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Simple Summary: Genetic diversity in wildlife is a matter of growing concern in contexts related to
disease transmission and human health. Tuberculosis is a zoonotic disease with relevant consequences
and can present high prevalence in wild boar and red deer populations. Here, we review studies on
the genetic diversity of ungulates, wild boar, and red deer, and assess to what extent these studies
consider its importance in the spread of disease. The relationship between host genetic diversity and
the probability of disease spread is illustrated in Spanish populations of wild boar and red deer.

Abstract: Host genetic diversity tends to limit disease spread in nature and buffers populations
against epidemics. Genetic diversity in wildlife is expected to receive increasing attention in contexts
related to disease transmission and human health. Ungulates such as wild boar (Sus scrofa) and
red deer (Cervus elaphus) are important zoonotic hosts that can be precursors to disease emergence
and spread in humans. Tuberculosis is a zoonotic disease with relevant consequences and can
present high prevalence in wild boar and red deer populations. Here, we review studies on the
genetic diversity of ungulates and determine to what extent these studies consider its importance
on the spread of disease. This assessment also focused on wild boar, red deer, and tuberculosis. We
found a disconnection between studies treating genetic diversity and those dealing with infectious
diseases. Contrarily, genetic diversity studies in ungulates are mainly concerned with conservation.
Despite the existing disconnection between studies on genetic diversity and studies on disease
emergence and spread, the knowledge gathered in each discipline can be applied to the other. The
bidirectional applications are illustrated in wild boar and red deer populations from Spain, where TB
is an important threat for wildlife, livestock, and humans.
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1. Introduction

Genetic diversity favors population conservation and individual survival. At popula-
tion level, loss of genetic variation compromises evolutionary response to environmental
change [1–3]. At the individual level, inbreeding reduces fitness [4,5]. Loss of population
genetic diversity and inbreeding depression have received great attention in wildlife con-
servation and captive breeding programs [6–10]. However, genetic diversity of wildlife
may be in growing concern in contexts related to disease transmission and human health.

Most human infectious diseases originate from animals [11–14]. Scientists have
pointed out the significant threat of infectious diseases to global health, global economy,
and global security [15–17]. Since 2020, humanity is becoming aware of the global effects
of infectious diseases [18–20] and studies propose that the frequency of this threat is on
the rise [12,21]. Efforts to minimize the emerging of infectious diseases are expected to
increase. Research focusing on different aspects of disease emergence and transmission
will support these efforts.
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A positive relationship between host genetic diversity of genetic markers and pathogen
resistance (heterozygosity–fitness correlation) has been detected in different species [22–32].
Three hypotheses might explain this relationship [33]: the direct effect hypothesis, posing
a direct link of the assessed genetic markers with parasite resistance, the local effect
hypothesis, asserting that the assessed genetic markers are in linkage disequilibrium with
fitness-linked loci, and the general effect hypothesis, claiming that genome-wide diverse
individuals are relatively more resistant to diseases. Recent studies have shown that
pathogen resistance is mainly achieved thanks to diversity of genes related to the immune
system rather than genome-wide diversity [34,35], these results provide support to direct
effect or local effect hypotheses.

Studies on the relationship between diversity of immune genes and pathogen resis-
tance have focused on the major histocompatibility complex (MHC). MHC genes drive
the adaptive immune response, and their diversity promotes the number of pathogens
recognized [35,36]. Diversity at MHC genes is maintained by balancing selection [37–39],
and three mechanisms have been proposed to explain the advantage of MHC variabil-
ity: overdominance or heterozygote advantage, rare allele advantage, and fluctuating
selection [40].

Despite the fact that MHC genes have been the focus of considerable research [41,42],
they only represent a fraction of the immune system. Other candidate genes have been
shown to induce the relationship between genetic diversity and pathogen resistance or
tolerance in hosts. For instance, Turner et al. [43] found that genetic diversity of cytokines
is associated with variation in resistance to multiple pathogens, in a population of field
voles (Microtus agrestis). Amino acid variation in the prion protein gene has been related
to the probability of infection with chronic wasting disease and its progression following
infection [44,45]. Quéméré et al. [22] have recently shown that diversity in Toll-like receptor
genes in Alpine ibex (Capra ibex) affect Brucella infection status.

Due to its relationship with pathogen resistance, host genetic diversity reduces pathogen
prevalence, rate of pathogen adaptation to host, and pathogen virulence [46–51]. Therefore,
host genetic diversity tends to limit disease spread in nature and buffers populations against
epidemics [52–55]. Accordingly, genetic diversity of host populations deserves an increasing
interest in contexts related to disease transmission and human health.

Patterns of genetic diversity have been broadly studied in population conservation
contexts [6,8,56–59]. In addition to describing the patterns, these studies tend to investigate
the factors and processes potentially affecting genetic diversity. Gene flow and genetic drift
have been proposed as major processes affecting population genetic diversity [60–64]. On
the other hand, past demographic history can also have a deep impact on the relationship
between genetic diversity and fitness [65,66]. A sudden bottleneck can reduce genetic
diversity and increase inbreeding and, hence, it tends to enhance the susceptibility to
infectious diseases [67,68]. Contrarily, slow, long-term declines favor the action of natural
selection that can purge deleterious alleles and favor population viability [69–71]. Therefore,
a reduction in genetic diversity might have different outcomes over fitness of individuals
and population viability. Nonetheless, the knowledge of the action of processes affecting
genetic diversity can be important, not only for population conservation, but also to predict
or manage the spread of infectious diseases. Wildlife management policies that reduce the
risk of disease spread might also take into account all of the factors affecting gene flow,
genetic drift, and hence, the genetic diversity of host populations.
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2. Impact of Infectious Diseases on Host Populations

Throughout generations, interactions with pathogens produce evolutionary changes
in host populations [39,72]. In a host population, pathogen infections favor genotypes with
higher resistance (ability to limit pathogen burden [73,74]) or tolerance (ability to limit
disease severity induced by a given pathogen burden [73]). Despite the fact that resistance
diminishes pathogen virulence and prevalence (see above), tolerance has a nearly neutral
effect on pathogen fitness and does not tend to reduce disease spread [75]. In addition to
changes in resistance or tolerance, diseases can have other impacts on host populations:
population reduction, changes of age structure, alteration on life-history parameters, or
effects on genetic diversity [76]. However, the presence of pathogens can also cause changes
to host behavior.

Mate choice is a behavioral process highly influenced by the action of pathogens. For
instance, individuals can avoid infected mates to reduce pathogen transmission [77–79].
However, host–pathogen interactions have induced evolutionary processes that are re-
sponsible for the functioning of other mate choice-related behaviors. Firstly, evolutionary
models explain that females choose to mate with males with extravagant ornaments, be-
cause these males prove their resistance or tolerance to pathogens [80]. On the other
hand, individuals (mainly females [81,82]) can choose genetically dissimilar mates to
promote genetic diversity of descendants and, hence, their capacity to resist or tolerate
pathogens [83–85]. However, the existence of infectious diseases might boost individuals
to choose mates with the same level of infection, a behavior that tends to favor genetically
similar mating and loss of population genetic diversity [86,87].

Studies have also investigated the effects of infectious diseases on dispersal behavior
that, in turn, influence the genetic structure of populations [88,89]. Demographic declines
that follow disease outbreaks increase resource availability and decrease dispersal advan-
tages. Consequently, the low need for dispersal reduces gene flow and enhances genetic
differentiation. However, the expected reduction in genetic diversity as a consequence of
low dispersal might be counteracted by the effect of balancing selection acting on immune
genes during the disease outbreak [90].

Pathogen–host coevolutionary dynamics may be characterized by fluctuating selection
(FS), where host genotypes may be at any moment more resistant to contemporary, com-
pared to past or future pathogens, or by arms races (AR), where both hosts and pathogens
tend to increase resistance/infectivity over time [91]. The FS dynamic is based on spe-
cialized interactions and, hence, it is typical of spatially structured environments. Mixing
locally adapted phenotypes may shift the coevolutionary interactions from FS to AR, due to
exposure to a higher range of genotypes selected for a wider range of resistance/infectivity
in both coevolutionary counterparts [92].

These coevolutionary dynamics can obviously be affected by human management of
populations and environments (see below), but also might have effects on the interaction
between dispersal and mating behavior. Since spatial variation causes the evolution of
locally adaptive immunity, individuals might tend to reduce the contact or refuse mating
with genetically different conspecifics harboring dangerous pathogens [93,94]. Genetically
different individuals might tolerate pathogens for which local immune systems might
not be prepared. They also include genes related to immune system that have not been
selected under the local pathogen–host coevolutionary dynamics. These characteristics
might make local individuals reluctant to contact and mate with genetically different
individuals proceeding from distant populations.
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3. Ungulates as Hosts

Many human infectious diseases originate from mammals [95,96]. Among mammals,
ungulates (a paraphyletic group that includes Artiodactyla and Perissodactyla orders) in-
clude a high proportion of wild species with zoonotic diseases. For instance, Han et al. [97]
found that 32% of wild ungulate species (73/247 species) were zoonotic hosts. The high
rates of disease transmission from wild ungulates to human have been mainly driven by
our contact with these species throughout human history [96,98,99]. Ungulates comprise
most domestic mammal species. Wild and domestic ungulates can present high levels of
contact and relatedness. This contact generates a wildlife–livestock interface where disease
transmission has been reported as a precursor to disease emergence in humans [96,100–102].
In addition to promoting species conservation, the maintenance of high levels of genetic
diversity in wild ungulates should reduce risks regarding the emergence of infectious
diseases, these risks being some of the most important threats to human health and the
global economy [103–105].

Genetic diversity of ungulates is being altered by human-mediated processes acting
on gene flow or effective size of populations. Due to hunting, competition with livestock,
and lost habitat, many ungulates occur in small or bottleneck populations [106,107]. An-
thropogenic barriers, such as highways, block gene flows [108–110]. Sex-biased harvesting
changes population structures and reduces effective population sizes [111,112]. These
processes tend to decrease ungulate genetic diversity and, hence, affect species conserva-
tion and the probability of infectious disease emergence and spread. Therefore, ungulate
management has relevant implications in conservation and public health prospects.

Despite human-mediated alterations of gene flows and effective population sizes,
studies addressing genetic diversity of ungulate populations focus primarily on conser-
vation prospects, rather than on its effects on disease emergence and spread (Figure 1,
and Tables S1 and S2). The search on the Web of Science (described in Figure 1) focused
on genetic diversity of ungulates and retrieved 204 papers. Only 23 (12.3%) of these
papers explicitly associated genetic diversity with diseases. This search showed studies
that relate host genetic diversity to the spread of infectious diseases [113] (see below);
studies on population genetic structure that highlight the importance of genetic diversity
on disease emergence, spread, or development [114–123]; studies that analyze genetic
loci or genetic metrics related to the ability of individuals and population to deal with
pathogens and diseases [124–126]; studies that associate low genetic diversity with the pres-
ence of non-infectious diseases, alterations, or distinctive traits [127–132]; and studies on
heterozygosity–fitness correlations that show expected [133] or unexpected results [134,135].
Contrarily, out of the 204 found papers, 101 studies (49.5%) explicitly relate genetic diver-
sity to conservation. Therefore, a notable disconnection appears between studies treating
ungulate genetic diversity and those dealing with infectious diseases in ungulates. The
emergence and spread of infectious diseases, as well as their threats for human health and
economy, might be explicitly added to conservation arguments when dealing with genetic
diversity of wildlife. This might also help to increase the incorporation of genetic diversity
on wildlife management policies that may currently be absent of insufficient [136–138].
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Figure 1. Number of published studies on genetic diversity for the most frequently studied ungulates.
Results from a search on the Web of Science with the following search terms: genetic diversity, inbreed-
ing, and ungulates (217 studies were obtained). Studies on genetic diversity of ungulate populations
published in scientific journals were selected (204 papers). Total: number of studies on genetic
diversity of ungulate populations published in scientific journals. Conservation: number of studies
that explicitly related genetic diversity to conservation (papers in which the word ‘conservation’
appeared in the title, abstract, or the name of the journal). Diseases: number of studies that explicitly
associated genetic diversity with diseases (papers in which the title, abstract, or name of the journal
used at least one of the following terms: ‘disease’, ‘pathogen’, ‘parasite’, any variation of ‘immunity’,
or the name of any disease). Bb: Bison bonasus, Bt: Bos taurus, Ce: Cervus elaphus, Cn: Cervus nippon,
Ec: Equus caballus, Ol: Oryx leucoryx, Oa: Ovis aries, Oc: Ovis canadensis, Ss: Sus scrofa. The search was
last consulted on 15 April 2021. See Tables S1 and S2.

4. Wild Boar, Red Deer, and Tuberculosis

Animal tuberculosis (TB) is a zoonotic infectious disease that affects domestic ungu-
lates and a wide range of wild animals, but it can also be transmitted to humans [139,140].
Because of its effects on wildlife, livestock, and humans, TB represents an important threat
to biodiversity, countries’ economies, and public health [141,142]. The causative agents
of TB in humans and ungulates are a group of closely related acid-fast bacilli, collectively
known as the Mycobacterium tuberculosis complex (MTBC [143,144]). Mycobacterium bovis
and M. caprae, both MTBC members are mainly found in domesticated cattle and goats,
but they are also frequently isolated from several wild animal species which can act as
reservoirs [143]. Additionally, M. bovis is the most successful zoonotic pathogen from the
MTBC [145–147] and it is one of the top 10 causes of death worldwide [148].

The relevance of the triad wild boar, red deer, and tuberculosis can be illustrated by the
situation in Spanish populations. In Spain, TB caused by M. bovis and M. caprae have been
detected in humans [149,150], and their prevalence in livestock remains high [151]. This
high prevalence might be a result of the presence of wild reservoirs of Mycobacterium bacilli,
mainly wild boar and red deer [152–157]. The ecology and behavior of wild reservoirs
influence the prevalence and dynamic of the infectious disease [153,158,159]. However,
population genetic diversity of these reservoirs might be important for TB prevalence.

Genetic diversity of wild boar and red deer populations influences both susceptibilities
to TB infection and risk of disease progression. Genetic diversity confers significant
resistance to M. bovis infection and modulates TB progression in wild boar [160,161].
Genetic diversity of red deer also positively correlates with the ability to control disease
progression, inbred populations presenting a higher risk for developing severe TB [113].
These studies highlight the importance of host genetic diversity in the epidemiology of
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infection. However, studies treating TB in wild boar and red deer rarely consider the role
of host genetic diversity on disease emergence or spread (Table 1, Figure 2, and Tables S3
and S4). Table 1 shows that the number of studies that explicitly consider the role of host
genetic diversity on disease emergence or spread is four studies for wild boar [160–163]
and three studies for red deer [113,117,120]. These studies relate host genetic diversity to
the spread of the infectious disease [113,160,161], analyze population genetic structure and
highlight its importance on disease emergence or spread [117,120], and propose methods
to detect heterozygosity–fitness associations [162,163]. Scientific bibliography presents
little information about the influence of host genetic diversity on a threat to wildlife,
livestock, and humans [141,142]. Authorities and wildlife managers might perceive that
host genetic diversity might not be a relevant issue to deal with TB in wild boar and red
deer populations. Therefore, we could be fighting TB without using all available weapons.
Research lines and management guidelines may increase the explicit use of the relationship
between reservoirs’ genetic diversity and TB prevalence and spread.

Table 1. Studies on tuberculosis and host genetic diversity of wild boar and red deer. Results from
searches on the Web of Science for both species. For wild boar, the following search terms were
used: wild boar, Sus scrofa, and tuberculosis. For red deer, the following search terms were used:
red deer, Cervus elaphus, and tuberculosis. Total: number of obtained studies. Selected: number of
studies on tuberculosis published in scientific journals. Journals: number of journals in which
the selected papers were published. Genetic diversity: number of selected studies that explicitly
relate tuberculosis to reservoir genetic diversity (papers in which the title, abstract, or name of the
journal used at least one of the following terms in relation to host populations: ‘genetic diversity’,
‘genetic variability’, ‘genetic variation’, ‘genomic diversity’, ‘genomic variability’, ‘genomic variation’,
‘inbreeding’, ‘heterozygosity’, ‘heterozygosity–fitness’, or ‘heterosis’). Percentage: percentage of
studies that explicitly relate tuberculosis to reservoir genetic diversity in relation to the selected
studies. Searches were last consulted on 15 April 2021. See Figure 2, and Tables S3 and S4.

Species Total Selected Journals Genetic Diversity Percentage

Wild boar 299 217 74 4 1.8
Red deer 282 215 69 3 1.4
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Despite the existing disconnection between studies on genetic diversity and those on
the emergence and spread of diseases, the knowledge gathered in each discipline can be
applied to the other. Current knowledge regarding factors affecting genetic diversity can
be used by managers to fight the spread of disease. Factors that tend to reduce genetic
diversity of wildlife present challenges for controlling the prevalence and transmission of
infectious diseases. On the other hand, the evolutionary context of disease emergence and
transmission might help to understand processes related to genetic diversity. Hereinafter,
we will illustrate bidirectional applications in wild boar and red deer populations in Spain,
where TB is an important threat for wildlife, livestock, and humans. These applications
might be extrapolated to other populations, mainly to those with similar environmental
and management conditions.

5. Factors Affecting Wild Boar and Red Deer Genetic Diversity. Recommendations to
Confront TB

Wild boar and red deer are important game species in Spain, where most populations
are in private hunting estates (typically 750–3000 ha). In these private estates, wild boar
and red deer can coexist with other wild ungulates, such as fallow deer, or domestic un-
gulates, such as cattle [155,164]. Different management actions are conducted to increase
hunting harvesting and trophy quality. These management actions alter ecology and
behavior of individuals that, in turn, affect gene flow and effective population size. Conse-
quently, some populations can present low levels of genetic diversity or high inbreeding,
reference [113,117,160,161,165–169] which are associated with low antler development in
red deer [130] and high predisposition to TB progression in both species [113,160,161].

A management action, presumably affecting genetic diversity, is the placement of
high perimetral fences around the estates to maintain wild ungulates inside the owned
land [159,170,171]. As a result of this practice, in some of the properties, we can find two
types of hunting estates: open (without perimetral fences) and fenced (with perimetral
fences). Hunting and population management in open estates influence the populations
occurring in neighboring estates, while in fenced ones, hunting and management are
more independent from the activity of neighboring estates. Regardless of management
differences, fenced estates are expected to block gene flow [169]. Additionally, small
effective population sizes at the moment of fence placement might cause a founder effect
with important consequences on genetic diversity and inbreeding. The lack of gene flow
and founder effects might make wild boar and red deer in fenced estates present low
levels of genetic diversity and might make potentially dangerous populations. If these
populations coexist with cattle or goats, the risk of TB transmission and prevalence might
be particularly high. In addition to periodically assessments of TB prevalence, periodic
controls of genetic diversity of both reservoirs can be recommended in these estates.
Despite this general recommendation, there are some considerations that might be taken
into account regarding fenced estates.

To our knowledge, there is no study showing lower levels of genetic diversity of wild
boar populations located in fenced and open estates. Additionally, studies comparing
red deer populations in open and fenced estates have found that there are not differences
in genetic diversity between both types of estates [165,168,169]. Fences might allow a
certain degree of individual movements among estates and, hence, genetic diversity in
fenced estates can be maintained. Gene flow among fenced estates might be intense
for wild boars which have a strong ability to surpass fences. On the contrary, fences
have been demonstrated to significantly affect red deer movements [172]. In addition
to fence permeability, behavioral processes might avoid the loss of genetic diversity in
both species [173–175] (see below). In spite of the existence of these processes tending to
maintain reservoir genetic diversity, fenced estates, mainly those in which wild reservoirs
and livestock coexist, bear potential risks that should be monitored.

Translocations are relatively common actions in ungulates’ management, mainly to
reinforce (or ‘improve’) existing populations or (re)introduce new populations [176,177].
Owners and managers might increase genetic diversity and reduce inbreeding in fenced es-
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tates by translocating individuals from different populations [178]. However, translocations
imply the existence of additional risks that might overcome their benefits in maintaining
reservoir genetic diversity. Hybridization after translocations might cause outbreeding
depression due to genetic incompatibility and reduced local adaptation [179,180]. More-
over, translocated individuals swamp the genetic variation of the native populations and,
hence, increase homogenization and reduce genetic diversity of a species scale [179–181].
Additionally, migrants might put native populations at risk by introducing new pathogens
or pathogen strains and altering host–pathogen relationships [182–184]. In order to min-
imize the disadvantages of translocations, owners and managers should select individ-
uals from populations that occur in nearby, similar habitats, and with low genetic diver-
gence [185,186].

In open estates, migration tends to avoid loss of genetic diversity. Wild boar and
red deer can move along large distances. Dispersal distances bigger than 50 km have
been found for both species [187,188]. However, red deer populations in open and fenced
estates of Spain present particularities. In open estates, managers promote the harvesting
of the maximum number of males before they are hunted by neighbors. This hunting
regime results in populations with mostly young males and strongly female-biased sex
ratios [170]. The low proportion of adult males tends to reduce mate competition [171,189]
and might tend to reduce migration rates in the typical male-biased dispersal of red deer
populations [60,190,191]. The low rate of migration rates of males among open estates
might hinder the maintenance of genetic diversity and explain why open and fenced estates
do not present different levels of genetic variation. However, in these estates, probably to
avoid inbreeding, dispersal has become female-biased [171]. Therefore, genetic diversity
in open estates can be, to some extent, maintained by female dispersal. Nevertheless, a
reduction in hunting harvesting over males can be recommended to equilibrate population
structure and recover natural dispersal of males.

In addition to fences and population structure, landscape might also influence dis-
persal and gene flow in wild boar and red deer. Wild boars have high abilities to surpass
barriers [108] and their movements might be mainly determined by resource distribution.
For red deer, however, landscape features significantly affect movements [192]. In Spain,
forest continuity has been shown to favor red deer movements and dispersal [168]. There-
fore, to avoid loss of generic diversity in red deer populations, refuge (forest) continuity
might be recommended to facilitate individual movements between open estates.

In addition to processes related to dispersal, game management affects the mating
system of Spanish red deer and wild boar populations. Altered red deer population
structures in open estates with mostly young males and female-biased sex ratios cause a
decrease in male mate competition during the rut [171]. On the contrary, hunting regimes
and management in fenced estates maintain equilibrated population structures with the
presence of males of all age classes and sex ratios near to 1:1 [170]. Equilibrated sex ratios
tend to reduce the effect of genetic drift and to maintain genetic diversity. However, high
levels of mate competition in fenced estates favor the success of those males with higher
levels of genetic diversity [175]. This selective pressure favors the increase in the genetic
diversity contributed by males to the following generation. It is worth highlighting that
the genetic diversity contributed by males tends to be higher than that transmitted by
females in populations with high levels of mate competition [175]. The higher effective
population size and genetic diversity contributed by males might help to explain why red
deer populations in fenced estates have similar genetic diversity than that in open estates.

Another mating system related behavior that can be affected by game management
is dissimilar mating. Red deer females tend to mate with genetically dissimilar males,
predominantly when they produce daughters [174]. This result, which is contextualized
under the sexually antagonistic selection [193], also tends to favor the maintaining of
genetic diversity. In open estates, the low proportion of males, that are mainly young
and philopatric, hinders the action of dissimilar mating. Therefore, dissimilar mating in
fenced estates, where the proportion of adult males is high, might favor genetic diversity
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conservation and might also help to explain the lack of differences in genetic diversity
between fenced and open estates. However, this argument loses importance in those open
estates where females disperse to avoid inbreeding [171].

Inbreeding depression is an important selective pressure affecting behavioral pro-
cesses related to mating system [194,195]. These processes tend to compensate the loss of
genetic diversity of populations and their action depends on the existence of equilibrated
population structures. Male-biased hunting in red deer causes altered population structures
that hinder the action of behaviors favoring genetic diversity conservation. Whenever pos-
sible, hunting regimes favoring equilibrated population structures in red deer populations
might be recommended.

In wild boar, mating system related processes affecting genetic diversity have been
found. Firstly, multiple paternity (different males siring offspring within the same litter)
tends to maintain genetic diversity [196,197] and it has been found in wild boar popula-
tions [173]. On the other hand, genetic diversity contributed by males to the following
generation tends to be higher than that contributed by females [173]. With regard to red
deer [175], this result can be due to the advantage of those males with higher levels of
genetic diversity during mate competition. Multiple paternity and male mate competition,
both tending to favor genetic diversity conservation, are expected to act mainly in equili-
brated population structures with high proportion of adult males. Commercial hunting on
the wild boar is not so likely as in the red deer to produce biases in population structures.
Nevertheless, management actions ensuring equilibrated population structures might be
recommended to favor genetic diversity conservation.

Finally, dissimilar mating has been also assessed for wild boar, but it has not been
found. On the contrary, offspring genetic diversity tends to be lower than that expected
under random mating [198]. This result has been interpreted as a case of outbreeding
avoidance that tends to decrease population genetic diversity throughout generations [198].
In populations where inbred individuals with low genetic diversity have lower resistance
to diseases such as TB [160,161], outbreeding avoidance might not make sense. However,
in the context of coevolution with pathogens, avoiding genetically dissimilar mates might
be beneficial under a scenario of local adaptation and FS dynamics [92]. In addition,
outbreeding depression costs might be boosted in environments in which wild boar con-
tact and interbred with domestic pigs in extensive farms and after the release of captive
animals [199,200]. Therefore, management actions reducing the contact between wild
boar and domestic pigs might be recommended to reduce the selective pressures boosting
outbreeding avoidance and loss of genetic diversity in wild boar.

Studies on genetic diversity of wild boar and red deer populations may yield conclu-
sions applicable by wildlife managers to confront TB. Some recommendations might be
summarized as follows:

- Isolated wild boar and red deer populations are potentially dangerous populations.
- When translocations are unavoidable, managers should select individuals from popu-

lations that occur nearby, in similar habitats, and with low genetic divergence.
- Mainly in red deer, the continuity of vegetation refuges should be maintained to

facilitate individual movements between distant areas.
- Mainly in red deer, sex ratios and male age structures should be equilibrated to favor

the natural dispersal of males and the action of evolutionary processes related to the
mating system and effective population size.

- In wild boar, the decrease in contact between wild boar and domestic pigs might
reduce the selective pressures boosting outbreeding avoidance.

6. Disease Transmission and Behavioral Differences between Wild Boar and Red Deer

In central and southwestern Spain, red deer and wild boar coexist in the same habitat
and share resources. TB affects both species in which high prevalence and mortality
rates have been detected [154,155,159,201–205]. Genetic diversity favors TB resistance and
decreases disease progression in both cases [113,160,161]. However, mating preferences
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regarding genetic dissimilarity is contrary in both species [174,198]. Carranza et al. [174]
and Pérez-González et al. [198] used different statistical approaches to study genetic
dissimilarity in red deer and wild boar. However, by applying the same statistical method,
contrary results in both species are confirmed (Table 2, Figure 3).

Table 2. Mating preferences regarding genetic dissimilarity in wild boar and red deer from Iberian
Peninsula. Analysis conducted with data from Pérez-González et al. [198] and Carranza et al. [174].
Both studies conducted different approaches to assess dissimilar mating. Here, both datasets were
analyzed with the same procedure (see [198]). For red deer, data from females producing daughters
were selected, because dissimilar mating was only obtained for this type of female (see [174]). In order
to determine the existence of dissimilar mating, we assessed the genetic relationship between parents
using the standardized heterozygosity [32] of the fetuses. We considered that dissimilar mating
occurred when the observed heterozygosity of fetuses was higher than expected under random
mating. To simulate random mating, we randomly combined the genotypes of females (mothers)
and males from the same hunting event. We randomly selected a haploid genotype of a female and a
haploid genotype of a male from the same hunting event to create a diploid simulated offspring. This
process was repeated 1000 times for each female and the heterozygosity of its simulated offspring
was quantified. The mean heterozygosity of the 1000 simulated offspring was considered as the
expected heterozygosity under random mating for this female. Therefore, each female had two
variables: observed heterozygosity of its offspring (1 value for red deer, and as many values as
fetuses it gestated for wild boar) and expected heterozygosity under random mating (1 value for
both species). Observed and expected heterozygosity were compared using a linear mixed-effect
model (LME) fitted by reduced maximum likelihood, with heterozygosity as dependent variable,
mating type (observed vs. expected) and species (red deer and wild boar) and the interaction of both
as fixed factors, and female within hunting event as nested random effects. Table shows the LME
results for the comparison between observed and expected heterozygosity in fetuses for wild boar
and red deer. Wild boar and expected heterozygosity as references. See Figure 3.

Value SE DF t-Value p-Value

Intercept 1.033 0.021 300 49.648 <0.001
Mating type −0.047 0.022 250 −2.133 0.034

Species −0.010 0.026 21 −0.376 0.710
Mating type × Species 0.079 0.030 250 2.639 0.009
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When inbred individuals or those with lower levels of genetic diversity have lower
fitness, the dissimilar mating of red deer is expected [4,195], but the outbreeding avoidance
in wild boar might be unexpected. In addition to the evolutionary context of wild boar
in which hybridization events with domestic pigs have occurred [198], the probability of
disease transmission might help to explain the unexpected results regarding outbreeding
avoidance. Therefore, the different behaviors of wild boar and red deer regarding geneti-
cally dissimilar mating might be explained after considering the impact of diseases on the
evolutionary context of both species.

Low precipitation and high temperatures during summer have important conse-
quences on resource availability of the Spanish Mediterranean ecosystem [206,207]. During
this season, water points are scarce and become places in which fauna contact and aggre-
gate. Wild boar activity around water points is intense [159,208]. Wild boars use water
points to drink or wallow. The areas around water points are used for foraging, brushing,
or mating. These activities can be accompanied by actions such as urinating or defecating.
Consequently, infectious diseases such as TB may be strongly spread from interactions at
these water points. TB spread might occur by ingestion or inhalation of nasal and oral
excretions from infected individual [158,209].

Red deer also uses water points to drink, wallow, or brush. Mating behavior in
red deer may also take place near these locations [210,211], which might favor the mois-
ture for vegetation growth during the dry conditions in which rutting season occurs in
Mediterranean ecosystems. As in wild boar, water points favor TB spread in red deer
populations [159]. However, a particularity has been found regarding the relationship
between water points and TB spreading in both species. Vicente et al. [159] found that
the risk of TB infection in both wild boar and red deer mainly depends on wild boar
aggregation in water points. Wild boar activities and behaviors around water points might
cause higher rates of pathogen excretion, and those excreted pathogens might cause TB
infection in wild boar, red deer, cattle, and other species.

High rates of pathogen excretion and the sharing of behaviors, natural cycles, and
ecological niche of all individuals of the same species can make wild boar present high lev-
els of contact with pathogens. Accordingly, the prevalence of TB in wild boar populations
tends to be higher than that in other ungulates, including red deer [140,154,155,164,204,212].
Wild boar populations present a widespread exposure to TB which can cause high mortality
rates [201].

The high exposure of wild boar populations to TB may have evolutionary conse-
quences. For instance, wild boar is expected to present high levels of disease resistance and
tolerance. Accordingly, studies show higher levels of TB resistance in wild boar than in red
deer [154]; infected wild boar showing less serious damages than infected red deer [213].
However, this high exposure of wild boar to TB might impact its behavior by causing a
trade-off regarding the dissimilar mating.

Due to the existence of inbreeding depression [160,161], genetic dissimilarity in mating
preferences might be expected in wild boar populations [83–85]. However, the existence of
other selective pressures might boost individuals to avoid genetically dissimilar mates. For
instance, assortative mating regarding the level of infection might cause genetically similar
mating and loss of population genetic diversity [86,87]. Moreover, local individuals might
avoid the mating with genetically different individuals harboring new pathogens [93,94].

In wild boar, the outcome of the trade-off regarding mating with genetically dissimilar
or similar individuals might depend on the prevalence of infectious diseases, such as
TB [87], and this outcome has a high importance on genetic diversity conservation of
populations [86]. This trade-off deserves further research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ani11061630/s1, Table S1: Number of studies on genetic diversity for ungulate species, Table S2:
Number of studies in scientific journals (ungulates), Table S3: Number of studies in scientific journals
(wild boar), Table S4: Number of studies in scientific journals (red deer).
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