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Abstract

Myocardial fluid homeostasis relies on a complex interplay between microvascular filtration, interstitial hydration,
cardiomyocyte water uptake and lymphatic removal. Dysregulation of one or more of these mechanisms may result in
myocardial oedema. Interstitial and intracellular fluid accumulation disrupts myocardial architecture, intercellular commu-
nication, and metabolic pathways, decreasing contractility and increasing myocardial stiffness. The widespread use of car-
diac magnetic resonance enabled the identification of myocardial oedema as a clinically relevant imaging finding with
prognostic implications in several types of heart failure. Furthermore, growing experimental evidence has contributed to
a better understanding of the physical and molecular interactions in the microvascular barrier, myocardial interstitium
and lymphatics and how they might be disrupted in heart failure. In this review, we summarize current knowledge on
the factors controlling myocardial water balance in the healthy and failing heart and pinpoint the new potential therapeu-
tic avenues.
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Introduction

The adequate compartmentalization of water in the
myocardium is essential to maintain normal cardiac
function.1 Despite several mechanisms known to regulate
cardiomyocyte and interstitial volume,2 the myocardium re-
mains particularly susceptible to oedema formation due to
its dense microvascular network and high interstitial flow
rate.

Myocardial oedema (MO), defined by the accumulation of
cardiac water in interstitial and/or intracellular compart-
ments, has been shown to induce cardiomyocyte injury,
dysfunction3–6 and remodelling.3,4

The recent introduction of magnetic resonance imaging
(MRI) techniques (e.g. myocardial T1 and T2 mapping)

has enabled the non-invasive assessment of the extracellu-
lar component, namely, the myocardial water content,
suggesting that MO negatively affects the prognosis across
acute and chronic heart failure (HF).7–9 Moreover, advances
in the understanding of the myocardial microvascular
barrier and lymphatics suggest that myocardial fluid bal-
ance disturbances are key determinants of the extent and
duration of myocardial injury. These aspects may recast
MO as a therapeutic target yet to explore in clinical
practice.

The present review aims to summarize the current knowl-
edge on the pathophysiological mechanisms of MO forma-
tion and their contribution to the disruption of cardiac
homeostasis in the failing heart, also discussing future per-
spectives on therapeutic targeting of MO.
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Basic concepts

Myocardial fluid balance and myocardial oedema

To maintain fluid homeostasis, microvascular fluid filtration
into the myocardium must be matched by its removal rate
via myocardial lymphatic vessels. Microvascular fluid
exchange is governed by the Starling principle, expertly re-
viewed elsewhere,1,10 summarized by the revised Starling
equation:

JV ¼ LPS PC � PIð Þ � σ ΠC � ΠGð Þ½ �

where LP is the hydraulic conductivity, S is the filtration sur-
face area, PC and PI are the intracapillary (C) and interstitial
(I) hydrostatic pressures, σ is the protein reflection coefficient
and ΠC and ΠG are the intracapillary and subglycocalyx (G)
colloid osmotic pressures, respectively (Figure 1). In order
to keep a stable interstitial volume (VI) and defend against
oedema formation, several physiological mechanisms coun-
teract primary perturbations in PC, ΠC and endothelial barrier
function—oedema safety factors.2

Figure 1 The disruption of myocardial fluid balance in the failing heart. Multiple mechanisms can contribute for oedema formation in the failing heart
and are differentially observed in several types of acute and chronic heart failure. Myocardial ischaemia, inflammation and volume overload negatively
impact on microvascular barrier function by promoting the glycocalyx degradation and pericyte detachment, resulting in excessive fluid filtration. The
resulting increase in interstitial volume and pressure disrupt the extracellular matrix (ECM) architecture, pulling cardiomyocytes away from capillaries
and increasing oxygen diffusion distance. Moreover, ECM degradation and high central venous pressure impair lymphatic recruitment and drainage,
leading to the accumulation of inflammatory cells, cytokines and metabolic waste products in the myocardial interstitium. Collectively, these mecha-
nisms can impair myocardial contractility and bioenergetics, increase myocardial stiffness and promote cardiomyocyte apoptosis.
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Myocardial oedema develops when fluid filtration rate ex-
ceeds lymphatic fluid removal and can be generated by in-
creased ΔP or S, decreased ΔΠ or alterations of
microvascular membrane properties (increased LP or de-
creased σ) (Figure 1). Increased PC can be driven by high
pre-capillary pressure in the setting of acute11 and chronic12

arterial hypertension, or high post-capillary pressure in coro-
nary sinus occlusion,4,13,14 pulmonary hypertension15 or in
acute HF with increased central venous pressure.16 More-
over, increased S, caused by increased capillary recruitment
or vasodilation, promotes MO formation and is particularly
relevant in inflammatory HF aetiologies (e.g. myocarditis
and sepsis). Finally, as albumin is the major determinant of
ΠC, states of hypoalbuminemia facilitate fluid filtration and
global interstitial oedema.6 This is particularly relevant in
crystalloid coronary perfusion during cardiac surgery17 and
in shock management (e.g. septic and cardiogenic) in which,
excessive fluid resuscitation worsens prognosis.18,19

Myocardial oedema dramatically reduces energetic effi-
ciency, impairing both contraction and relaxation.1,20,21 How-
ever, increased VI and PI have been shown to primarily affect
myocardial viscoelastic properties, resulting in higher dia-
stolic stiffness.6,22 Due to its low interstitial compliance, small
interstitial volume expansions create high interstitial pres-
sures, making the myocardium particularly sensitive to oe-
dema formation. The experimental increase in myocardial
water content by 3.5% was associated with a 40% drop in car-
diac output.3 In addition, MO directly opposes filtration, by
decreasing ΔP and physically compressing the capillaries
and disrupting nutrient and oxygen delivery.23 The disruption

of the extracellular matrix structure, increased oxygen diffu-
sion distance and accumulation of metabolic waste products
are additional proposed mechanisms of MO-associated func-
tional deterioration (Figure 2).1,24

In summary, myocardial fluid balance is largely dependent
on microcirculation dynamics, microvascular barrier, intersti-
tial architecture and lymphatic drainage. Disruption of
any of these components may disturb myocardial fluid
homeostasis. In this review, each factor will be addressed in
detail regarding its physiological role and how it may be
disrupted in the failing heart.

Coronary microcirculation

The healthy myocardium is one of the most densely
vascularized tissues in human body, possessing a high density
capillary network (3.000–4.000/mm2) closely disposed around
cardiomyocytes25,26 (Figure 2). Such proximity between
cardiomyocytes and capillaries is of utmost importance to
maintain a short diffusion distance not only for oxygen, but
also for potentially toxic byproducts of cellular metabolism.23

Moreover, the high metabolic rate of the myocardium, which
primarily depends on oxidative phosphorylation, translates in
an elevated oxygen demand that is matched by a very high
oxygen extraction rate (70%–80% in resting conditions).27–29

Consequently, in stress conditions, additional increments in
oxygen demand are predominantly met by parallel increases
in myocardial blood flow (MBF).27 This metabolic contribution
to MBF autoregulation is made possible by the close contact

Figure 2 Pathophysiological pathways contributing to myocardial oedema in heart failure.
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between cardiac muscle and vasculature, enabling
cardiomyocyte-derived mediators (CO2

30 and lactate31) and
microenvironmental factors (pH32 and extracellular K+33) to
modulate local vasomotor tone and haemoglobin dissociation
curve. Therefore, pathological conditions limiting the close
communication between cardiomyocytes and vasculature,
namely, the expansion of the interstitial space due to oedema
or fibrosis, as well as arteriolar and capillary rarefaction, com-
mon features in chronic HF,34 impair diffusional transport and
MBF autoregulation, contributing to oxygen supply/demand
mismatch (Figure 2).

Another consequence of the proximity between coronary
microvasculature and cardiomyocytes is their mechanical in-
teraction. Previously considered an important modulator of
contractility (i.e. Gregg phenomenon), the effect of coronary
perfusion was later shown to be negligible within the
autoregulatory pressure-flow range.35,36 Extravascular forces
are not uniform across the ventricular wall and a gradual in-
crease in interstitial pressure and vascular compression is ob-
served from the subepicardium to the subendocardium.37,38

This is partly compensated by a higher arteriolar density at
the subendocardium so that, in physiological conditions,
MBF is similar in both myocardial layers.39,40 Yet, the distinct
mechanical cross-talk between different myocardial layers,
makes arterio-venous pressure gradient (i.e. perfusion pres-
sure) at the subendocardium about half of that of
subepicardium.41 Consequently, in the setting of decreased
coronary pressure (e.g. coronary artery disease), the suben-
docardial perfusion is predominantly affected.42–44 This intri-
cate relation between microcirculation and perfusion may
underly, at least partially, the existence of clearly distinct pat-
terns of MO distribution associated with different kinds of
myocardial injury: in acute inflammatory conditions (e.g. viral
myocarditis, sepsis) oedema is generally evident in the
subepicardial layers whereas in acute ischaemia, the oedema
is transmural or predominantly affects the
subendocardium.7,45–47

Coronary vasculature also influences myocardial tissue
properties. Higher coronary perfusion pressure is associated
with increased myocardial stiffness, shifting diastolic
pressure-volume relationship left and upwards, even in the
absence of oedema formation.48–50 The underlying mecha-
nism resides in the fact that cardiomyocyte contraction in-
creases the cell diameter, which happens at the expense of
coronary vascular diameter, contributing to the abovemen-
tioned systolic vascular compression.36,51 Accordingly, higher
intravascular volume and pressure, caused by increased coro-
nary perfusion or venous outflow pressure, oppose intravas-
cular fluid displacement, and therefore impair muscle
contraction and relaxation. This has been shown to be espe-
cially relevant in the setting of increased coronary sinus pres-
sure, seen in acute and chronic HF, where increased
intravascular and interstitial volume act cooperatively to im-
pair systolic function and diastolic compliance.52–54

Coronary microvascular barrier

Overlooked in the past, the cardiac microvascular barrier
became increasingly recognized as highly active and com-
plex structure, composed of a continuous non-fenestrated
endothelial cell monolayer, which is internally coated with
a negatively charged gel-like mesh (i.e. glycocalyx) and
externally covered by pericytes and basement membrane
(Figure 3).

Interendothelial junctions

Endothelial cells (EC) are tightly bonded by interendothelial
junctions (IEJ), mostly comprised by tight (occludins, claudins
and JAMs) and adherens junctions (VE-cadherin), which de-
fine endothelial pore size and can be dynamically regulated
at the expression level and through internalization, to finely
tune endothelial permeability and regulate the passage of
macromolecules and cells55–57 (Figure 3). Accumulating evi-
dence suggests IEJ disruption as a potential pathophysiologi-
cal mechanism in cardiac diseases. Importantly, endothelial
expression of claudin-5, a critical player in size-selective bar-
rier function, is reduced in human end-stage HF hearts.58 This
was also shown in experimental diastolic dysfunction induced
by western diet, where claudin-5 and occludin
down-regulation was associated with increased vascular
permeability,59 an effect attenuated by amiloride, suggesting
an important role for endothelial ENaC expression and so-
dium overload. Regarding adherens junctions, reduced VE-
cadherin/β-catenin expression in dilated cardiomyopathy
was associated with endothelial cell degeneration,60 whereas
in post-ischaemic MO, Src inhibition prevented VEGF-medi-
ated disruption of Flk/VE-cadherin/β-catenin complex and at-
tenuated post-ischaemic MO, fibrosis and mortality.61 In
addition, key risk factors for HF development and progression
have been shown experimentally to promote endothelial
hyperpermeability by disrupting EIJ, namely, renin-angioten-
sin-aldosterone system activation,62 inflammation,63,64

hypoxia,65 cardioplegic arrest,66 hyperglycaemia,67 oxidative
stress,68 increased circulating LDL69,70 and free fatty acid71

levels.

The endothelial surface layer

The endothelial glycocalyx (eGC) covers the apical side of en-
dothelial cells and consists of a complex meshwork of varied
membrane-associated macromolecules72–74 (Figure 3). These
include proteoglycans and glycoproteins, forming a backbone
in which soluble proteins, plasma- or endothelial-derived, are
incorporated. eGC proteoglycans are constituted by linear
core proteins, mostly Syndecan-1, to which multiple glycos-
aminoglycans (GAGs) side chains can be covalently attached.
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GAGs are highly polyanionic compounds composed of disac-
charide repeating units which can be non-sulfated [hyal-
uronic acid (HA)] or sulfated (chondroitin sulfate, dermatan
sulfate, keratan sulfate and heparan sulfate). Together, they
form a negatively charged surface that will enable electro-
static interactions with plasma cations, mostly with divalent
metal cations (e.g. Ca2+), but also with Na+ due to its high
plasma concentration.75,76 The resulting high cation concen-
tration at the interface with the plasma enables negatively
charged circulating proteins (albumin, antithrombin III and

thrombomodulin), that would otherwise not be able to elec-
trically interact with the glycocalyx, to approach and incorpo-
rate this layer, forming together the endothelial cell surface
layer (ESL).77,78 The ESL, measuring between 0.2 and
2.0 mm in vivo, is therefore a highly complex structure with
critical functions in microvascular physiology by (i) physically
shielding the underlying endothelium from luminal aggres-
sions; (ii) regulating microvascular flow by transmitting
shear-stress forces; (iii) constituting a barrier for plasma pro-
teins and ions, thereby maintaining intravascular oncotic

Figure 3 Molecular interactions in myocardial fluid balance. The myocardium is composed by cardiomyocytes, microvascular capillaries enclosed by
pericytes and lymphatic capillaries: fluid is filtrated in microvascular capillaries, through the endothelial surface layer and interendothelial junctions.
In the myocardial interstitium, fluid entry is limited by type I and type III collagen fibres and GAGs, extracellular matrix components that act as a buffer
for Na

+
and water. Interstitial and intracellular water are in delicate balance, maintained by cardiomyocyte volume regulators. Interstitial fluid (IF) and

solutes are collected by initial lymphatic capillaries, enabling a continuous IF renovation, which is returned ultimately to the venous circulation. (A).
Cardiomyocyte ionic transporters: cardiomyocytes closely regulate intracellular water entry and extrusion. Water enters through aquaporins or pas-
sively diffuses through the cell membrane, according to osmotic gradients established by ionic and solute concentrations. (B). Endothelial cell–pericyte
interaction: these cells establish close paracrine and physical (N-cadherin) interactions regulating microvascular stability. Endothelial cells secrete
PDGF-BB that binds to PDGFR-β, promoting pericyte recruitment and microvascular integrity, whereas pericytes secrete angiopoietin 1 (Ang-1), which
acts on Tie-2 and stabilizes endothelial cells. (C). Endothelial surface layer and interendothelial junction: the endothelial surface layer is composed by
endoluminal glycocalyx, which binds plasma proteins and protects endothelial cells. Furthermore, endothelial cells establish varied connections, main-
taining cohesiveness and cell survival. (D). Lymph drainage in initial lymphatic capillary: fluid enters the lymphatic vasculature via lymphatic capillaries,
which are blunt-ended vessels attached to the extracellular matrix by anchoring filaments. Lymphatic endothelial cells overlap, creating valve-like
structures that promote unidirectional lymph flow. These vessels converge progressively from the subendocardium to the subepicardium, forming epi-
cardial lymphatic collectors. ALK-1 and -5, anaplastic lymphoma kinase-1 and 5; Ang-1, angiopoietin-1; AngII, angiotensin II; Aqp, aquaporins; GAG, gly-
cosaminoglycans; HA, hyaluronic acid; JAMs, junctional adhesion molecules; NBS, Na+/HCO3

� Symporter; NCX, Na+/Ca2+ exchanger; NHE, Na+/H+

exchanger; PDGF-BB, platelet-derived growth factor BB; PDGFR-β, PDGF receptor β; TGF-β, transforming growth factor β; TGFR-β2, TGF receptor β2;
Tie-2, angiopoietin-1 receptor.
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pressure; (iv) avoiding platelet aggregation by accumulating
platelet-inhibitory factors (antithrombin III and thrombomod-
ulin) and physically restricting its interaction with
subendothelium at the endothelial gaps; (v) inhibiting endo-
thelial proinflammatory activation (i.e. increased permeabil-
ity and adhesiveness) by binding circulating cytokines; and
(vi) limiting the access and adhesion of circulating immune
cells to the EC surface.79,80,81

The ESL structure is maintained by a fragile balance be-
tween flow and enzymatically mediated shedding, and de
novo production of its components.82 Not surprisingly, most
pathological mechanisms shown to increase microvascular
barrier permeability act concomitantly on IEJ and ESL,
namely, in inflammation, ischaemia–reperfusion,83 hypoxia84

and hyperglycaemia.85 Importantly, the activity of
glycocalyx-degrading enzymes (i.e. hyaluronidases,
heparanase and MMPs) is increased in the setting of inflam-
mation, which, in combination with endothelial CAM overex-
pression, facilitates leukocyte adhesion and diapedesis.86 The
importance of the permissive effect of ESL degradation on
cardiac leukocyte infiltration has been shown in myocardial
infarction,87,88 viral myocarditis89 and sepsis,90,91 aggravating
the myocardial inflammatory injury. Moreover, degradation
of eGC components (hyaluronan92 and heparan sulfate93)
has been shown to promote MO by increasing microvascular
permeability to water and proteins.

Perhaps, the more striking association between eGC and
HF is the fact natriuretic peptides (NP), mostly produced by
cardiomyocyte stretching in the setting of hypervolemia and
ventricular overload, have been repeatedly shown to pro-
mote eGC degradation.94–98 This effect seems to act concur-
rently with Na+ overload, which also leads to the
destabilization and collapse of the eGC, mainly through loss
of heparan sulfate residues, an effect attenuated by the use
of spironolactone.99 This can be interpreted essentially as a
compensatory mechanism, by enabling the escape of exces-
sive intravascular fluid and sodium to the interstitium, which
has a high Na+ buffering capacity due to its GAG content,100

and acting in conjunction with NP-mediated venodilation to
reduce cardiac overload. However, eGC degradation in the
setting of myocardial functional impairment might also carry
some drawbacks. In addition to eGC degradation being an in-
herently proinflammatory stimuli for EC,101,102,103 the impair-
ment of glycocalyx Na+ buffering capacity may increase the
amount of Na+ presented to the endothelium, promoting in-
tracellular endothelial Na+ overload and increased transport
to the interstitium, resulting in endothelial dysfunction and
aggravated interstitial oedema, respectively.104,105,106 Fur-
thermore, this combined effect of hypervolemia and Na+

overload also has important implications in the critical care
setting (e.g. cardiogenic and septic shock),107,108 where the
frequently excessive crystalloid resuscitation might disrupt
microvascular barrier function and complicate haemody-
namic management and prognosis. Despite its proposed

pathophysiological importance, a direct observation of ESL
disruption in HF is still lacking.

Cardiac pericytes

Cardiac pericytes (CPc) are a highly heterogeneous popula-
tion of perivascular contractile cells that ensheath and inti-
mately interact with underlying endothelial cells, forming a
microvascular syncytium.109,110 Despite conflicting reports,
recent data suggest that CPc cover up to 99% of the length
of the myocardial microvasculature.111 CPc share the base-
ment membrane with EC and establish numerous physical in-
teractions, ensuring an adequate control of microvascular
permeability. Moreover, an intense reciprocal communication
between CPc and EC takes place through gap junctions and
paracrine factors, which has been shown to be especially rel-
evant for angiogenesis and stabilization of newly formed
vessels101 (Figure 3). Importantly, multiple pericyte pheno-
types with distinct cell-surface marker signatures and variable
expression of contractile proteins have been shown to be dif-
ferentially distributed across the arteriolar, microvascular and
venular sections of coronary vasculature.99,112 Such diversity
probably underlies distinct pathological roles attributed to
pericytes in the context of myocardial injury and remodeling.

Extensive evidence supports a key role for CPc in the regu-
lation of myocardial microvascular flow and permeability. In-
deed, the disruption of key trophic and homeostatic
pathways for CPc, namely, PDGF-BB/PDGFR-β,113,114 Ang-1/
Tie2,115,116 Sirtuin-3117,118 and Notch3,119,120 has been shown
to decrease CPc density and EC coverage, resulting in in-
creased microvascular permeability in response to injury,
MO and functional impairment. Importantly, common obser-
vations in genetic and drug-induced CPc dysfunction are in-
creased microvascular tortuosity and decreased coronary
reserve in response to vasodilator challenge, with cardiac
up-regulation of hypoxia-related genes.121 In knockout
mouse models, the genetic ablation of Notch3122 and
Sirtuin-3123 impairs microvascular maturation and pericyte/
EC interaction, exacerbating ischaemic injury and hindering
post-ischaemic functional recovery. Similar observations were
made in experimental models of endotoxemia and
diet-induced obesity, in which Sirtuin-3 has been shown to
be down-regulated.124,125 Accordingly, in the setting of isch-
aemic injury, cardiomyocyte-derived proNGF activates p75
neurotrophin receptor, causing pericyte process retraction,
resulting in a lack of support of the microvascular endothe-
lium and perivascular oedema.126 Moreover,
Hypoxia-Induced Endoplasmic Reticulum Stress Regulating
(HypER) lncRNA, which promotes pericyte proliferation, via-
bility and interactions with EC, is down-regulated in human
HF,127 supporting pericyte degeneration as a potentially im-
portant pathophysiological mechanism.
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In line with the diversity of CPc phenotypes and functional
roles in the setting of myocardial ischemia, CPc have also
been implicated in the no-reflow phenomenon.128 Impor-
tantly, some pericyte subpopulations express variable
amounts of myosin and actin isoforms (α-SMA and γ-actin),
having the ability to contract and relax in response to multi-
ple paracrine factors (catecholamines and adenosine).129,130

Being circumferentially disposed around capillaries, CPc con-
traction can decrease microvascular flow and theoretically re-
duce capillary luminal diameter enough to impede the
passage of leukocytes. Indeed, in an ischaemia/reperfusion
injury model, post-ischaemic capillary blockage sites have
been shown to be disproportionally close to pericytes, sug-
gesting ischemic CPc contraction, probably mediated by an
increase in intracellular Ca2+,131 as an important mediator of
impaired reoxygenation of ischemic tissue following myocar-
dial revascularization.132

In inflammatory conditions, CPc detachment from EC sur-
face was associated with differentiation into myofibroblasts
and increased production of ECM, potentially contributing
to pathological myocardial remodelling.134,135 In fact,
galectin-3, a well-validated biomarker and mediator of car-
diac fibrosis in HF patients,136 has been shown to stimulate
pericyte proliferation and procollagen I secretion.137 This is
in accordance with observations in angiotensin II-induced
myocardial hypertrophy model, in which Gli1+ cells were
shown to consist in a subpopulation of pericytes that, in the
setting of injury, differentiate into myofibroblasts and pro-
duce ECM in perivascular and interstitial spaces.138 Further
supporting this role of CPc, in a clinically relevant rat model
of HF with preserved ejection fraction (ZSF1 obese rats), de-
creased EC coverage was associated with subendocardial foci
of CPc proliferation, which colocalized with ECM deposition
and inflammatory cell infiltration.139 Consistently with this
finding, pericytes have been shown to respond to proinflam-
matory stimuli with overexpression of cytokines, chemokines
and CAMs,140 regulating immune cell diapedesis.141 In the
setting of experimental sepsis, inflammatory-mediated CPc
loss facilitates the infiltration of immune cells in cardiac
interstitium.142 These findings highlight the fact that, beyond
being key determinants in the microvascular barrier, pericytes
may detach from endothelial cells and promote interstitial re-
modelling in inflammatory injury.

Myocardial interstitium

The myocardial interstitium is a highly organized and com-
pact structure, comprised by fibrillar collagen, non-collagen
matrix proteins, proteoglycans, GAGs and a wide array of bio-
active signalling molecules143 (Figure 3). Cardiomyocytes are
enclosed in a basement membrane, mostly constituted by
integrins, laminin and fibronectin, behaving as anchoring
points for fibrillar collagen and other matrix components

(proteoglycans and GAG) attachment. Collagens (type I and
III) are the predominant components of cardiac ECM, and
their high tensile strength is assumed to be the main
contributor for ECM structural integrity.144 Cardiac ECM ar-
chitecture enables an effective force summation of individu-
ally contracting cardiomyocytes, allowing a coordinated
myocardial tissue contraction, while at the same time main-
taining adequate spatial relationships between cells, which
prevents cardiomyocyte overstretching, preserves intercellu-
lar connections and opposes microcirculatory collapse.

Cardiac ECM composition is an important determinant of
interstitial space volume and pressure. The interstitial space
is densely crowded with intertwined components, which oc-
cupy the available physical space and limit the entrance of
plasma proteins or cells, a phenomenon called steric intersti-
tial exclusion.2 Given their polyanionic nature, interstitial
GAGs futher contribute to limit the entrance of plasma pro-
teins, while also binding free ions (mostly Na+) and annulling
their osmotic force.93 Interestingly, changes in sulfated GAG
conformation are associated with decreased Na+ buffering
capacity and interstitial oedema.93 Moreover, the high stiff-
ness of cardiac ECM not only preserves cardiomyocyte func-
tion by generating passive tension and avoiding tissue
overstretching but also confers a low interstitial compliance
to the myocardium and opposes interstitial space
expansion.145 Consequently, in the setting of increased
transcapillary filtration, interstitial fluid (IF) buildup stretches
the ECM, causing a steep increase in interstitial pressure,
which, in turn, forces IF into the lymphatic system.22

Alterations in ECM architecture or composition critically in-
fluence myocardial function. Increased ECM deposition,
mainly in the form of collagen, has been recognized as an im-
portant mechanism of increased stiffness and diastolic dys-
function in most forms of chronic HF.16 However,
mechanical and enzymatic disruption of the ECM also signifi-
cantly impairs myocardial systolic and diastolic function by
compromising force transmission by displacing collagen
struts from their anchoring points and breaking intercellular
connections.146,147 Moreover, inflammation-driven up-regula-
tion of ECM-degrading enzymes promotes both ECM and
basement membrane degradation, decreasing interstitial ex-
clusion effect and facilitating the interstitial passage of fluid,
proteins and immune cells.148 ECM degradation has been
shown in acute high-grade myocardial inflammation, espe-
cially in experimental myocarditis149 and sepsis,150 where a
significant acute decrease in total myocardial collagen con-
tent and collagen degradation were observed and associated
with MO, systolic and diastolic dysfunction. Further
supporting this experimental observation, post-mortem eval-
uation of human septic myocardium found significant ECM
disruption and interstitial oedema at the subepicardium,
which colocalized with macrophage infiltration and cardio-
myocyte apoptosis.45 Importantly, disruption of collagen
struts may also increase coronary microvasculature suscepti-
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bility to external compression, which might compromise MBF
in the setting of oedema-associated increased interstitial
pressure.36,123

Interestingly, chronic oedematous states produced by in-
creased microvascular filtration or decreased lymphatic
drainage are associated with increased myocardial collagen
deposition.3,4 The interstitial remodelling may be interpreted
as a compensatory mechanism, by decreasing interstitial
compliance and preventing interstitial expansion, therefore
minimizing the disruption of cardiac architecture. However,
increased collagen deposition also causes long-term detri-
mental effects on overall myocardial compliance and
function.151

Impaired turnover of non-collagen ECM elements can also
promote fibrosis and have detrimental effects on myocardial
function. HA is observed in healthy cardiac ECM in its high-
molecular-weight HA form and has a unique capacity to bind
and retain water molecules.152 Interestingly, while eGC HA
degradation has been consistently associated with endothe-
lial dysfunction, increased microvascular permeability and
MO,85,153 cardiac interstitial accumulation of HA, has similarly
been shown to promote MO and structural remodelling.154

Cardiac interstitial accumulation of HA is normally associated
with increased interstitial water content and MO, and is ob-
served in myocardial infarction,155 hypertrophic
cardiomyopathy,156 myocarditis157 and experimental cardiac
transplant rejection.158,159 Curiously, hyaluronidase treat-
ment was able to decrease MO in rejected heterotopic
transplants,160 whereas accumulation of low-molecular-
weight HA (LMWHA) in hypertrophic cardiomyopathy is not
associated with increased water content,161 raising the possi-
bility of distinct contributions of high-molecular-weight HA
and LMWHA for oedema generation. Indeed, in the setting
of inflammation and myocardial injury, production of LMWHA
is preponderant and has been shown to stimulate TLR inflam-
matory signalling pathways.127 Collectively, these results un-
derscore the importance of GAG structure, composition and
regional distribution for IF balance.

Cardiac lymphatic system

The cardiac lymphatic system is essential in maintaining myo-
cardial fluid balance and immunological homeostasis.139 It
represents the main route for the removal of cellular metab-
olites, allowing the continuous IF renewal while avoiding the
buildup of interstitial volume and pressure.2 Additionally, an
immunomodulatory role has also been attributed to cardiac
lymphatics due to the washout of proinflammatory mediators
and immune cells from the myocardial interstitium in the set-
ting of myocardial injury.162,163

Lymphatic capillaries are highly specialized blind-ended
structures, composed by oak-leaf shaped lymphatic endothe-
lial cells (LEC), which mostly lack basement membrane and

are connected by permeable flap-like intercellular junctions
that favour unidirectional passage of IF, solutes and immune
cells164,165 (Figure 3). Moreover, cardiac LEC are connected to
the surrounding ECM and cardiomyocytes by structures des-
ignated as anchoring filaments, constituted by type VII colla-
gen projections, integrins and focal adhesion kinases.
Anchoring filaments maintain lymphatic patency by exerting
tensile forces and opening the lumen of lymphatic capillaries,
facilitating lymphatic flow.166,167 Anatomically, the lymphatic
capillary plexus progressively converges from the
subendocardium to the subepicardium, suffering structural
alterations along the way, namely, the appearance of a con-
tinuous basement membrane, intraluminal valves to promote
unidirectional flow, tight junctions, and, in larger trunks out-
side the myocardium, an adventitial layer and surrounding
smooth muscle cells to help pump lymph.168,169 Subepicardial
lymphatic pre-collectors converge to form epicardial lym-
phatic collectors that transport cardiac lymph via lymph
nodes towards thoracic ducts, ultimately draining into the su-
perior vena cava.170

Several factors influence cardiac lymph flow, most of which
known to be unique to the heart. A distinctive feature of the
intramyocardial lymphatic system is the absence of smooth
muscle in intramyocardial vessels. Therefore, lymph flow is
highly dependent on external forces, namely, muscle contrac-
tion and deformation along the cardiac cycle, heart rate and
contractility.1 However, factors not intrinsic the heart func-
tion also impact lymph drainage. By concentrating interstitial
metabolic products and proteins, lymph oncotic pressure ex-
ceeds interstitial oncotic pressure, promoting water osmotic
dragging and fluid drainage.1 Coronary venous pressure is
also an important regulator of lymph flow. Experimental cor-
onary sinus blockade increases capillary hydrostatic pressure
and promotes fluid filtration upstream, which requires com-
pensatory lymphatic dilation and increased lymph flow to
maintain fluid homeostasis.13,14,147 On the other hand, down-
stream, because lymph is ultimately drained into the venous
circulation, increased central venous pressure acts synergi-
cally with decreased contractility to impair lymph flow in
acute HF, promoting MO.16,93

The frequent observation of MO in several aetiologies of
HF suggests that cardiac lymphatic inability to respond to in-
creased filtration is a rather common finding. Despite the rec-
ognized ability of the healthy heart to respond to an
increased capillary filtration by increasing lymph drainage
severalfold,1 multiple disease mechanisms may render the
cardiac lymphatic system incapable to cope. In this setting,
lymphatic dysfunction will not only promote accumulation
of a protein-rich IF, which contributes to microvascular and
cardiomyocyte stress, but will also have a proinflammatory
effect by decreasing the clearance of proinflammatory
cytokines and immune cells.171 Prolonged residence of cellu-
lar debris, inflammatory mediators and cells in myocardial in-
terstitium will aggravate and prolong myocardial
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inflammation, especially in the setting of myocardial infarc-
tion and myocarditis.172 Furthermore, the distortion of inter-
stitial architecture mediated by oedema and the activation of
collagen and GAG-degrading enzymes may have a negative
impact on anchoring filaments and initial lymphatics, further
compromising lymphatic patency and function. Whereas
acute lymphatic obstruction leads to oedema, chronic ob-
struction is associated with interstitial fibrosis and ECM
remodelling.125 Moreover, given the close proximity of the
lymphatic and electrical conduction system, lymphatic dys-
function has also been shown to be associated with electrical
disturbances.173

Lymphangiogenesis, the process of producing new lym-
phatic vessels is known to be a dynamic process mainly regu-
lated by VEGF-C and VEGF-D binding to lymphatic-specific
receptor VEGFR3, and to be affected by inflammation and
other cardiovascular factors (diabetes and obesity).146 In
acute inflammation174 and in myocardial infarction,175 higher
fluid filtration increases the need for lymph drainage, with
resulting up-regulation of lymphangiogenic factors. However,
this endogenous response appears to be insufficient and to
result in deficient lymphangiogenesis, with a predominance
of lymphatic capillaries and lack of pre-collectors. In fact, in
post-infarct mouse models, stimulating lymphangiogenesis
with exogenous VEGF-C or adrenomedullin increases lymph
flow, decreases MO, attenuates myocardial inflammation
and fibrosis and improves cardiac function.176–180 Still, this
promising therapeutic avenue has been recently questioned
by the absent impact of genetic blockade of lymphangiogen-
esis on cardiac function after experimental myocardial
infarction.181

Cardiomyocyte volume regulation

The cardiomyocyte membrane is highly permeable to water,
which moves passively according to osmotic gradients and di-
rectly sets cell volume.182 Normal cell function requires a sta-
ble volume and excessive water entry may disrupt membrane
and cytoskeleton integrity. To prevent abrupt cell volume al-
terations, intracellular osmolarity is highly controlled, either
with active ionic fluxes or the synthesis/degradation of os-
motically active solutes39,183 (Figure 3).

In the isotonic steady-state, intracellular osmotic pressure
exceeds extracellular osmotic pressure due to celullar con-
centration of organic phosphates and proteins, thus favouring
passive water entry. To maintain the volume constant, the
membrane Na+/K+ ATPase promotes the exit of 3 Na+ and en-
try of 2 K+ ions, a phenomenon known as the ‘Pump and
Leak’ concept. Together with low Na+ membrane permeabil-
ity, both mechanisms contribute to maintain a low
intracellular [Na+] and a constant transmembrane gradient,
on which many ionic transporters that regulate cell volume
are highly dependent. In myocardial ischaemia, Na+/K+ ATPase

dysfunction results in extracellular accumulation of K+, intra-
cellular accumulation of lactate, Na+ and Cl- and consequent
cell swelling and membrane depolarization.159,160

Furthermore, anaerobic metabolites accumulate in extracel-
lular and intracellular spaces. Following reperfusion of the
coronary vessels will re-establish water delivery and wash
out extracellular, but not intracellular, metabolic products,
creating an osmotic gradient that promotes cell swelling.
Highlighting the pathophysiological importance of cardio-
myocyte oedema in ischaemia/reperfusion injury, reperfusion
with a hypertonic solution limited MO and infarct size, when
compared with isotonic solution.184,185

Cell swelling depolymerizes actin filaments and disrupts cy-
toskeleton interactions with membrane proteins.159 Of note,
cardiomyocyte swelling induced by ischaemia–reperfusion in-
jury was associated with variable degrees of mitochondrial
damage, cytoskeleton abnormalities and significant increases
in sarcomere length, radial distance between myofibrils and
distance between mitochondria and myofibrils, repercussing
on maximal tension and calcium sensitivity.186 Accordingly,
swelling of isolated cardiomyocytes induced by hypotonic
medium was associated with lower contractility and activated
NO/cGMP/PKG pathway.158

Despite most of myocardial water being confined to the in-
tracellular compartment, few studies have addressed the
pathophysiological role of cardiomyocyte swelling in HF.

Clinical perspective

In clinical research and practice, MRI stands out as the
gold-standard method for non-invasive MO evaluation,
based on its ability to identify the tissue ‘free’ water pool.
‘Free’ water molecules rotate very rapidly when subjected
to a magnetic field and produce long T1 and T2 relaxation
times, whereas ‘bound’ water molecules have their motion
restricted due to hydrogen bonding with macromolecules,
producing short T2 relaxation time values. The recent intro-
duction of parametric mapping techniques—T1, T2 and
extracellular volume, has enabled the detection of subtle
changes in myocardial free water content and precise
estimation of the interstitial fraction volume and
composition.187

Making use of aforementioned MRI capabilities, evidence
supporting the disruption of myocardial water balance has
been shown in a broad range of cardiac and systemic diseases
(Table 1). Overall, the increase in myocardial free water con-
tent is generally associated with depressed left ventricular
function, increased NP plasma levels, disease progression
and severity, and poor prognosis (Table 1). Nevertheless,
due to the observational nature of these studies, a causal as-
sociation between the presence of MO, LV dysfunction and
cardiac prognosis could not yet be drawn.
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Myocardial oedema has been particularly well-studied in
the acute setting of ischemic heart disease, in which it may
have a role on early injury during reperfusion and also late
tissue healing.165–171 During the initial phase of reperfusion,
MO may contribute to the pathophysiological process of
microcirculation compression and perfusion defects under-
lying the ‘no-reflow’ phenomenon.171,172 MO is also detect-
able later, at the time of tissue healing and collagen
deposition,166 which discloses the complex interplay be-
tween myocardial fluid balance and inflammation and un-
derscores the need for a cautious interpretation of MRI
assessment of infarcted and at-risk myocardium.171,173 In-
terestingly, patient comorbidities might impact on the de-
velopment of MO in a disease-specific and somewhat
unpredicted way, underscoring the lack of clinical knowl-
edge on this topic. As an illustration, diabetes was
shown to aggravate post-ischaemic MO,174,175 whereas the
opposite effect may be present in Takotsubo
cardiomyopathy.176

Myocardial oedema has not been evaluated as an end-
point in HF randomized clinical trials, and the effect of most
drugs on myocardial fluid balance is currently unknown.
However, pre-clinical evidence supports the beneficial effect
of spironolactone92 and SGLT2 inhibitors177 by protecting en-
dothelial glycocalyx. Interestingly, these two drug classes
were shown to provide clinical benefit across a wide ejection
fraction range in HF,178–181 supporting a possible role for
myocardial fluid balance among their mechanisms of action.
Other drugs have proved useful to protect microvascular bar-
rier in distinct clinical scenarios and may oppose MO forma-
tion. Of note, aprotinin, a fibrinolysis inhibitor, preserves
adherens junctions and reduces MO in experimental
cardioplegic arrest,65 whereas in sepsis, hydrocortisone182

and sulodexide, a mixture of GAGs (heparan and dermatan
sulfates),183 may protect the glycocalyx and diminish oedema
formation.

In contrast, some drugs may facilitate the development of
MO by impacting on microvascular filtration and ESL preser-
vation. NP are known disruptors of the ESL89,91 and BNP
levels correlate with myocardial water content across several
clinical scenarios (Table 1), an association not yet known to
be causal. However, it is tempting to speculate that this effect
might have contributed to the somewhat disappointing re-
sults of BNP analogue nesiritide in the setting of acute HF
treatment.184 In line with this, neprilysin is a known regulator
of microvascular permeability by increasing the half-life of NP
and bradykinin,185 suggesting that sacubitril may also perturb
microvascular barrier function.230 Preclinical evidence sug-
gests that beta-blockers186 and calcium channel blockers187

may increase microvascular permeability, an effect not yet
observed in the myocardium.

Finally, experimental data suggest that stimulators of
lymphangiogenesis (e.g. VEGF-C and adrenomedullin) may
accelerate oedema resolution after myocardialTa
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infarction,152,231 but clinical studies are needed before con-
sidering this therapeutic pathway in HF.

Conclusion

In the failing heart, myocardial fluid balance is disrupted
due to alterations in microcirculation dynamics, microvascu-
lar barrier, extracellular matrix composition and lymphatic
function. Experimental data suggest that MO significantly
impairs cardiac performance, affecting systolic and diastolic
properties and promoting long-term adverse remodelling.
In the last decade, CMR has been increasingly used for
HF phenotyping and data suggest the increase in myocar-
dial free water content as relevant pathophysiological

mechanism of cardiac injury and dysfunction, also repre-
senting an important prognosticator across multiple cardiac
and systemic diseases. The recent advances in the knowl-
edge of microvascular barrier and lymphatic function open
the prospect for novel therapeutics targeting myocardial
fluid disturbances in HF.
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