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Identifying protein thermodynamic stability changes upon single-point variants is crucial for studying
mutation-induced alterations in protein biophysics, genomic variants, and mutation-related diseases.
In the last decade, various computational methods have been developed to predict the effects of
single-point variants, but the prediction accuracy is still far from satisfactory for practical applications.
Herein, we review approaches and tools for predicting stability changes upon the single-point variant.
Most of these methods require tertiary protein structure as input to achieve reliable predictions.
However, the availability of protein structures limits the immediate application of these tools. To
improve the performance of a computational prediction from a protein sequence without experimental
structural information, we introduce a new computational framework: MU3DSP. This method assesses
the effects of single-point variants on protein thermodynamic stability based on point mutated protein
3D structure profile. Given a protein sequence with a single variant as input, MU3DSP integrates both
sequence-level features and averaged features of 3D structures obtained from sequence alignment to
PDB to assess the change of thermodynamic stability induced by the substitution. MU3DSP outperforms
existing methods on various benchmarks, making it a reliable tool to assess both somatic and germline
substitution variants and assist in protein design. MU3DSP is available as an open-source tool at
https://github.com/hurraygong/MU3DSP.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein thermodynamic stability changes are associated with
heritable diseases [1–6] and drug resistance [7–11]. Nearly-one-
third of non-synonymous single-nucleotide variants (nsSNVs) are
deleterious to human health [12]. In fact, many disease-causing
variants are single-nucleotide variants (SNV) [12–15]. For example,
sickle cell anemia (OMIM [16], #603903) is caused by a single-
point variant as a result of a Valine (Val) to Glutamic acid (Glu)
substitution in the hemoglobin beta-subunit (HBB) [17]. Therefore,
when designing and developing new compounds, a given protein’s
thermodynamic stability should be considered. However, perform-
ing biological experiments to detect all possible variants on a
specific protein is costly and time-consuming. Computational
methods can, thus, provide a powerful tool to speed up the screen-
ing of variant proteins, running as effective initial steps in such
studies.

In general terms, the protein thermodynamic stability change of
a single-point substitution of a protein represents a change of the
Gibbs free energy difference in protein folding before and after
such a single-residue change [18]. A quantified Gibbs free energy
change between a protein’s unfolding (Gu) and folding (Gf ) states
is usually represented DG ¼ Gu � Gf [19]. When a residue is substi-
tuted in a protein, the original protein would be the ‘‘reference
state” or ‘‘wild-type protein”, whereas the substituted protein is
called ‘‘variant protein” [20,21]. DGW stands for the difference of
Gibbs free energy between the folding and unfolding states for a
wild-type protein whilst DGM represents the same difference for
variant protein (Fig. 1). The change of the Gibbs free energy
between the wild-type and variant proteins is DDGW!M ¼ DGM�
DGW . DDG is used for short to represent DDGW!M .

Protein stability changes driven by mutations have received
great attention in the past two decades (Supplementary Figure S1),

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.12.008&domain=pdf
https://github.com/hurraygong/MU3DSP
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.12.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:xudong@missouri.edu
https://doi.org/10.1016/j.csbj.2022.12.008
http://www.elsevier.com/locate/csbj


Fig. 1. Definition of a two-state model of stability change upon single-point substitution. Consider protein 1A5E (Protein Data Bank (PDB) ID [22]) as an example, where the
amino acid Leucine (Leu) is substituted to Arginine (Arg) at position 121. A. Protein folding to the tertiary structure before single amino acid substitution (DGW ). A. Protein
folding to the tertiary structure after single amino acid substitution (DGM). C. Change of Gibbs free energy (DDGW!M) between A and B states.
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fueled by the significant increase in experimental data. Several
computational methods [20,23–50] for predicting thermodynamic
stability changes of proteins upon variants were proposed or
updated. These computational methods can be categorized into
three main types by input data types: 1) predicting from protein
sequence (sequence-based approaches) [23–30]; 2) predicting
from three-dimensional (3D) structure (structure-based
approaches) [20,29,31–43]; and 3) both protein sequence or 3D
structure can be inputted to predict (sequence- and structure-
based approaches) [18,44–47]. We summarized computational
methods with freely accessible webservers or standalone tools
for predicting protein stability changes in Supplementary Tables
S1-S3.

The majority of current computational methods use 3D protein
structure as input, for example, SDM [31], SDM2 [31], DUET [34],
mCSM [2], INPS3D [37], AUTO-MUTE2.0 [36], MAESTRO [43], PoP-
MuSiC [33,38], Pro-Maya [48], TopologyNet [49], ProTSPoM [50],
DynaMut [39], DynaMut2 [40], DDGun3D [29], DeepDDG [41],
iDeepDDG [41], ThermoNet [20], and PremPS [42] (Supplementary
Table S1). Usually, they use experimental 3D structures to calculate
statistical potentials, secondary structure (SS), accessible surface
area (ASA), and the structural environment of the mutated residue.
A small part of computational predictors, such as MUpro [23],
SAAFEC-SEQ [28], DDGun [29], EASE-MM [25], BoostDDG [30],
PON-tstab [27], INPS [26], iPTREE-STAB [24] (Supplementary
Table S2), usually use amino acid properties, evolutionary informa-
tion from protein families, statistical potentials, and neighbor
amino acid information to predict protein stability changes. They
are used when experimental protein structures are unavailable
and only protein sequences are provided to study the impact of
variants. The rest part of predictors, such as ELASPIC [47], STRUM
[18], iStable2.0 [46], iStable [45] and I-Mutant2.0 [44], predicted
stability changes from protein sequence and protein structure
(Supplementary Table S3).

As shown in previous studies, methods that integrate protein
structural information with their sequence profiles can enhance
the accuracy and robustness of predictions than those employing
sequence characteristics [18,25]. However, 3D structures in the
Protein Data Bank [22] (PDB) are known for only about 2 % of the
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proteins available in the UniProt database [28]. Though the success
of protein structure prediction tools such as AlphaFold2 [51] and
RoseTTAFold [52] are available, in-silico predicted variant protein
structures may not be accurate [53] and are usually time-
consuming to attain.

Based on the consideration of balancing time and accuracy
requirements, we introduce MU3DSP (MUtation using 3D Struc-
ture Profile), a protein stability change prediction tool based on
point mutated 3D structure profiles, which annotate genomic vari-
ants from a list of experimental structures using G2S (Genome to
Structure) [54]. Importantly, MU3DSP starts from protein
sequences and inherently fuses information from protein 3D struc-
tures profile into its predictions. Unlike STRUM [18], which pre-
dicts protein structure, MU3DSP retrieves a list of experimental
protein structures from PDB to generate a 3D structure profile of
the querying variants. MU3DSP not only extracts multiple descrip-
tors from wild-type structures but also uses the same descriptors
from mutated structures. MU3DSP is able to use wild-type struc-
tures and mutated structures either from homology models of
query variants if they are available, or otherwise from the anno-
tated genomic variants database G2S. In either case, predictions
can be achieved in real-time, and it only takes less than 1 min
for one variant when running multiple single-point variants on
one protein. To our knowledge, this is the first tool that uses the
annotated genomic variants’ 3D structure to study protein stability
changes. We demonstrate that MU3DSP achieves state-of-the-art
performance on two independent testing datasets. Finally, we
show the application of MU3DSP in disease-related contexts,
including the tumor suppressor protein P53 coded by TP53 gene
in humans, as well as in proteins without structures, such as thiop-
urine S-methyltransferase (TPMT) protein from the Critical Assess-
ment of Genome Interpretation (CAGI) challenge.

2. Materials and methods

2.1. Overview of MU3DSP

MU3DSP includes variant-based structure preparation, feature
extraction, and prediction (Fig. 2). First, we queried the substituted
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position and the corresponding protein sequence to search in G2S
[54] (https://g2s.genomenexus.org) to get the 3D structure profiles
of annotated genomic variants. Then we calculated variant-based
structure features, including changes in secondary structure
(DSS), amino acid frequencies in spheres space (DAAFS) on wild-
type and variant protein structures, and relative accessible surface
area (RASA) on the matched protein structures. Next, we extracted
sequence-based features, including changes in amino acid proper-
ties (DAAP), position-specific scoring matrix (PSSM) [55], changes
of the wild-type and mutant residue’s evolutionary score in PSSM
(DPSSM), HHblits profiles (HMM) [56], and changes of the wild-
type and mutant amino acid emission frequencies from HMM
(DHMMÞ. Finally, we predicted DDG through the ensemble algo-
rithm LightGBM [57].
2.2. Datasets

Most DDG prediction approaches used training datasets are
from ProTherm [58], a thermodynamic database collecting experi-
mentally determined protein stabilities. We used the following
three datasets to investigate the prediction of stability changes in
proteins (Supplementary Table S4):

S1676 dataset as a benchmark [25,59], which includes 1676
single-point variants in 67 different proteins with 925 destabiliz-
ing variants (DDG < 0:5), 220 stabilizing variants (DDG > �0:5)
and 531 neutral variants (DDG in [-0.5, 0.5]). S1676 was used as
the training dataset of MASE-MM [25].

S2648 dataset includes 2648 non-redundant single-point vari-
ants from 131 proteins compiled by [33]. S2648 is a commonly
used dataset for predicting stability changes upon single-point
variants. S2648 was used as the training dataset to find direct vari-
ants and reverse variants in methods INPS [37], DynaMut2 [40],
PoPMuSiC [60], DDGun [29], and PremPS [42]. It includes 1598
destabilizing variants, 295 stabilizing variants, and 775 neutral
variants.

S236 [25] dataset, which is curated from EASE-MM as an inde-
pendent testing data set. S236 comprises 141 destabilizing vari-
ants, 20 stabilizing variants, and 75 neutral variants. S236 has no
more than 25 % sequence identity with the training dataset S1676.

S543 [25,33,60] dataset, which is a subset of the S2648 dataset
[60]. S543 provides PDB IDs [22] and we manually aligned and
parsed the S543 dataset to obtain sequences. S543 comprises 342
destabilizing variants, 52 stabilizing variants and 149 neutral vari-
ants. S543 has no more than 25 % sequence identity with the train-
ing dataset S1676 and testing dataset S236.

S350 dataset is a subset of S2648 randomly selected from S2648
[33]. This dataset is widely used to compare the performance of
different methods and the rest of the variants in S2298
(S2648� S350) are used as a training dataset. The dataset contains
192 destabilizing variants, 54 stabilizing variants, and 105 neutral
variants.

Ssym dataset was manually curated by Pucci et al. [38]. It con-
tains 342 direct variants and 342 reverse variants with available
experimental structures for the corresponding variant proteins. It
is a common dataset used to assess the antisymmetric property
and measure the bias of the predictor.

In addition, we used protein P53 [35] and TPMT coded protein
by TPMT gene (thiopurine S-methyl transferase) from the CAGI
challenge [61] as case studies. Dataset P53 contains experimentally
screened protein stability data of the tumor suppressor protein P53
[35], including 21 destabilizing variants, 2 stabilizing variants, and
19 neutral variants. Dataset TPMT includes a total of 3627 variants
with 4 destabilizing variants, 2926 stabilizing variants and 654
neutral variants.
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2.3. 3D structure profile and variant-based structures

Our in-house G2S [54] provides a real-time web Application
Programming Interface (API) that automatically maps genomic
variants on 3D protein structures. Giving a protein sequence and
the position of a variant as the query, G2S searches similar
sequence fragments (covering the surrounding regions of the chan-
ged residue in PDB to get a list of protein structures with similar
local sequences which contain the same single-point substitution.
The list of protein structures is defined as the variant-based 3D
structure profile. G2S then categorize protein structure as wild-
type residue-based structure (WRBS) or mutant residue-based
structure (MRBS) based on containing either wild-type amino acid
or mutant amino acid at the aligned position of the queried
residue.

According to the availability of PDB structures, four different
strategies (Q1-Q4) may be adopted to construct a variant-based
structure set (Fig. 2A). Q1: WRBS and MRBS are available. Q2:
WRBS is available, and MRBS is unavailable. Q3: WRBS is unavail-
able, and MRBS is available. Q4: Neither WRBS nor MRBS is
available.

When either WRBS or MRBS is available, WRBS and MRBS are
two types of variant-based structures. When neither WRBS nor
MRBS is available, assessment of genomic variants in G2S can make
up the structures. G2s collects the variants information, including
their structures from one residue to another residues. For example,
there are 3881 substitutions from Val to Glu in G2S and 4927 sub-
stitutions from Glu to Val in G2S (Supplementary Table S5 shows
the entries of single variants in G2S). Mutant residue structures
(3881 in total) based on G2S annotation of genomic variants can
be constructed by the entries from Val (wild-type) to Glu (mutant).
Wild-type residue structures (4927 in total) based on G2S annota-
tion of genomic variants can be built by the entries from Glu (mu-
tant) to Val (wild-type). They are two other types of variant-based
structures. Then, we can obtain variant-based structure features
using variant-based structures (Supplementary Figure S2).

2.4. Variant-based structure features

We extracted secondary structure (SS), RASA, and amino acid
frequencies in spheres space (AAFS) from the variant-based struc-
tures set as base features. The SS feature is a matrix with the size of
L� 3, calculated by the DSSP program [62,63], in which L repre-
sents the length of the queried protein. SS can be categorized into
three types: helix, sheet, and coil. We used the one-hot encoded
secondary structure with three states [62,63]. RASA was calculated
as follows:

RASA ¼ ASA
MaxASA

where ASA represents the accessible surface area obtained from the
DSSP output and MaxASA represents the maximum possible solvent
accessible surface area for the amino acid [64]. The AAFS feature
was calculated as follows:

AAFS ¼ Cj

M

� �
We select a sphere space on protein 3D structure with a radius

of 20 Å centered on the queried residue. Cj represents the number
of observed j in the selected sphere space, in which j is one of 20
standard amino acids. M represents the number of amino acids
in the sphere space.

Therefore, the prepared features of variant-based structure fea-
tures for wild-type or variant proteins were achieved by the
function:

https://g2s.genomenexus.org


Fig. 2. Overview of feature extraction and feature processing. A. Availability of matched protein tertiary structures with wild-type or mutant amino acid. Available tertiary
structures are labeled as 1, otherwise as 0. B. Preprocessing of the query protein and feature extraction. C. Regression algorithm output using extracted features.
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Bx ¼ SSmax;

PN
i¼0RASAi

N
;

PN
i¼0AAFSi
N

( )

where x 2 m;wf g;m is the variant protein; w is the wild-type pro-
tein. When MRBS or WRBS is available (such as Q1, Q2, Q3), N rep-
resents the number of WRBS or MRBS. When MRBS is unavailable
(such as Q2 and Q4), N represents the number of w to m mutants’
entries in G2S. When WRBS is unavailable (such as Q3 and Q4), N
represents the number of m to w mutants’ entries in G2S (Supple-
mentary Table S5 shows the entries of single variants from G2S).
SSmax defines the type of secondary structure with the top occur-
rence on the substituted residue position in the protein tertiary
structures; RASAi and AAFSi represent the RASA feature and AAFS
feature for protein structure i, respectively. To consider the effect
of variants, variant-based structure features can be represented by
the combination of changes in SSmax (DSS), changes of AAFS features
between wild-type and variant proteins, and RASA features from
wild-type and variant proteins.

2.5. Sequence-based features

Amino acid properties (AAP) and two evolutionary conversation
profiles are derived as follows. Thirteen amino acid properties,
including hydrophobicity, volume, helix tendency, sheet tendency,
polarizability, isoelectric point and so on have been used, following
Folkman et al. [25]. The values of thirteen amino acid properties for
twenty standard amino acids are shown in Supplementary Tables
S6 and S7. For each mutant residue, we extracted DAAP, which rep-
resents the changes of the corresponding AAP from wild-type resi-
due to mutant residue.

Many disease-related mutations, usually in residues that are
conserved or conservatively varied during evolution, affect differ-
ent protein functions, including thermodynamic stability [65].
Therefore, two evolutionary conversation profiles, PSI-BLAST pro-
file [55] and HHblits profile [56], are usually used to study thermo-
dynamic stability changes derived from single-point variants. The
PSI-BLAST and HHblits profiles are complementary since their
algorithms and searched databases differ.

PSI-BLAST profile. We use position-specific scoring matrix
(PSSM) results generated by the alignment tool PSI-BLAST to search
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the NCBI’s SwissProt database for homologous sequences with
three iterations and E-value cutoff of 0.001 [55]. The size of the
generated PSSM is L� 20, where L represents the length of the
queried protein and 20 corresponds to 20 standard amino acids.
Each element X in the PSSM was normalized to the range (0, 1)
by a sigmoid function:

PSSM p;jð Þ ¼ 1
1þ e�X p;jð Þ

PSSM p;jð Þ denotes the normalized result of X p;jð Þ, in which p rep-
resents the residue position in the protein sequence and j repre-
sents one of 20 standard amino acids. DPSSM is extracted to
apply to predict stability changes by the following function:

DPSSM ¼ PSSMm� PSSMw

HHblits profile. The multiple sequence alignments tool HHblits
based on hidden Markov models (HMMs) is applied to search
against the Uniclust30 database to get multiple sequence align-
ments for the queried protein sequence with default parameters
[56]. The dimension of HHblits profile features is 30� 1; which
represents the values from the original HMM matrix consisting
of 20 columns of the match state amino acid emission frequencies,
seven columns of transition frequencies from the beginning state
to the first Match state, Insert state, and Delete state, and three col-
umns of local diversities. DHMM represents the change of amino
acid emission frequencies in the HMM matrix between the wild-
type residue and mutant residue. Each score is converted to the
range [0, 1]:

HMM p;jð Þ ¼ Y
10000

DHMM ¼ HMMm� HMMw
2.6. Evaluation of protein stability changes and model optimization

In our method, we choose a decision tree algorithm imple-
mented in the package LightGBM [57] to predict DDG. To devise
a robust estimate of the prediction performance, we used a 10-
fold cross-validation approach to tune parameters using the
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cross-validation function in the gradient boosting framework
LightGBM. First, initial parameters are set as boosting type ¼ gbdt,
objective ¼ regression, andmetric ¼ rmse. Then, to improve the per-
formance, a grid search on parameters is performed for num leaves
and max depth: To avoid over-fitting, parameters feature fraction,
bagging freq, lambda l1, lambda l2, min split gain, and
min data in bin are used to grid search to get the best parameters.
After numerous iterations, we get a list of parameters (Supplemen-
tary Table S8). Those parameters are used to build the training
model of MU3DSP. MU3DSP’s training process and prediction path
for stability changes of two samples are shown in Supplementary
Figures S3 and S4.

The metrics used to evaluate our model and other predictors in
comparison were Pearson correlation coefficient (PCC), root mean
square error (RMSE) and mean absolute error (MAE) between pre-
dicted energy and experimental energy. The evaluated metrics are
shown as follows:

PCC ¼
cov bY ;Y� �
rbYrY

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
Yi � bY i

� �2
r

MAE ¼ 1
N

XN
i¼1

Yi � bY i

� �
where bY represents predicted DDG and Y represents experimental

DDG; cov bY ;Y� �
represents the covariance of bY and Y;rbY represents

the standard deviation of the variable bY ;rY represents the standard

deviation of the variable Y; and Yi � bY i

� �
represents the error

between predicted DDG and experimental DDG; N denotes the total
number of instances:

To assess the antisymmetric property of our method, we used

PCC between the direct and corresponding reverse variations. bY
represents direct DDG and Y represents reverse DDG. To measure
the bias of the predictor and check whether the predictor is toward
the destabilizing group of variants or not, we adopted the bias
score dh i:

dh i ¼
PN

i¼0 DDGdir
i þ DDGrev

i

� �
2N

A perfectly antisymmetric and unbiased predictor should have
PCC between the direct and corresponding reverse variations equal
to �1, whereas dh i equals 0.
3. Results

3.1. Performance on multiple models according to variant-based
structure information

To build a robust model for predicting protein stability changes,
datasets S1676 and S2648 were used to train a model using 10-fold
cross-validation [25]. The results of our methods were replicated
100 times of the 10-fold cross-validation by shuffling the training
data. As shown in Table 1, our model MU3DSP with S1676 as the
training dataset got an averaged PCC of 0.73 (RMSE of 1.26
Kcal/mol), which constituted a relative improvement of 30.4 %
compared to EASE-MM with the same training dataset with an
averaged PCC of 0.56 (Table 1). The model MU3DSP-S2648 with
S2648 as the training dataset achieved PCC of 0.73 and RMSE of
1.00 kcal/mol. The model MU3DSP-S5296 with S2648 and their
358
reverse variants as a training dataset achieved PCC of 0.82 and
RMSE of 1.03 kcal/mol. These results demonstrate that the selected
features are reliable and reasonable for predicting stability
changes.

MU3DSPseq used sequence descriptors including DAAP, PSSM,
DPSSM, HMM, and DHMM to train. MU3DSPstr used variant-based
structure features in the model. MU3DSP used multiple descriptors
from models MU3DSPstr and MU3DSPseq. MU3DSP* fused
sequence-based features and variant-based structure features in
which wild-type and mutant 3D structures are unavailable. The
model with * used variant-based structure features when WRBS
and MRBS are unavailable.

We found the model using a 3D structure profile improved the
performance significantly. Based on the availability of the PDB
structure, we proposed four models to conduct comparative tests:
MU3DSPstr, MU3DSPseq, MU3DSP, and MU3DSP* (Table 1, Fig. 3A),
to demonstrate the importance of variant-based structure features.
MU3DSPstr only selected the variant-based structure features we
initially proposed. MU3DSPseq selected sequence-based features,
including DAAP, PSSM, DPSSM, HMM, and DHMM. MU3DSP fused
both features that constructed model MU3DSPseq and MU3DSPstr.
MU3DSP* also used both sequence-based and variant-based struc-
ture features. Still, it assumed that WRBS and MRBS are unavail-
able for all proteins in the training dataset. Variant-based
structure features would be calculated by the structures that it gets
from m to w mutants’ entries and w to m mutants’ entries in G2S,
respectively.

Notably, the performance of PCC (0.56) on model MU3DSPstr

(using variant-based structure features only) shows that our pro-
posed variant-based structure features carry pertinent information
for the prediction. Furthermore, when adding variant-based struc-
ture features (versus the PCC of 0.66 in MU3DSPseq), the model
improved its PCC to 0.73. If structures for wild-type and variant
proteins are unavailable for the training dataset, adding the base-
line variant-based structure features from G2S (i.e., in model
MU3DSP*) can change PCC to 0.71. MU3DSP and MU3DSP* demon-
strated a significant improvement as shown in Fig. 3A. We found
that 40 % of the top 20 features are variant-based structure features
(RASA-m, AAFS-I, AAFS-N, AAFS-D, AAFS-L, AAFS-W, AAFS-F, AAFS-
C) (Fig. 3B). Using 3D structure profile models such as MU3DSP-
S2648 and MU3DSP-S5296 achieved better performance than
MU3DSP-S2648* and MU3DSP-S5296* that only used annotated
genomic variants from G2S. Taken together, these results suggest
that our proposed variant-based structure features contribute to
a performance improvement of the model.

3.2. MU3DSP achieves state-of-the-art performance on testing sets

To evaluate the robustness of our model, we used S236 and
S543 as independent testing datasets. MU3DSP compared with
nine commonly used methods, including EASE-AA [66], EASE-MM
[25], MUpro [23], I-Mutant2.0 [44], INPS [37], DynaMut2 [40],
PremPS [42], SAAFEC-SEQ [28], DDGun [29], PoPMuSiC [60], and
MAESTRO [43] on the testing datasets. Among these, EASE-AA,
EASE-MM (EASE-MM-web), MUpro, sequence-based version of I-
Mutant2.0 (I-MutantA), INPS, SAAFEC-SEQ, and DDGun predicted
DDG starting from sequence whereas the structure-based version
of I-Mutant2.0 (I-MutantB), PoPMuSiC, PremPS, DynaMut2 and
MAESTRO required structures as input (Table 2).

Methods: <method>#, where ‘‘#” represents that S543 is a sub-
set of their training dataset. We shown the perfromacne of these
methods on S543 in Supplementary Table S9. I-MutantB, a
structure-based version of I-Mutant2.0; I-MutantA, a sequence-
based version of I-Mutant2.0; EASE-MM, predicted DDG values
taken from the supplementary material in research [25], which
used S1676 dataset to train the model. EASE-MM-web, predicted



Table 1
Performance of 10-fold cross-validation on datasets S1676 and S2648.

Method PCC RMSE MAE

Dataset S1676
EASE-MM 0.56 1.52 1.00
MU3DSPstr 0.56 1.50 1.04
MU3DSPseq 0.66 1.47 1.00
MU3DSP 0.73 1.26 0.82
MU3DSP* 0.71 1.29 0.85

Dataset S2648
MU3DSP-S2648 0.73 1.00 0.75
MU3DSP-S2648* 0.70 1.05 0.78
MU3DSP-S5296 0.82 1.03 0.77
MU3DSP-S5296* 0.78 1.11 0.83

J. Gong, J. Wang, X. Zong et al. Computational and Structural Biotechnology Journal 21 (2023) 354–364
DDG from webserver, which used a joint S1676 + S236 dataset to
train the model. The predicted DDG values from PremPS webserver
and MAESTRO are negatively correlated on datasets S236 and S543.

The MU3DSP-S5296 had the best performance on the S236
dataset among 15 methods in Table 2 with PCC of 0.73, RMSE of
0.85 Kcal/mol and 0.62 Kcal/mol. MU3DSP had a second-best per-
formance on the S236 dataset with a PCC of 0.66 and RMSE of 0.96
Kcal/mol, outperforming other stability change predictors
(PCC = �0.02 to 0.62, RMSE = 0.98 to 1.58 Kcal/mol), including
sequence/structure-based I-Mutant2.0, EASE-AA, EASE-MM,
MUpro, INPS, SAAFEC-SEQ, DDGun, PoPMuSiC, DynaMut2, PremPS,
and MAESTRO. Only the MAE of EASE-MM from webserver (EASE-
MM-web) performed better than our method. However, this model
used a joint S1676 + S236 dataset to train the model. Despite the
Fig. 3. Performance on comparative test according to variant-based structure informati
variant-based structure information. The violin plot for 100 times PCC of 10-fold cross-
training dataset. B. Top 20 important features for the MU3DSP training used in LightGBM,
L, AAFS-W, AAFS-F, and AAFS-C. Abbreviations of features are shown in Supplementary Ta
experimental DDG. Box plots show the distribution of errors and black lines represent m
prediction errors of panel C from �1 to 1.
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median values for the prediction errors from methods DDGun,
INPS, DynaMut2 and MAESTRO being closer to 0 than that of our
methods MU3DSP and MU3DSP-S5296, the data distribution of
prediction errors for our method is more centralized (Fig. 3C and
3D). Dataset S543 is used for evaluating our proposed method
MU3DSP, as S543 has no more than 25 % sequence identity with
the training dataset of MU3DSP. Among sequence-based predic-
tors, without considering reverse variants, MU3DSP showed a good
performance for predicting direct variants, such as S236, Ssym

direct variants (Table 3), the same as SAAFEC-SEQ. In addition,
our method (MU3DSP) had the best performance regarding the
RMSE (1.19 Kcal/mol) when compared to others (RMSE = 1.37
Kcal/mol to 1.21 Kcal/mol), whose training datasets do not include
the testing dataset S543 (Table 2).

We empirically checked for factors in MU3DSP that most influ-
enced Pearson correlation coefficients between experimental DDG
and predicted DDG. The first observation was that PCC is usually
correlated with MAE and RMSE, i.e., the lower the RMSE and
MAE values, the higher PCC. However, PCC, MAE and RMSE of
EASE-MM-web were 0.48, 0.96 Kcal/mol, and 1.33 Kcal/mol,
respectively, while those of MU3DSP were 0.44, 0.92 Kcal/mol,
and 1.28 Kcal/mol, respectively, on the Q1 of S543 dataset (Supple-
mentary Table S11). In this case, although RMSE and MAE are
lower, PCC in our model is not higher. In parallel, we randomly
sampled 10 sub-datasets of S236 and 10 sub-datasets of S543,
which were half of the corresponding datasets as replacements.
The results show that this assumption is controversial on random-
ized datasets 1, 3, 7, 8, and 9 of S543 (Supplementary Table S12).
The second observation was that the distribution of the dataset
on and different testing datasets. A. Performance on multiple models according to
validation for four models MU3DSPstr, MU3DSPseq, MU3DSP, and MU3DSP* on the
including variant-based structural features RASA-m, AAFS-I, AAFS-N, AAFS-D, AAFS-
ble S10. C. Prediction errors for dataset S236 calculated by predicted DDG subtracted
edian values. Outliers are plotted as individual points. D. Partial extended view of



Table 2
Comparative performance of MU3DSP and MU3DSP-S5296 across testing datasets S236 and S543 with other stability predictors.

Datasets S236 S543

Method PCC RMSE MAE PCC RMSE MAE

Structure-based
I-MutantB 0.52 1.07 0.81 0.36 1.34 1.03
PoPMuSiC# 0.57 1.05 0.79 – – –
MAESTRO# �0.02 1.58 1.23 – – –
PromPS# 0.59 1.02 0.74 – – –
DynaMut2# �0.01 1.51 1.21 – – –

Sequence-based
INPS# 0.59 1.02 0.74 – – –
SAAFEC-SEQ# 0.64 0.96 0.74 – – –
DDGun# 0.49 1.22 0.95 – – –
EASE-AA 0.53 1.10 0.83 0.48 1.25 0.94
EASE-MM 0.59 1.03 0.77 0.53 1.22 0.90
EASE-MM-web 0.62 0.98 0.71 0.53 1.21 0.89
MUpro 0.36 1.20 0.97 0.33 1.32 1.04
I-MutantA 0.44 1.18 0.92 0.32 1.37 1.06
MU3DSP-S5296 0.73 0.85 0.62 – – –
MU3DSP 0.66 0.96 0.72 0.52 1.19 0.90
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plays a role in calculating PCC. When randomly selecting 10 sub-
datasets of S236 and S543, the PCCs were changed based on differ-
ent datasets (Supplementary Tables S12 and S13). These results
show that the Pearson correlation coefficients between experimen-
tal DDG and predicting DDG calculated with different methods are
affected by the distribution of each dataset.
3.3. Performances achieved on antisymmetric datasets Ssym

Ssym is one of the most balanced datasets containing the exper-
imental structures, which includes both direct variants and corre-
sponding reverse variants. We tested the biases of MU3DSP with
S2648 dataset and its reverse variants (MU3DSP-S5296) on this
balanced dataset and compared its performance with 12 existing
methods. Our model MU3DSP-S5296 was among top three
(PCC = 0.75) on the direct dataset, top two (PCC = 0.56) on the Ssym

reverse datasets and top two on the Ssym direct and reverse vari-
ants among the 12 existing methods. As shown in Table 3,
MU3DSP-S5296 got a better performance in the Ssym reverse data-
set than all listed sequence-based methods. These results have not
been achieved previously by other published sequence-based
predictors.
3.4. Predicting the impact of single-point variants on P53
thermodynamic stability

Tumor suppressor protein P53 is ‘‘the guardian of the genome”,
strongly related to cancer, participating in the control of cell sur-
vival and division [67]. Over half of all cancers in humans carry loss
of function mutations in the transcription factor P53 [68]. Assess-
ment and prediction of stability changes in P53 can aid the inter-
pretation of the association of P53 variants with tumorigenesis.

Protein P53 comprises an N-terminal transactivation domain
(residues position 1–45), a DNA binding domain (residues position
102–292), and a C-terminal oligomerization domain (residues
position 319–359) [69,70]. From UniProt annotation, there are 83
natural variants, 91 % of which are located in the range 102 to
192 in the DNA binding domain. Protein P53 shows an unexpect-
edly high frequency of mutations in four residues: 175, 245, 248,
and 273. Accordingly, mutations in P53 disrupt the wild-type sta-
bility and conformation of the protein, thus, interfering with its
function [71]. Position 282 is related to a network of interactions
underpinning the loop-sheet-helix major groove DNA binding
motif. An Arg to Trp (Tryptophan) substitution in this position
results in protein unfolding and, consequently, its inactivation
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[72]. Pires et al. [35] assembled experimentally characterized sta-
bilities of 42 P53 mutants, which provided a benchmark for our
study.

We tested MU3DSP and MU3DSP-S5286 on protein P53 with 42
variants. MU3DSP-S5286 is the model that removed the overlap-
ping instances from S2648 and their reverse variants. To test on
sequence-based methods, we parsed the P53 structure to sequence
and checked its mutations manually. We used six structure-based
methods (PoPMuSiC, MAESTRO, DynaMut2, I-MutantB, ProTSPoM,
and PremPS) and six sequence-based methods (EASE-MM, I-
MutantA, MUpro, INPS, SAAFEC-SEQ, and DDGun) as comparative
methods. DDG values from MU3DSP and MU3DSP-S5286 versus
experimentally measured stability changes (Exp.ddG) from the
P53 dataset are shown in Fig. 4A and 4B. Importantly, MU3DSP
and MU3DSP-S5286 had PCC values of 0.72 and 0.70, respectively.
MU3DSP-S5286 (PCC = 0.70) is better than other comparative
sequence-based methods (from 0.23 to 0.69) on the PCC perfor-
mance. Structure-based methods ProTSPoM (PCC = 0.88),
ProTSPoM-noevo (PCC = 0.81), PremPS (PCC = 0.73), and
(PCC = 0.75) are better than our method MU3DSP-S5286 in perfor-
mance of PCC. However, dataset P53 overlaps with PremPS,
ProTSPoM-noevo, ProTSPoM, and DynaMut20s training dataset.
The predictor PremPS without the overlapping mutations got a
PCC of 0.72 [42], the same as our proposed MU3DSP. The perfor-
mance on the P53 dataset demonstrates that MU3DSP is able to
give an improved prediction without using the query protein
experimental structure.
3.5. Performance on the protein TPMT from CAGI challenge

We further tested MU3DSP on thiopurine S-methyl transferase
(TPMT) from CAGI challenge [61]. Due to the TPMT structure is not
provided, we used the full-length sequence (UniProt ID: P51580) as
input and compared it with seven other leading sequence-based
predictors (EASE-MM, I-MutantA, MUpro, INPS, BoostDDG,
SAAFEC-SEQ, and DDGun). For further comparisons, we calculated
the PCC, RMSE and MAE between experimental DDG and the pre-
dictions of the seven methods (Supplementary Table S14). Fig. 5
illustrates the experimental DDG versus predicted DDG from seven
comparative methods. MU3DSP achieved the best performance
with a PCC of 0.44. The second-best methods SAAFEC-SEQ and
BoostDDG yielded a PCC of 0.42 for the TPMT dataset in Fig. 5.
The TPMT dataset further demonstrates that MU3DSP is able to
improve prediction when experimental structures are not
provided.



Table 3
Comparative performance of MU3DSP and MU3DSP-S5296 on antisymmetric datasets Ssym with other stability predictors.

Method Ssym direct Ssym reverse Ssym direct + Ssym reverse Anti-symmetry

PCC RMSE MAE PCC RMSE MAE PCC RMSE MAE PCC dh i
Structure-based
MAESTRO 0.57 1.31 0.91 0.27 2.16 1.66 0.43 1.79 1.29 �0.33 �0.62
DDGun3D 0.57 1.40 1.00 0.54 1.43 1.03 0.65 1.41 1.01 �0.99 �0.02
PremPS 0.81 0.96 0.66 0.73 1.13 0.78 0.85 1.05 0.72 �0.93 �0.02
mCSM 0.61 1.23 0.91 0.14 2.43 1.93 0.40 1.93 1.42 �0.26 �0.91
INPS3D 0.61 1.24 0.89 0.29 1.94 1.45 0.56 1.63 1.17 �0.51 �0.51
Dynamut2 0.63 1.21 0.90 0.05 2.39 1.87 0.38 1.90 1.38 �0.11 �0.78
PoPMuSiC 0.63 1.21 0.86 0.25 2.18 1.66 0.50 1.76 1.26 �0.28 �0.71

Sequence-based
SAAFEC-SEQ 0.73 1.05 0.73 �0.43 2.75 2.11 0.26 2.08 1.42 0.67 �0.97
STRUM 0.75 1.05 – �0.15 2.51 – – – – 0.34 �0.87
INPS-Seq 0.48 1.47 1.07 0.49 1.45 1.07 0.62 1.46 1.07 �0.99 0.00
DDGun 0.49 1.46 1.09 0.49 1.46 1.09 0.63 1.46 1.09 �1.00 �0.01
MUpro 0.79 0.94 0.53 0.07 2.51 2.03 0.48 1.89 1.28 �0.02 �0.97
MU3DSP_S1676 0.64 1.25 0.94 0.25 2.03 1.56 0.59 1.68 1.25 �0.56 �0.61
MU3DSP_S5296 0.75 1.06 0.76 0.56 1.53 1.13 0.76 1.31 0.95 �0.82 �0.32

Fig. 4. The performance of our method on predicting the impact of single-point variants on protein P53. A. DDG predicted with MU3DSP as a function of Exp.ddG from the
P53 dataset. B. DDG predicted with MU3DSP-S5286 as a function of Exp.ddG from the P53 dataset. Lines represent linear regression fits. C. The bar plot for PCCs between
predicted DDG and experimental DDG of MU3DSP, MU3DSP-S5286, SAAFEC-SEQ, DDGun, INPS, MAESTRO, EASE-MM, PoPMuSiC, PremPS, ProTSPoM, DynaMut2, MUpro, and I-
Mutant2.0 (A for sequence-based and B for structure-based) for protein P53.
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Fig. 5. Multiple bivariate plots for seven comparative methods and MU3DSP with marginal histograms. A-G. DDG predicted with seven different sequence-based methods as
a function of Exp.ddG from the TPMT dataset. H. DDG predicted with MU3DSP as a function of Exp.ddG from the TPMT dataset. Lines represent linear regression fits. PCC,
Pearson correlation coefficient.
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4. Discussion

Predicting mutation-induced stability changes is essential for
protein design and precision medicine. The loss of protein stability
can be a main driver of disease; hence, predicting the effects of
single-point variants on protein stability facilitates identifying
relationships with pathogenicity. For this purpose, in-silico predic-
tors can help narrow down the mutational landscape of several
studies addressing these questions. Recent advances in machine
learning accelerated the development and improvement of these
computational methods [20,23–29,31–47].

In this study, we present a novel sequence-based method
named MU3DSP, which can efficiently predict protein stability
changes upon single-point variant starting from the sequence
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while using 3D structure information available at PDB. Following
the conclusion of existing prediction approaches and tools on pro-
tein stability changes, we found sequence-based methods to
occupy only a small portion of these methods. This finding is
intriguing and especially important for practical applications, con-
sidering the fact that most protein 3D structures are unavailable.
MU3DSP successfully computed the effect of nsSNVs on protein
stability when the protein 3D structure was unavailable. In fact,
there were considerable advantages of using 3D structure profiles
(variant-based structure features), rather than only using sequence
features, to predict protein stability changes upon single-point
variants. Furthermore, when compared with a series of computa-
tional experiments, MU3DSP outperformed some widely used
methods, demonstrating its ability to study the impact of single-
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point variants. Finally, we successfully applied our MU3DSP
method to predict DDG resulting from variants in the tumor sup-
pressor protein P53 and no 3D structure protein TPMT.

Similar to other machine learning methods, the performance of
MU3DSP is highly dependent on the quality of training datasets,
feature extraction and selection of training algorithm. In this work,
we mainly improved and optimized the model in the stage of fea-
ture extraction by fusing 3D structure features. Although we
achieved increased performance in predicting stability changes
based on 3D structure profiles, there is still room for improvement,
especially regarding precision. Considering our data, the prediction
of stabilizing variants was more difficult because the number of
destabilizing variants in the training dataset was around three
times higher than the number of stabilizing variants. However,
the performance of the model is expected to improve, considering
the increase of data concerning experimental stability changes that
will allow the construction of a balanced benchmark dataset. Nev-
ertheless, this may be further explored in the future using more
advanced machine learning methods. Additionally, we chose the
LightGBM gradient boosting framework to predict DDG because it
displays many advantages compared to others, such as faster train-
ing speed, higher efficiency, and memory usage. In this regard, we
explored some deep learning methods, but their performance was
not ideal in the setting of this study. In future studies, more
advanced deep learning approaches, such as graph neural net-
works, may be employed to utilize the structure information
around the mutant residue to improve protein stability prediction.
Furthermore, given the success of protein structure prediction
tools such as AlphaFold2 [51] and RoseTTAFold [52], high-quality
predicted 3D structures of wild-type and variant proteins may be
applied to help identify pathogenic variants in humans [73] and
to better predict protein stability changes. Although these models
have not currently succeeded in predicting stability changes [53],
this will greatly accelerate the identification of pathogenic variants
in humans in the near future.

Some limitations of computational methods used for prediction
purposes revolve around the quality of training datasets used in
predicting stability changes as well the variability of experimental
DDG datasets, which usually originate from different experiments,
authors, and articles [74]. Moreover, the DG depends on several
factors, such as experimental conditions, temperature, concentra-
tions of salt, pH values, organic solvents, and other chemical
agents, which may be difficult to control and may cause data dis-
persion [75]. Nevertheless, the continuous increase in data gener-
ation will greatly accelerate improvements in the performance of
predictive methods, both in terms of reliability and consistency,
which may have major practical implications in the future.
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