point 500 µm distal to the
cut edge of the panniculus carnosus was outlined in ImageJ, then green-stained cells were counted
manually [17,29]. The outlined region was measured, and cell number expressed relative to that area.
M1 and M2 macrophages were assessed in images taken of calprotectin and iNOS- and CD206 and
F4/80-stained sections, respectively [33,34], with cells co-stained green and red counted manually,
and cell number was expressed relative to the corresponding area measurement.

Myofibroblasts were quantitated in images taken of vimentin andαSMA-stained sections from skin
harvested at day 6 post-wounding [17,29]. The wound margin and granulation tissue were outlined in
ImageJ, then the number of green and red co-stained cells were counted manually. The corresponding
region was measured, and cell number was expressed relative to that area.

Blood vessels were quantitated in images taken of CD31 and αSMA-stained sections, and vWF
and αSMA-stained sections, from skin harvested at day 6 and 9 post-wounding, respectively [15,17].
The wound margin and granulation tissue were outlined in ImageJ, then the number of green-stained
CD31 or vWF+ve endothelial cells, and blood vessels surrounded by red-stained αSMA+ve pericytes,
were counted manually. The corresponding region was measured, with the cell and blood vessel
numbers expressed relative to that area.

2.6. Quantitative PCR

Four treatment-matched wounds were combined per sample. Total RNA was then extracted
using Trizol (Invitrogen) and Proteinase K (Sigma-Aldrich) digestion then purified using
the RNeasy® Mini Kit (Qiagen) [29]. Total RNA was reverse transcribed using Superscript
III (Invitrogen), oligo(dT)15 and random hexamer primers. Real-time quantitative PCR
was conducted with gene specific primers (glyceraldehyde 3-phosphate dehydrogenase
(Gapdh) 5′ CAAAAGGGTCATCATCTCCG 3′ and 5′ TAAGCAGTTGGTGGTGCAGGA
3′; matrix metalloproteinase (Mmp)2 5′ ACACCTACACCAAGAACTTCCG 3′ and 5′

GGGCCAGTACCAGTGTCAGTATC 3′; Mmp9 5′ CGGACATTGTCATCCAGTTTGG 3′

and 5′ AATGGGCATCTCCCTGAACG 3′; macrophage inflammatory protein (Mip)-2 5′

CATCCAGAGCTTGAGTGTGACG 3′ and 5′ GCTTCAGGGTCAAGGCAAACTT 3′; Il-1β 5′

CTTCCAGGATGAGGACATGAGC 3′ and 5′ AGTGCAGTTGTCTAATGGGAACG 3′; Il-10
5′ CTAGAGCTGCGGACTGCCTTC 3′ and 5′ AGGAGTCGGTTAGCAGTATGTTG 3′; Vegf-a 5′

GCAGGCTGCTGTAACGATGAAG 3′ and 5′ GCTTTGGTGAGGTTTGATCCG 3′; transforming growth
factor (Tgf )β1 5′ GCTTGCAGAGATTAAAATCAAGTG 3′ and 5′ ACCAAGGTAACGCCAGGAATTG
3′ Tgfβ3 5′ ATTCGACATGATCCAGGGAC 3′ and 5′ TCTCCACTGAGGACACATTGA 3′) and
SYBR® Green PCR Master Mix (Invitrogen) using the ABI PRISM 7700 Sequence Detection System
(Applied Biosystems, Foster City, CA, USA). All mRNA levels were quantitated relative to Gapdh and
unwounded skin taken from age and sex-matched mice [16,17,29]. The post-wounding changes in the
TGFβ1 and TGFβ3 mRNA levels at each time point were also calculated as a ratio.

2.7. Statistical Analyses

Values were obtained for each wound group (n = 8), and the mean ± SEM calculated as required.
The normality of each dataset was confirmed using the Shapiro–Wilk normality test. Single or two-factor
ANOVA was then conducted with significant points of difference between means determined using
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Sidak’s test, following correction for multiple comparisons. Values of p ≤ 0.05 were considered
statistically significant.

3. Results

3.1. VEGF-E and ovIL-10 Synergistically Enhance Wound Closure and Re-epithelialisation

The effects of viral VEGF-E (1 µg) and ovIL-10 (100 ng), individually and in combination, on
tissue repair, were examined in a mouse model of cutaneous wound healing, and compared to the
effects of an equivalent combination of murine VEGF-A (1 µg) and IL-10 (100 ng). Photographs taken
during wound healing revealed macroscopic differences in healing kinetics between the treatment
groups (Figure 1a). At the point of the first treatments by SC injection, the wound area was equivalent
across treatment groups (Figure 1b, p ≥ 0.05). However, by day 4, treatment with VEGF-E and ovIL-10
had resulted in a significant reduction in wound size compared with mock-treated wounds (Figure 1b,
p ≤ 0.0001). Wounds treated with the combination of VEGF-E and ovIL-10 were also significantly
smaller in area at day 4 than wounds that received treatment of either VEGF-E (p = 0.05) or ovIL-10
(p = 0.01). To determine if this synergistic effect was specific to the viral proteins, wounds were treated
with the equivalent combination of their murine homologues, VEGF-A and IL-10. The administration
of VEGF-A and IL-10 in combination led to a reduction in wound area at day 4 that was equivalent to
that of the viral protein combination (Figure 1b, p ≥ 0.05). At subsequent time points, many wounds
appeared to have closed, and no measurable differences in area were evident between treatment groups
(Figure 1b).
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As changes in wound closure were observed following a single protein treatment, re-
epithelialisation of the wound was examined histologically at day 3 post-wounding. At this time-
point, the neo-epidermis was observed, projecting down from the wound edge, between the wound 
bed and the fibrin clot (Figure 2a–b). VEGF-E treatment led to a 2-fold increase in re-epithelialisation 
over that of mock-treated wounds (Figure 2b–c, p < 0.0001). Treatment with ovIL-10 also increased 
wound re-epithelialisation by 1.5-fold (Figure 2b–c, p = 0.01) within the same timeframe. Wounds 
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Figure 1. VEGF-E and ovIL-10 synergistically enhance wound closure. (a) Representative photographs
of the healing process of 4 mm cutaneous full-thickness punch wounds following treatment with
saline (mock), VEGF-E, ovIL-10, VEGF-E and ovIL-10, or VEGF-A and IL-10. Timing of treatments is
indicated below, with dosages listed below the treatments. Scale bar = 4 mm. (b) Kinetics of wound
closure in groups of mice following SC injection of the indicated treatment. Data are presented as the
mean ± SEM; n = 8 wounds, and p values ≤ 0.05 are indicated when significant differences between
mock-treated wounds and all other wound groups (*) or VEGF-E and ovIL-10 combination-treated and
VEGF-E and IL-10 individually treated wounds (†) were identified.

As changes in wound closure were observed following a single protein treatment,
re-epithelialisation of the wound was examined histologically at day 3 post-wounding. At this
time-point, the neo-epidermis was observed, projecting down from the wound edge, between
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the wound bed and the fibrin clot (Figure 2a,b). VEGF-E treatment led to a 2-fold increase in
re-epithelialisation over that of mock-treated wounds (Figure 2b,c, p < 0.0001). Treatment with ovIL-10
also increased wound re-epithelialisation by 1.5-fold (Figure 2b,c, p = 0.01) within the same timeframe.
Wounds treated with the combination of VEGF-E and ovIL-10 showed a more substantial 2.5-fold
increase in re-epithelialisation (Figure 2b,c, p < 0.0001) compared to control wounds, the level of which
was significantly greater than individual treatment with VEGF-E (p = 0.004) or ovIL-10 (p < 0.002).
The administration of VEGF-A and IL-10 in combination led to an increase in wound re-epithelialisation
that was equivalent to that of the viral protein combination, 2.5-fold over that of control wounds
(Figure 2b,c, p < 0.0001). Consistent with the observations relating to wound closure, the majority of
wounds in each treatment group were re-epithelialised by day 6 post-wounding (Figure S1).
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Figure 2. VEGF-E and ovIL-10 synergistically enhance wound re-epithelialisation. (a) Representative
image of a day 3 wound section, stained with MSB trichrome. The neo-epidermis–dermis boundary is
highlighted in yellow. Dashed lines indicate wound width, distance between cut edges of the panniculus
carnosus, and coverage by the neo-epidermis. WB = wound bed; FC = fibrin clot. Scale bar = 300 µm.
(b) Representative images of day 3 wound sections, showing the extent of re-epithelialisation 24 h after
SC injection of the indicated treatment. Scale bar = 150 µm. (c) Percentage wound re-epithelialisation
at day 3 post-wounding. Data are presented with each symbol representing an individual wound,
and the line indicating the mean of 8 wounds, p values are indicated.

3.2. VEGF-E and ovIL-10 have Complimentary Effects on the Response of Macrophages to Wounding

The macrophage infiltrate within the wounded skin was examined at day 3, 6 and 9 post-wounding,
after one, two and four protein treatments, respectively. It had previously been shown in this wound
model that the peak macrophage infiltration occurred at day 6 [29].

An accumulation of F4/80+ve macrophages was evident at the margin of vehicle-treated control
wounds at day 6 (Figure 3a,b), which persisted until day 9 post-wounding (Figure 3c). The number
of macrophages in the wound bed and margin was 1.6-fold lower in VEGF-E-treated wounds at day
6 (Figure 3b,c, p = 0.004), but was equivalent to that of control skin at day 9. A significant 3-fold
reduction in macrophages was observed at both day 6 and 9 in ovIL-10-treated skin and in wounds
treated with VEGF- E and ovIL-10 (Figure 3b,c, p = 0.001 and p = 0.03, respectively). The macrophage
number was also reduced by 2-fold at day 6 following treatment with VEGF-A and IL-10 (Figure 3b,c,
p = 0.0001), but this reduction was not maintained relative to controls at day 9 post-wounding.
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Figure 3. VEGF-E and ovIL-10 have complimentary effects on the response of macrophages to wounding.
(a) Representative image of a day 6 wound section, stained with antibody to F4/80 (green) and the
nuclear stain DAPI (blue). The wound bed (WB) and wound margin (WM) are outlined with a yellow
line. Scale bar = 300 µm. (b) Representative images of the WM adjacent to the WB in day 6 wound
sections after two SC injections of the indicated treatment. Stained macrophages indicated by green
arrows. Scale bar = 50 µm. (c) Number of F4/80+ve macrophages per mm2 in the WB and WM at
3, 6 and 9 days post-wounding (dpw). Data are presented as the mean ± SEM; n = 8 wounds, with
means significantly different from that of mock-treated wounds indicated by an asterisk (*, p ≤ 0.05).
Representative image of the WM in day 6 wound sections stained with antibodies to (d) calprotectin
(green) and iNOS (red), or (e) CD206 (green) and F4/80 (red), and the nuclear stain DAPI (blue).
Co-stained macrophages indicated by yellow arrows. Scale bar = 50 µm. Number of (f) calprotectin+ve

iNOS+ve M1 macrophages and (g) CD206+ve F4/80+ve M2 macrophages per mm2 in the WB and WM at
day 6 post-wounding. Data are presented with each symbol representing an individual wound, and
the line indicating the mean of 8 wounds, p values are indicated.
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Wound macrophages exhibit different phenotypes as a wound matures, with M1 and M2
macrophages acting in a pro-inflammatory or anti-inflammatory and reparative manner, respectively.
As the viral protein treatments suppressed macrophage numbers to the greatest extent at day 6,
the phenotype of the macrophages present in the wounds was examined at this point. Staining for
calprotectin and iNOS, which are expressed in M1 macrophages, showed double-stained cells at the
margin of mock-treated wounds after 6 days (Figure 3d), but these cells were less abundant than
those staining for F4/80. Staining for CD206, a marker of M2 macrophages, however, was evident on
approximately three-quarters of the F4/80+ve cells found within the wound bed and margin of control
skin at this time-point (Figure 3e).

The number of calprotectin+ve iNOS+ve M1 macrophages in the wound bed and margin was
significantly lower in protein-treated skin at day 6, relative to that observed in mock-treated wounds
(2–3.5-fold, Figure 3d,f, p ≤ 0.03). A 2-fold reduction in CD206+ve F4/80+ve M2 macrophage number
was also observed in ovIL-10-treated skin (Figure 3e,g, p = 0.02), and in wounds treated with VEGF-A
and IL-10 (Figure 3e,g, p = 0.05). By contrast, the M2 macrophage number in skin wounds treated with
VEGF-E, with and without ovIL-10, was equivalent to controls (Figure 3e,g).

3.3. ovIL-10, with and without VEGF-E, Reduces the Response of Myofibroblasts to Wounding

The presence of myofibroblasts within the wounded skin was examined at day 6 post-wounding,
after two protein treatments. This time point was chosen as it had previously been shown in this
wound model to be the peak for myofibroblast infiltration [29].

A substantial amount of overlapping vimentin and αSMA co-staining, consistent with
myofibroblasts, was observed in the wound margin of control wounds (Figure 4a,b). In wounds treated
with ovIL-10, the number of co-stained cells within the wound margin and bed was significantly
reduced relative to control wounds (2-fold, Figure 4b,c, p = 0.0006). A similar reduction in myofibroblast
staining, compared to control wounds, was observed in wounds treated with VEGF-E and ovIL-10
(Figure 4b,c, p = 0.007). However, no change was observed in VEGF-E- or VEGF-A and IL-10-treated
wounds (Figure 4b,c).
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Figure 4. ovIL-10, with and without VEGF-E, reduces the response of myofibroblasts to wounding.
(a) Representative image of a day 6 wound section stained with antibodies to vimentin (green) and
αSMA (blue) and the nuclear stain DAPI (blue). The wound margin (WM) and wound bed (WB)
are outlined with a yellow line. Scale bar = 300µm. (b) Representative images of the WM adjacent
to the WB in day 6 wound sections after two SC injections of the indicated treatment. Co-stained
myofibroblasts are indicated by yellow arrows. Scale bar = 50 µm. (c) The number of vimentin+ve

αSMA+ve myofibroblasts within the WM and WB at day 6 post-wounding. Data are presented with
each symbol representing an individual wound, and the line indicating the mean of 8 wounds. p values
are indicated.
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3.4. VEGF-E and ovIL-10 Synergistically Enhance Wound Re-Vascularisation

Following wound closure, at day 6 and 9 post-wounding, after two and four protein treatments,
re-vascularisation of the wound bed was examined. These days were chosen as the time points had
previously been shown in this wound model to be the peak for wound re-vascularisation [29].

At day 6, the newly formed granulation tissue and adjacent wound margin contained a large
of number of individual CD31+ve endothelial cells, some of which were surrounded by αSMA+ve

cells consistent with pericytes (Figure 5a,b). VEGF-E treatment led to a 2-fold increase in the number
of endothelial cells within the granulation tissue and adjacent wound margin compared to control
wounds at this time point (Figure 5b,c, p = 0.03). Treatment with ovIL-10, however, had little effect
on endothelial cell number (Figure 5b,c). Wounds treated with the combination of VEGF-E and
ovIL-10 also showed an increased endothelial cell number compared to mock-treated wounds (4-fold,
Figure 5b,c, p < 0.0001), with levels significantly greater than that of wounds treated with either VEGF-E
or ovIL-10 (p < 0.0001). Treatment with VEGF-A and IL-10 also increased the number of endothelial
cells (2-fold, Figure 5b,c, p < 0.01), but only to a level equivalent to the VEGF-E treatment.

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 9 of 22 

 

At day 6, the newly formed granulation tissue and adjacent wound margin contained a large of 
number of individual CD31+ve endothelial cells, some of which were surrounded by αSMA+ve cells 
consistent with pericytes (Figure 5a–b). VEGF-E treatment led to a 2-fold increase in the number of 
endothelial cells within the granulation tissue and adjacent wound margin compared to control 
wounds at this time point (Figure 5b–c, p = 0.03). Treatment with ovIL-10, however, had little effect 
on endothelial cell number (Figure 5b–c). Wounds treated with the combination of VEGF-E and ovIL-
10 also showed an increased endothelial cell number compared to mock-treated wounds (4-fold, 
Figure 5b–c, p < 0.0001), with levels significantly greater than that of wounds treated with either 
VEGF-E or ovIL-10 (p < 0.0001). Treatment with VEGF-A and IL-10 also increased the number of 
endothelial cells (2-fold, Figure 5b–c, p < 0.01), but only to a level equivalent to the VEGF-E treatment. 

 
Figure 5. VEGF-E and ovIL-10 synergistically enhance wound re-vascularisation. (a) Representative 
image of a day 6 wound section stained with antibodies to CD31 (green) and αSMA (red) and the 
nuclear stain DAPI (blue). The wound margin (WM) and granulation tissue (GT) are outlined with a 
yellow line. Scale bar = 300 µm. (b) Representative images of the WM adjacent to the GT in day 6 
wound sections after two SC injections of the indicated treatment. CD31+ve endothelial cells and 
αSMA+ve pericytes associated with the vasculature are indicated by green and yellow arrows, 
respectively. Auto-fluorescent red blood cells are indicated by orange arrows. Scale bar = 50 µm. (c) 
Number of CD31+ve endothelial cells per mm2 in the WM and GT at day 6 post-wounding. Data are 
presented with each symbol representing an individual wound, and the line indicating the mean of 8 
wounds, p values are indicated. (d) Representative image of a day 9 wound section stained with 
antibodies to vWF (green) and αSMA (red) and the nuclear stain DAPI (blue). The WM and GT are 
outlined with a yellow line. Scale bar = 300 µm. (b) Representative images of the GT near the upper 
WM in day 9 wound sections after four SC injections of the indicated treatment. vWF+ve endothelial 
cells, αSMA+ve pericytes and red blood cells are indicated by green, yellow and orange arrows, 

Figure 5. Cont.



J. Clin. Med. 2020, 9, 1085 10 of 22

J. Clin. Med. 2019, 8, x FOR PEER REVIEW 9 of 22 

 

At day 6, the newly formed granulation tissue and adjacent wound margin contained a large of 
number of individual CD31+ve endothelial cells, some of which were surrounded by αSMA+ve cells 
consistent with pericytes (Figure 5a–b). VEGF-E treatment led to a 2-fold increase in the number of 
endothelial cells within the granulation tissue and adjacent wound margin compared to control 
wounds at this time point (Figure 5b–c, p = 0.03). Treatment with ovIL-10, however, had little effect 
on endothelial cell number (Figure 5b–c). Wounds treated with the combination of VEGF-E and ovIL-
10 also showed an increased endothelial cell number compared to mock-treated wounds (4-fold, 
Figure 5b–c, p < 0.0001), with levels significantly greater than that of wounds treated with either 
VEGF-E or ovIL-10 (p < 0.0001). Treatment with VEGF-A and IL-10 also increased the number of 
endothelial cells (2-fold, Figure 5b–c, p < 0.01), but only to a level equivalent to the VEGF-E treatment. 

 
Figure 5. VEGF-E and ovIL-10 synergistically enhance wound re-vascularisation. (a) Representative 
image of a day 6 wound section stained with antibodies to CD31 (green) and αSMA (red) and the 
nuclear stain DAPI (blue). The wound margin (WM) and granulation tissue (GT) are outlined with a 
yellow line. Scale bar = 300 µm. (b) Representative images of the WM adjacent to the GT in day 6 
wound sections after two SC injections of the indicated treatment. CD31+ve endothelial cells and 
αSMA+ve pericytes associated with the vasculature are indicated by green and yellow arrows, 
respectively. Auto-fluorescent red blood cells are indicated by orange arrows. Scale bar = 50 µm. (c) 
Number of CD31+ve endothelial cells per mm2 in the WM and GT at day 6 post-wounding. Data are 
presented with each symbol representing an individual wound, and the line indicating the mean of 8 
wounds, p values are indicated. (d) Representative image of a day 9 wound section stained with 
antibodies to vWF (green) and αSMA (red) and the nuclear stain DAPI (blue). The WM and GT are 
outlined with a yellow line. Scale bar = 300 µm. (b) Representative images of the GT near the upper 
WM in day 9 wound sections after four SC injections of the indicated treatment. vWF+ve endothelial 
cells, αSMA+ve pericytes and red blood cells are indicated by green, yellow and orange arrows, 

Figure 5. VEGF-E and ovIL-10 synergistically enhance wound re-vascularisation. (a) Representative
image of a day 6 wound section stained with antibodies to CD31 (green) and αSMA (red) and the nuclear
stain DAPI (blue). The wound margin (WM) and granulation tissue (GT) are outlined with a yellow
line. Scale bar = 300 µm. (b) Representative images of the WM adjacent to the GT in day 6 wound
sections after two SC injections of the indicated treatment. CD31+ve endothelial cells and αSMA+ve

pericytes associated with the vasculature are indicated by green and yellow arrows, respectively.
Auto-fluorescent red blood cells are indicated by orange arrows. Scale bar = 50 µm. (c) Number of
CD31+ve endothelial cells per mm2 in the WM and GT at day 6 post-wounding. Data are presented
with each symbol representing an individual wound, and the line indicating the mean of 8 wounds,
p values are indicated. (d) Representative image of a day 9 wound section stained with antibodies to
vWF (green) and αSMA (red) and the nuclear stain DAPI (blue). The WM and GT are outlined with
a yellow line. Scale bar = 300 µm. (e) Representative images of the GT near the upper WM in day 9
wound sections after four SC injections of the indicated treatment. vWF+ve endothelial cells, αSMA+ve

pericytes and red blood cells are indicated by green, yellow and orange arrows, respectively. Scale bar
= 50µm. (f) Number of αSMA+ve pericyte-covered blood vessels per mm2 in the WM and GT at day 9
post-wounding. Data are presented with each symbol representing an individual wound, and the line
indicating the mean of 8 wounds, p values are indicated.

At day 9, endothelial cell expression of CD31 was diminished relative to day 6, while that
of vWF was increased (not shown). The wound edge and granulation tissue at that time point
contained many vWF+ve endothelial cells, a substantial proportion of which were surrounded
by αSMA+ve cells, consistent with mature blood vessels (Figure 5d,e). Avascular αSMA+ve cells,
consistent with myofibroblasts, were also observed, but were not included in the analyses. VEGF-E
treatment led to a 2-fold increase in mature blood vessels at day 9 post-wounding compared to control
wounds (Figure 5e,f, p = 0.0008), while a modest increase was observed following treatment with
ovIL-10. Treatment with VEGF-A and IL-10 also led to a 2-fold increase in pericyte-coated blood
vessels (Figure 5e,f, p = 0.003). The greatest density of mature blood vessels was observed with the
combination of VEGF-E and ovIL-10 (2.5-fold increase relative to mock-treated wounds, Figure 5e,f,
p < 0.0001), and this was significantly greater than the individual VEGF-E and ovIL-10 treatments
(Figure 5e,f, p = 0.0005 and p < 0.0001, respectively), and the combination treatment of VEGF-A
and IL-10 (Figure 5e,f, p = 0.001). Attempts to confirm the pericyte phenotype of αSMA+ve cells
surrounding the blood vessels, through staining for NG2 chondroitin sulfate proteoglycan and platelet
derived growth factor (PDGF)-β receptor, were unsuccessful, as the zinc-fixed sections used in this
study did not withstand the temperature required for retrieval of these antigens (>95 ◦C).

3.5. VEGF-E and ovIL-10 have Complimentary Effects on Scar Size and Quality

The size and quality of the newly formed scar was examined at day 16 post-wounding, eight days
after the final protein treatment. Day 16 was chosen for these analyses as it had previously been shown
in this wound model that wound contraction and granulation tissue formation have resolved and scar
tissue/collagen deposition has begun by this time point [29].

A narrow scar was evident at day 16, with a thickened neo-epidermis and collagen-rich scar tissue
extending to the depth of the panniculus carnosus (Figure 6a). The neo-epidermis in wounds treated
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with the vehicle was 2-fold thicker than the neo-epidermis in wounds of any of the treatment groups
(Figure 6a,b, p ≤ 0.01). The dermal scar was 35% smaller in wounds treated with VEGF-E, ovIL-10,
and VEGF-E and ovIL-10, compared to mock-treated wounds (Figure 6a,c, p ≤ 0.04). The dermal scar
was not, however, reduced in wounds treated with VEGF-A and IL-10 (Figure 6c) compared to controls,
but was significantly larger than in wounds treated with VEGF-E, ovIL-10, and VEGF-E and ovIL-10
(Figure 6a, c, p ≤ 0.05).
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Figure 6. VEGF-E and ovIL-10 have complimentary effects on scar size and quality. (a) Representative
images of MSB trichrome-stained day 16 wound sections after four SC injections of the indicated
treatment. The sites of epidermal (E1–3) measurement are indicated and scar tissue area (ST) is outlined
in yellow. Scale bar = 300 µm. (b) Thickness of the neo-epidermis in healed skin given the indicated
treatments. (c) Scar tissue area in healed skin following the indicated treatments. Data are presented
with each symbol representing an individual wound, and the line indicating the mean of 8 wounds,
p values are indicated. (d) Representative image of picrosirius red-stained day 16 wound section
visualised under dark-field with a polarised filter. Scale bar = 300 µm. Enlarged images show collagen
density and orientation in ST adjacent to the neo-epidermis after four SC injections of the indicated
treatment. Scale bar = 50 µm. (e) Percentage area of collagen staining in healed skin following the
indicated treatment. (f) Collagen orientation indices (W/L ratio from zeroth-order maximum plot
generated using FFT) in healed skin following the indicated treatments. Data are presented with each
symbol representing an individual wound, and the line indicating the mean of 8 wounds, p values
are indicated.
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The deposition of collagen and formation of a basket-weave matrix was evident in the scar
tissue (Figure 6d). VEGF-E- and VEGF-E and ovIL-10-treated wounds showed a significant 20%–22%
increase in the amount of collagen staining within the scar tissue compared with control wounds
(Figure 6d,e, p = 0.0004 and p = 0.005, respectively). No increase in collagen staining was observed
following treatment with ovIL-10 or VEGF-A and IL-10 (Figure 6d,e). FFT analysis showed that the
orientation of collagen bundles within the scar tissue from VEGF-E and VEGF-E and ovIL-10-treated
wounds had larger aspect ratios than control wounds (1.4-fold, Figure 6f, p = 0.02 and p = 0.003,
respectively), which was consistent with observations that the collagen bundles were forming a random
basket-weave pattern closer to that of normal skin (Figure 6d). By contrast, the FFT aspect ratio of scar
tissue from VEGF-A and IL-10-treated wounds was below that of control wounds, and significantly
lower than wounds treated with the viral protein combination (1.8-fold, Figure 6f, p = 0.0003), due to
the presence of bundles that were more parallel in orientation (Figure 6d).

3.6. VEGF-E and ovIL-10 Alter the Genetic Expression of Key Wound Healing Mediators

Following treatment with the viral and mammalian protein combinations, mRNA levels of key
wound mediators were examined on day 3, 6, 9 and 16 post-wounding using quantitative PCR.

The administration of VEGF-E and ovIL-10 enhanced expression of matrix metalloproteinases
which modulate wound re-epithelialisation, with Mmp2 and Mmp9 mRNA levels significantly increased
on day 3, 6 and 9 (Figure 7a,b; p ≤ 0.05). Compared to wounds treated with the viral proteins,
VEGF-A and IL-10-treated wounds had a reduced level of Mmp2 mRNA at day 3 (Figure 7a, p = 0.04),
while Mmp9 mRNA levels were lower at day 3 and 9 (p = 0.003 and p = 0.01, respectively).

VEGF-E and ovIL-10 treatment initially decreased mRNA levels for the inflammatory mediators,
Il-1β and Mip-2 on day 3 (Figure 7c–d, p < 0.0001), but levels were then greater than controls at day 6
(p < 0.0001). Compared to wounds treated with viral proteins, VEGF-A and IL-10-treated wounds had
higher levels of Il-1β at day 3 and 6 (Figure 7c, p < 0.0001), and Mip-2 at day 3 (Figure 7d, p = 0.003).

The protein combinations also altered expression of endogenous Il-10 and Vegf-a in the wound.
The level of Il-10 mRNA was higher in VEGF-E and ovIL-10 treated wounds than controls at day 3
(Figure 7e, p < 0.0001). Wounds treated with the viral proteins also had higher Il-10 mRNA levels than
those treated with VEGF-A and IL-10 at day 3 (Figure 7e, p < 0.0001). Although Vegf-a mRNA levels
in the wound were reduced at day 3 by treatment with VEGF-E and ovIL-10 (Figure 7f, p < 0.0001),
expression levels then increased and were greater than controls at day 6, 9 and 16 (p ≤ 0.001). In wounds
treated with VEGF-A and IL-10, Vegf-a mRNA levels were higher at day 3 than in viral protein-treated
wounds (Figure 7f, p < 0.0001).

The treatment of wounds with VEGF-E and ovIL-10 also altered the expression of key regulators
of fibrosis, transforming growth factors Tgfβ1 and Tgfβ3. Although Tgfβ1 mRNA levels were reduced
at day 3 by treatment with VEGF-E and ovIL-10 (Figure 7g, p = 0.002), expression levels in the wound
then increased and were greater than controls at day 6, 9 and 16 (p ≤ 0.003). The level of Tgfβ1 mRNA
in wounds treated with the viral proteins was, however, lower than VEGF-A and IL-10-treated wounds
on day 3 and 6 (Figure 7g, p ≤ 0.0001). Tgfβ3 mRNA levels were higher in VEGF-E- and ovIL-10-treated
wounds than VEGF-A- and IL-10-treated wounds at day 6 (Figure 7h, p < 0.0001), and control wounds
at day 9 (Figure 7h, p < 0.0001). The ratio of Tgfβ1 mRNA relative to that of Tgfβ3 mRNA was decreased
at day 3 by treatment with VEGF-E and ovIL-10 relative to both VEGF-A- and IL-10-treated and control
wounds (Figure 7i, p < 0.0001). At day 6, this mRNA ratio was lower in VEGF-E- and ovIL-10-treated
wounds than in VEGF-A- and IL-10-treated wounds (Figure 7i, p < 0.0001), but was equivalent to
control wounds. At the later time points, the Tgfβ1 mRNA to Tgfβ3 mRNA ratio was equivalent in
mock-treated and VEGF-E- and ovIL-10-treated wounds (Figure 7i).
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Figure 7. VEGF-E and ovIL-10 alter the expression of key wound healing mediators. Expression of
(a) Mmp2, (b) Mmp9, (c) Il-1β, (d) Mip-2, (e) Il-10, (f) Vegf-a, (g) Tgfβ1 and (h) Tgfβ3 mRNA in wounds
treated as indicated then harvested at day 0, 3, 6, 9 and 16 was determined by quantitative PCR. Data are
presented as the mean ± SEM relative to GAPDH and unwounded skin; n = 4 samples, each containing
4 wounds. (i) Ratio of TGFβ1 to TGFβ3 mRNA levels in the wound for each treatment group, p values ≤
0.05 are indicated when significant differences between VEGF-E and ovIL-10-treated and mock-treated
wounds (*) or VEGF-E and ovIL-10-treated and VEGF-A and IL-10-treated wounds (†) were identified.

4. Discussion

OV lesions are highly proliferative yet resolve with minimal scarring. These features of OV lesions
have been linked to the expression of two viral proteins, VEGF-E and ovIL-10, which independently
have been shown to manipulate healing and scarring responses in the skin. This study tested the
hypothesis that a combination of these viral proteins would improve healing and limit scarring to
a greater extent than the individual proteins. This was tested in a murine full-thickness skin wound
model, with the effects of VEGF-E and ovIL-10 individually and in combination, and compared to those
of the equivalent combination of murine proteins, VEGF-A and IL-10. The findings supported our
hypothesis, as VEGF-E and ovIL-10 acted synergistically to promote wound closure, re-epithelialisation
and re-vascularisation, and in a complimentary manner to reduce the size and improve the quality of
the residual scar. The mammalian protein combination of VEGF-A and IL-10 also increased skin repair,
but without the same beneficial effects on scar formation.
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Wound re-epithelialisation occurs as keratinocytes at the wound edge proliferate then migrate
across the surface of the wound bed [35]. The cells then differentiate to form the stratified layers
that reconstitute the neo-epidermis. In this study, the individual proteins, VEGF-E and ovIL-10,
enhanced wound re-epithelialisation, and an additive effect was observed with the viral combination.
The increase in re-epithelialisation induced by the viral proteins was also equivalent to that induced by
the mammalian combination. The synergistic effects of the viral proteins on wound re-epithelialisation
was also consistent with changes in wound size observed at the macroscopic level. Both mammalian
and viral VEGF been shown to enhance wound re-epithelialisation in mice [11,16,36,37]. This was
attributed to direct mitotic and chemotactic effects on keratinocytes, and the indirect effects of increased
MMP2 and MMP9 production on keratinocyte immobilisation and growth factor bioavailability [16,38].
As previously reported with the individual VEGF proteins, increased wound expression of Mmp2 and
Mmp9 was observed following treatment with the mammalian and viral VEGF and IL-10 combinations.
Further analyses are warranted to validate whether changes in mRNA translate to changes in protein
abundance, and to ascertain whether those changes occur within the neo-epidermis or elsewhere in
the wound.

The role of IL-10 in wound re-epithelialisation is more controversial, as this process is accelerated in
mice deficient in IL-10 expression and in those treated with recombination IL-10 [29,39,40]. It is thought
that IL-10 may indirectly impact wound re-epithelialisation through modulation of the constitution
and timing of the inflammatory infiltrate [41]. However, the injection of IL-10-stimulated macrophages
into murine wounds had no effect on wound re-epithelialisation [42]. Another explanation may
lie in the ability of IL-10 to induce or suppress the production of keratinocyte-modulating growth
factors. Mammalian and viral IL-10s have both been shown to limit the production of TGFβ1 [29,43],
which causes cell cycle arrest in keratinocytes [44]. Indeed, treatment with TGFβ1 antagonists early
in skin repair has been shown to accelerate re-epithelialisation [45]. The viral and mammalian
protein combinations, however, exerted differential effects of Tgfβ1 mRNA levels. As both treatments
accelerated wound re-epithelialisation, the mechanism by which IL-10 synergistically enhances this
process, over that of VEGF alone, is unlikely to depend on TGFβ1 levels. IL-10 may also exert
proliferative effects on keratinocytes, potentially through Stat3 and Akt activation [46], and the
transcriptional regulation of pro-survival Bcl-2 and Cyclin proteins [47].

Macrophages play important roles in skin repair, by cleaning the wounds of bacteria and apoptotic
cells, and producing growth factors and cytokines that guide granulation tissue formation and matrix
remodeling [48]. Here, the individual and combination VEGF and IL-10 treatments reduced the
initial infiltration of macrophages into the wound, and this effect persisted longer with treatments
containing the viral IL-10. Both mammalian and viral IL-10 have been reported to reduce macrophage
recruitment [29,49–51]. Treatment with VEGF-E also reduced the wound macrophage infiltrate,
reportedly through increased IL-10 expression [17], and this pattern was retained here following
treatment with the viral protein combination. As mammalian IL-10 has been shown to reduce
the cell surface expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1,
integrinβ2 and L-selectin [52,53], it is possible that monocyte recruitment to the wound is impeded
by these treatments through a loss of adhesion to endothelial cells. To our knowledge, the impact
of IL-10 on these cell adhesion molecules has not been studied in the context of a healing wound.
Further analysis of macrophage phenotype revealed that all treatments suppressed the recruitment of
M1 macrophages. This observation was consistent with the reduced expression of the M1 marker Il-1β
observed in wounds treated with the viral VEGF-E and ovIL-10 combination, but not in wounds treated
with the mammalian combination. Macrophage phenotype is thought to be influenced by VEGFs,
with VEGFR-1 being highly expressed in M1 but not M2 macrophages [54–56], and VEGF-A reported to
promote M2 polarisation in vitro [57,58]. However, another study demonstrated that VEGF-A required
co-stimulation with IL-10 to support M2 polarisation in vitro [59]. Here, the greatest M2 macrophage
infiltrate was associated with treatments containing the VEGFR-2-selective VEGF-E, and levels were,
for the most part, suppressed by IL-10. Further analyses are therefore needed to dissect the relative
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contribution of VEGFs, IL-10s and their receptors to the balance between macrophage phenotypes in
the wound environment.

Myofibroblasts play important roles in wound contraction and in the deposition of the
matrix, processes that are modulated by TGFβ isoforms [60,61]. TGFβ1 induces myofibroblast
migration, and their production of αSMA. TGFβ3, by contrast, reduces collagen type I deposition by
restricting myofibroblast differentiation. In this study, the viral combination treatment suppressed the
accumulation of wound myofibroblasts to a similar extent as treatment with ovIL-10 alone, and to a
greater extent than with the mammalian combination treatment. This was consistent with differences
in the Tgfβ1:Tgfβ3 expression ratio between the combination treatments, where a delay in Tgfβ1
expression was observed following the viral protein treatment. Viral ovIL-10 has been shown to share
the anti-fibrotic effects of mammalian IL-10, reducing both Tgfβ1 and αSMA production [29,43,62–65].
Pericytes are a major source of myofibroblasts [66], and the maturation of blood vessels is critical to
the resolution of fibrosis in the lung and liver [67–69]. A stable vasculature may, therefore, counteract
myofibroblast differentiation. We observed increased pericyte coverage of the vasculature in wounds
treated with VEGF-E, and with the viral and mammalian combinations. However, as only a single
marker (αSMA) was used to identify myofibroblasts and pericytes, additional markers are needed
to delineate these cell types within the viral protein-treated wounds throughout the healing process.
This will facilitate further investigations as to the contributions made by these cells to wound fibrosis
and re-vascularisation.

The creation of a blood vessels through angiogenesis is considered essential for successful
wound repair, and this process is critically linked to the expression of VEGFs [12]. Consistent with
previous reports [17,29], an increased endothelial cell density was observed following treatment
with VEGF-E alone, and even more so in combination with ovIL-10. This can be attributed to
the direct effects of VEGF-E on endothelial cell proliferation and migration observed in vitro and
in vivo [11,16,18,20,21,23,24]. Pericyte–endothelial cell associations were also enhanced by treatment
with the viral proteins, individually, and even more so in combination. Although wounds treated with
the mammalian proteins showed increased vascular density, the extent of pericyte coverage was less
than with the viral combination. VEGF-A-treated wounds had poorer pericyte coverage than those
treated with VEGF-E [17], while viral and mammalian IL-10 both appeared to enhance blood vessel
maturation [29]. The effects of the VEGFs and IL-10s on wound bed expression of Vegf-a also mirrored
their effects on blood vessel integrity, with a greater induction by the mammalian proteins relative to
their viral homologues [17,29]. In future studies, it will be important to support these observations by
examining VEGF-A protein levels in the healing wounds, and to investigate the effects of the viral
proteins on VEGFR-2 activation and signaling in endothelial cells. Pericytes are mobilised and recruited
to the newly formed vasculature by factors, such as TGFβ1, PDGF-β and the interferon-γ-inducible
protein 10 (IP-10/CXCL10) [70–72], and directly inhibit endothelial cell proliferation and promote their
differentiation, the result being increased blood vessel stability [73]. Differences in Tgfβ1 and Tgfβ3
levels were noted over time between the combination therapies. PDGF-β expression in murine wounds
was also modulated by VEGF-A and VEGF-E treatment [17]. CXCL10 was also produced in response
to the IL-10 activation of Stat1 in interferon-α-primed macrophages [74]. The altered expression of
these regulators in wounds treated with the VEGF and IL-10 combinations is therefore highly likely to
influence the quality of the new vasculature.

It is generally accepted that excessive inflammation, angiogenesis and fibrosis exasperates scar
tissue formation [14,41,48,60]. Following the treatment of wounds with the viral proteins, individually
and in combination, the residual scar was reduced. The viral combination dampened the formation of
both the epidermal and dermal scar, while only a slight reduction in the dermal scar was observed
with the mammalian combination. This is consistent with the ability of viral and mammalian IL-10s to
reduce scar size [29,49,51], and the increased dermal scar observed in the presence of VEGF-A [16,17,75].
Here, treatment with VEGF-E, individually and in combination with ovIL-10, also enhanced dermal
scar quality, while no benefits were seen with the mammalian combination. This reflects the reported
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ability of VEGF-A and VEGF-E administration to increasing the collagen content and improve basket
weave-like bundle formation [17]. VEGF-A is thought to modulate collagen remodeling through the
secretion of collagenases (MMP1, MMP3, and MMP13), and diminished expression of tissue inhibitors
of MMPs [76,77]. These findings suggest that the viral protein combination has complimentary and
beneficial effects on scarring, while the increase in dermal scarring induced by VEGF-A is not negated
by IL-10. Critically, these scarring outcomes correlated with blood vessel quality in the treated wounds,
as opposed to the level of inflammation or fibrosis.

Previous studies have indicated that the timing and route of administration greatly impacts
the efficacy of wound healing therapies. VEGF-E and ovIL-10 have previously been administered
subcutaneously to open wounds on horses during the initial inflammatory phase of healing [15].
This treatment regime promoted re-epithelialisation and dampened inflammation, but had no lasting
effect on wound closure or blood vessel quality. The treatment of bandaged equine wounds with the
viral proteins, administered after 24h with a topical hydrogel, also promoted re-epithelialisation and
improved blood vessel quality [19]. This route of administration did not, however, impact wound
inflammation, exuberant granulation tissue formation or the rate of closure. This indicated that longer
term treatment was required, and that either route of administration was appropriate for VEGF-E,
while ovIL-10 injection into or below the skin was necessary. In this murine model, subcutaneous
injection of VEGF-E and ovIL-10 into the wound periphery until the point of closure was successful at
improving both healing and scarring outcomes.

To our knowledge, no other combination wound healing therapies involving a growth factor
and anti-inflammatory have been investigated. Others have explored the dual delivery of VEGF-A
with either PDGF-β, fibroblast growth factor-4, insulin growth factor-1, keratinocyte growth factor,
epidermal growth factor, angiopoietin-1 or bone morphogenic protein-2 on the healing of cutaneous
wounds, hind-limb ischemia and bone defects [78–83]. The impact of a fusion between IL-10 and IL-4
has also been explored in the treatment of neuro-inflammatory pain [84]. Our findings demonstrate
that successful skin repair may require a combination therapy that suppresses wound inflammation,
while enhancing the proliferative and remodeling processes. This observation is consistent with
findings from the germ-free adult mouse, in which the rapid and scar-free healing of skin wounds
was associated with increased VEGF-A and IL-10 production [85], but differs from observations in
fetal skin, for which regenerative healing is achieved in the presence of high IL-10 and low VEGF-A
expression [50,75]. Here, VEGF-E and ovIL-10 were shown to act synergistically to promote skin
repair, with complimentary effects on scar quality. This study did not, however, address whether
the additive effects between VEGF-E and ovIL-10 specifically required the viral IL-10. It is possible
that a combination of VEGF-E with mammalian IL-10, or any other anti-inflammatory, would show
similar benefits. While the mammalian combination showed additive effects on healing, the IL-10
failed to counteract the pro-scarring effects of VEGF-A. With only a single-dose combination trialed,
it is conceivable that alterations to the VEGF-A:IL-10 ratio would improve scarring outcomes.

Healing impairments greatly impact the quality of life for an estimated 37 million people globally
suffering from chronic wounds [86], and an estimated 100 million surgical patients who develop
excessive scarring [87]. Chronic wounds present with impaired re-epithelialisation, re-vascularisation
and VEGF-A production, and persistent inflammation and IL-10 production [88–90]. Human trials also
showed that the treatment of chronic wounds with recombinant VEGF-A can accelerate healing [91].
By contrast, hypertrophic and keloid scars are exasperated by chronic inflammation and abnormally
low levels of IL-10, and show excess angiogenesis and VEGF-A production [92–99]. The treatment
of human incisions with low concentrations of recombinant IL-10 improved scar appearance [25].
This evidence suggests that the relative abundance of endogenous VEGF-A and IL-10 in human
wounds critically impacts both healing and scarring outcomes. Although our data were generated in
uncomplicated cutaneous wounds of healthy mice, which, compared to human wounds, heal primarily
by contraction with relatively little scarring, this study shows that the VEGF-E and ovIL-10 combination
can target healing and scarring impairments associated with human skin wound complications.
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5. Conclusions

This study demonstrated that the viral immunomodulators VEGF-E and ovIL-10, when applied
to murine cutaneous wounds, act synergistically to enhance skin repair, and in a complimentary
fashion to improve scar quality. The viral proteins augmented wound closure by promoting wound
re-epithelialisation and re-vascularisation, and through the suppression of M1 macrophage and
myofibroblast infiltration and retention of M2 macrophages, led to improved blood vessel stabilisation
and collagen remodeling. The mammalian combination of VEGF-A and IL-10, while showing
equivalent reparative benefits, differed from the viral combination in its ability to regulate TGFβ
isoform expression, macrophage and pericyte recruitment, collagen remodeling and ultimately scar
tissue area. These findings suggest that the viral proteins exhibit distinct therapeutic advantages over
their mammalian counterparts. But more importantly, they support future research into combination
therapies, be they viral or mammalian, that enable phasic targeting of the wound healing response in
a manner that improves both healing and scarring outcomes for cutaneous wound indications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/4/1085/s1,
Figure S1: Representative images of MSB trichrome-stained wound sections, taken at 3, 6 and 9 days post-wounding,
from mice treated by SC injection with saline (mock), VEGF-E, ovIL-10, VEGF-E and ovIL-10, or VEGF-A and
IL-10. Scale bar = 150 µm.
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