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Abstract: Oleuropein (OE) is a secoiridoid glycoside occurring mostly in the Oleaceae family and
presenting several pharmacological properties, including hypolipidemic and antioxidant proper-
ties. Based on these, several dietary supplements containing olive leaf extracts enriched with OE
are commercially available in many countries. The current study aimed to examine the effect of
supplementation with such an extract on the serum and urine metabolome of young healthy male
athletes. For this purpose, applying a randomized, balanced, double-blind study, nine young, healthy
males (physical education students) received either a commercially prepared extract or placebo for
one week, followed by a two-week washout period; then, they were subsequently dosed with the
alternate scheme (crossover design). Urine and serum samples were analyzed using UHPLC-HRMS,
followed by evaluation with several multivariate methods of data analysis. The data were interpreted
using a multilevel metabolomic approach (multilevel-sPLSDA) as it was found to be the most efficient
approach for the study design. Metabolic pathway analysis of the most affected metabolites revealed
that tryptophan and acylcarnitine’s biochemistries were most influenced. Furthermore, several
metabolites connected to indole metabolism were detected, which may indicate enhanced serotonin
turnover. Phenylethylamine and related metabolites, as well as estrone, were connected to enhanced
performance. In addition, possible changes to the lipidemic profile and the blood and urine redox
statuses were investigated.

Keywords: oleuropein; metabolomics; high-resolution mass spectrometry; multilevel-sPLSDA

1. Introduction

Oleuropein (OE) is a nontoxic natural secoiridoid glycoside, occurring mainly in the
Olea genus of the Oleaceae family. It is present in large amounts in olive leaves and in
smaller quantities in olive oil and table fruits. It is the most well-studied compound in
olive cultivars [1,2] and is considered one of the most health-promoting compounds of the
Mediterranean diet. It has been proven to exhibit protective activity against an array of
common chronic pathological conditions [3,4], e.g., with antioxidant [5], antimicrobial [6],
cardioprotective [7,8], anti-ischemic [9], antiatherogenic [10], anti-inflammatory [11,12],
antidiabetic [13] and anti-atherosclerotic [14,15] properties, among others. Especially
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concerning its antioxidant activity, several in vitro studies have demonstrated that OE
possesses high antioxidant activity, comparable to a hydrosoluble analog of tocopherol [9].

Recently, the European Food Safety Authority (EFSA) endorsed the health claim that
“the consumption of olive oil polyphenols contributes to the protection of blood lipids to
oxidative damage” [16]. Thus, several formulations of olive leaf extracts enriched in OE
are being made commercially available in many countries as food supplements or herbal
medicinal products [17].

Oxidative stress can be defined as an increase of the intracellular steady-state concen-
tration of oxidants over physiological values [18–21]. As physical exercise may enhance the
oxidative stress of an organism due to elevated catabolism that may produce large amounts
of oxidized substances, athletes can be considered an ideal study group. Following feedback
regulation, athletes under a regular training program may exhibit a significant increase
in antioxidant status compared to healthy sedentary people [22], due to the adaptative
response to controlled physical activity. Nevertheless, during overload training, the organ-
ism’s adaptative response cannot efficiently control free radical production, which could
prove detrimental to the body [23]. At the start of an exercise program, muscle damage
in athletes frequently occurs [24], often attributed to an intensity-dependent increase in
oxidative stress produced by mitochondrial processes [25]. Small increases in exercise
induce increased production of reactive oxygen species (ROS), an important process for
stimulating cellular growth and maximizing muscular force production, whereas excessive
accumulation leads to a pro-oxidant environment, which can damage DNA. Rapid recovery
from the prior exercise is important for both beginners performing regular exercise to
improve their health and athletes preparing for competition. Thus, antioxidant supplemen-
tation to attenuate exercise-induced muscle injury, inflammation and pain may facilitate
success in both health promotion and sport competition.

The World Health Organization (WHO) has introduced the Global Recommendations
on Physical Activity for Health [26], which encourage people of all ages to begin moderately
and gradually progressing to higher levels of physical activity. Thus, antioxidants may
be administrated before any exercise, especially before high-level training, and result in
the annihilation of the free radical production generated by the exercise that potentially
overwhelms the defensive mechanisms, causing oxidative stress [27,28]. Different types
of supplementation such as vitamin E [29], vitamin C [30] or polyphenols show that it
is possible to enhance the adapted antioxidant status. However, studies that evaluated
the impact of the antioxidant effect on the performance or endurance of athletes revealed
various results that differed largely, depending on the type of supplementation, subjects
and protocol [31].

Only a few studies have been performed in human subjects concerning the antioxidant
effects of OE. In these, olive (Olea europaea L.) leaf phenols were found to improve insulin
sensitivity in middle-aged overweight men in a randomized, placebo-controlled, crossover
trial [32], and a possible association between the consumption of rich-phenol extra virgin
olive oil and an enhancement of the endogen antioxidant system in healthy elderly people
was postulated [33]. Furthermore, it was demonstrated that young and middle-aged
men and women who consumed a moderate amount of extra-virgin olive oil (EVOO)
regularly increased their antioxidant status [34,35]. The aforementioned positive effects
of EVOO have been attributed to its high phenolic content and especially its high level
of secoiridoid derivatives [36,37]. In this context, a randomized, double-blinded, placebo-
controlled, crossover trial encompassing supplementation with olive leaf extract enriched
in OE was designed.

Nowadays, crossover designs are used in combination with ‘omics’, resulting in paired
multivariate datasets [38–40]. Metabolomic time-series experiments with different subjects
use the same paired data structure [41,42], and the analysis of such datasets can possibly
be improved when exploiting the design underlying the study, a fact that is not always
considered in such analyses.
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One of the major challenges in crossover supplementation/nutrition metabolomic
studies is the detection and identification of metabolites in different biofluids, such as
serum and urine, which can be linked to possible changes in the human metabolome
after the supplementation period [43–45]. In such studies (as in the current one), the
metabolic responses observed are usually small since the volunteers are in metabolic
homeostasis, i.e., they are generally in a healthy state [46]. Thus, since the biological
variation between individuals is usually much larger than the effects of administration,
small and subtle treatment effects, i.e., dietary responses can be easily overlooked. This is
notable when the effect is smaller than the intrinsic variation between the subjects, whereas
on other occasions, the response may differ significantly between subjects. This implies
that the average treatment effect may not be the most prevailing in studies where subsets
of subjects respond differently to a dietary intervention. Therefore, a frequently used
solution, followed in clinical or nutritional intervention studies, is a crossover design, with
subjects acting as their own controls and the total variance broken down into constituting
ones (e.g., between-subject variation, within-subject values’ variation, etc.), to uncover
minor treatment effects. The traditional multivariate data analysis methods (PCA, PLS,
PLS-DA, etc.) do not consider the decomposition of the total variance; therefore, subtle
treatment effects experienced by subjects are often largely overwhelmed by the strong
biological variation between subjects [47]. The combination of multilevel data analysis, i.e.,
decomposing the total variation and PLS-DA, is introduced as a new MVA approach to
investigate treatment effects in crossover-designed experiments [40].

The current study aimed to evaluate the effects of supplementation with an OE-
enriched olive leaf extract pharmaceutical product on the serum and urine metabolomes of
young, healthy male athletes, employing a randomized, double-blind, crossover design. It
was assumed that supplementation with OE would improve the antioxidant status of the
athletes and would have a positive antioxidant impact on their recovery after a training
period, preventing the occurrence of DNA damage.

2. Results and Discussion
2.1. Biochemical Analyses

A battery of classical biochemical analyses found that olive leaf extract systematically
changes the levels of triglycerides in plasma but only sporadically changes the levels of
total cholesterol, HDL cholesterol and LDL cholesterol.

2.2. UHPLC-HRMS Analysis—Data Preprocessing
2.2.1. Peak Picking Procedure

Two algorithms, “baseline cut-off” and “wavelets”, were evaluated for facilitating
metabolite detection by MZmine. For this purpose, the xMSanalyzer R package was used
to compare the results of the two procedures. A Venn diagram was constructed, showing
both common and unique features (Figure SA1). From a total number of 1492 features
discovered, 887 (60%) were common, 203 (13%) were unique for the “baseline cut-off” and
402 (27%) for the “wavelets” algorithm. The common features were assembled in a peak
list and submitted for further evaluation.

2.2.2. Metaboanalyst Process

Missing values were imputed by employing PPCA [48], whereas the option of “nor-
malization by a reference sample”, specifically by averaging all the samples (using a pseudo-
reference sample in the control group), was chosen for the normalization of the data.

2.3. MVA Analysis

Representative base peak intensity (BPI) UHPLC-(+)ESI-HRMS serum chromatograms
from individual B in the first week of administration in juxtaposition with the second week
of administration (placebo administration) are shown in Figure 1. Differences in metabolic



Metabolites 2022, 12, 195 4 of 20

profiles due to the administration of oleuropein (O) vs. placebo (P) can be observed by
visual inspection.
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Figure 1. Representative BPI UHPLC-(+)ESI-HRMS serum chromatograms from individual B in the
first week of administration (top) in juxtaposition with the second week of administration (placebo
administration) (below). Differences can be observed (blue arrows) by visual inspection and offer
complementary information regarding the metabolite profiles.

MVA was employed using various statistical models, such as PCA, siPCA, sPCA,
PLS-DA, OPLS-DA, sPLS-DA and ML-sPLS-DA (k-PCA, SVM Random Forests, hierarchi-
cal/KNN clustering), the impact of the group/class they belong to (e.g., O vs. P or O vs.
baseline (B)) the days of administration (e.g., all the days of administration, first day vs.
last day, two last days) and the individuality (e.g., all the subjects simultaneously or one
individual at a time).

Due to the large biological variation between the individuals, nine PCA models were
created for each subject, i.e., between the two weeks of crossover administration (P vs. O)
(Table SB1). The P group was clustered separately from O for each subject (Figure SA2).
This was repeated for all the urine and serum datasets. Nevertheless, the large biological
variation superseded the respective variation caused by the administration effect and
hindered the PCA clustering capacity to create an overall model.

Other PCA variants, i.e., sPCA and siPCA, were employed to take advantage of
sparse models and k-PCA with numerous kernels (Gaussian, polynomial, linear, hyperbolic
tangent, Laplacian Bessel, ANOVA RBF and spline), but all efforts were unsuccessful at
obtaining an overall model.

2.3.1. PLS-DA and OPLS-DA Models

PLS-DA and OPLS-DA models were generated between P and O dosed subjects,
between the subjects before (B) and after administration (P or O samples) and for B vs.
O or P vs. O on selected days of administration (first vs. last day of administration)
(Figures SA3–SA5). These models did not lead to any significant clustering (urine and
serum in both positive and negative ion modes).

2.3.2. PLS-DA and OPLS-DA Models

As the variation between the subjects usually outweighs the administration effects [39],
which are typically small, the classical MVA approaches (PCA, PLS-DA, OPLS-DA, etc.) did
not lead to any results. Thus, an ML-PLS-DA was performed for the serum and urine. In
crossover studies, two main variation types could be observed, the biological (between the
subjects) and the variation induced by the administration of OE (within the subjects). Other
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types of variation could also be recognized in the current study: the variation caused by
the week of administration (before or after the washout period), i.e., the week-based effect;
the variation caused by the day of administration (cumulative effect), i.e., the day-based
effect and the analytical variation, i.e., the analytical error. The total variation results from
the outcome of the aforementioned individual variations, as follows:

Var = Σ(Varwithin + Varbetween + Varweek + Varday + Varanalytical error) (1)

The ML-sPLS-DA approach was employed to break down the total variance into
singular variations, enabling the identification of the individual effects (e.g., the between-
subject variation, the week-based effect, etc.) on the response.

Four effects—the between (Varbetween) and within (Varwithin)-subject variations and the
week-based (Varweek) and day-based (Varday) effects—were recognized as discriminating
variables, besides the analytical error. Thus, the discriminating variables used were based
on (1) the between-subject variation (from A to I for the nine individual subjects), (2) the
within-subject variation (P or O for placebo or oleuropein administration, respectively),
(3) the week-based effect (one to two for the first or second week of administration) and
(4) the day-based effect (from one to five for the different days of P or O administration
during the two weeks of the crossover design).

Initially, a one-level ML-sPLS-DA was applied to the datasets, keeping one variation
as the discriminating variable (i.e., the within-subject variation, Varwithin) and subtracting
another one simultaneously (i.e., the between-subject variation, Varbetween), to find out
which variation had the greatest impact to the datasets. The clustering, examined by visual
inspection, and the tune parameter values resulting from the tuning procedure, were used
as the selection criteria to evaluate the importance of each variance. As an example, the one-
level ML-sPLS-DA scores plot of P and O urine samples from all the days of administration,
with the biological variation (Varbetween) to be subtracted obtained by UHPLC-(+)ESI-
HRMS, is depicted in Figure 2a. The cross-validation tuning criterion afforded each sPLS-
DA dimension a classification error of (0.12, 0.18, 0.21) for variable selection sizes of 50, 60
and 70 metabolites on each dimension. It is clearly shown that, by subtracting the biological
variation of individuals from the total variation, the administration effect is evident, and the
P (red) and O (black) samples can be adequately separated according to the first component
(x-variate 1). Thus, when subtracting the correct variation that obscures the classification
according to the selected variable (e.g., the administration of OE in the current case), a
single component could be sufficient to assess the different treatment effects.

Subsequently, when leaving the within-subject variation Varwithin (P or O administra-
tion) as the discriminate variable, as we did before, but subtracting the variation caused
by the week of administration Varweek (week-based effect), it could be shown that the P
(red) and O (black) samples clustered separately, denoting that the week-based effect also
played a critical role in the classification. That could be possibly attributed to environ-
mental changes during the weeks of the administration (e.g., the weather conditions), to
differences during the sample handling, to storage instability or even to the washout period
between the two weeks of administration. The cross-validation tuning criterion afforded
an acceptable classification error for each sPLS-DA dimension (<0.22), for variable selection
sizes of 50, 60 and 70 metabolites, respectively (Figure 2b).

Furthermore, to investigate the day-based effect on the within-subject variation, the
variation caused by the day of the administration Varday was subtracted (day-based effect),
leaving, as before, the within-subject variation Varwithin (different administration P or O)
as the discriminate variable. Interestingly, the P (red) and O (black) samples clustered
separately (Figure 2c) (cross-validation tuning classification error < 0.22).
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ministration, obtained by UHPLC-(+)ESI-HRMS. The multilevel PLS-DA scores plot (X-variate 1,
X-variate 2) the administration effect of Varwithin according to the (a) biological variation (Varbetween)
(b) week-based effect (Varweek) and (c) day-based effect (Varday). Red circles represent the P samples.
Black circles represent the O samples. Clear clustering mainly due to the first component, between
the P and O samples, is shown.

To explore the model in more detail, the administration days were annotated on the
scores plot, emphasizing the two extremes of the administration i.e., the first vs. the last
day (fifth) (Figure 3). It was evident that the samples from the fifth day were located closer
to the P samples compared to the ones from the initial administration.

The expected theoretical model predicted that repeated administration should produce
a metabolic profile that would continuously differentiate after each administration from
that of the control group (an accumulation effect), and ultimately, stabilize, rather than
converging to that of the control group as in the current case. In contrast, the observed
phenomenon was consistent with a reset of the metabolome to its initial state (Figure 4).
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Blue circle represents the O samples from the first day of administration. Green box represents O
samples from the second to fourth days of administration. An acute metabolome change between P
and O on the first day is evident (blue arrow), whereas a gradual metabolome reset can be observed
(black arrow).
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Figure 4. Theoretical model of accumulation vs. that observed in the one-level ML-PLS-DA approach.

Overall, the week-based and day-based effects outweighed the effect caused by the
administration, and hence, the subtraction of their variation would highlight the adminis-
tration effect alone. A two-level ML-sPLS-DA approach was applied to the same datasets,
keeping two variations as the discriminate variables and subtracting one. In other words,
the algorithm used two discriminant values (e.g., week-based effect and administration
effect) and it subtracted a third effect (e.g., biological variation effect) in the same calcu-
lation. Thus, a two-level ML-sPLS-DA analysis was performed with the same datasets,
subtracting the between-subject variation Varbetween from the total variance and keeping
the combination of the within-subject variation and the day-based effect (Varwithin + Varday)
as the discriminant variables. As an example, the two-level ML-sPLS-DA 3D score plot of P
and O urine samples from all the administration days (UHPLC-(+)ESI-HRMS) is depicted
in Figure SA6. As is demonstrated in Figure SA6, the P and O samples are separated
into two clusters, exhibiting a strong effect of the administration on the metabolism of
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the subjects. The validation-tuning criterion afforded acceptable maximum correlations of
0.85, 0.83 and 0.85 for each sPLS-DA dimension using variable selection sizes of 50, 60 and
70 metabolites, respectively, for each dimension. It seemed that repetitive dosing did not
create an accumulation effect as no trend regarding the administration days was evident.
In that case, one would expect that the metabolome should migrate further away from the
placebo samples in a day-dependent fashion (the second day further than the first one, the
third further than the second, etc.). On the contrary, the samples of the fourth and the fifth
day seemed to retract to the placebo samples, as shown in Figure 3. A possible explanation
could be that some kind of resistance due to enzyme induction was created (as O could be
considered as a xenobiotic). It should also be noted that a three-day period is possibly a
short time for observing a CYP induction or a microbiome-related effect concerning the
degradation of OE. Thus, a different administration scheme should be considered, either en-
compassing lower dosing or diminishing the frequency of the administration. Nevertheless,
this could be considered as a paradigm of using metabolomics in the pharmacology field.

Subtracting the day-based effect Varday and keeping as the discriminant variable the
combination of the within-subject variation and the week-based effect (Varwithin + Varweek)
(Figure 5a), a strong week-based effect was highlighted, where the samples from the first
week of the administration (circles) were clustered separately from those of the second
week (triangles) according to the first component (x-variate 1). Furthermore, in the second
component (x-variate 2), strong clustering was also observed (Varwithin). This was probably
due to subtle differences and variation in uncontrolled parameters such as sample handling
and/or storage, differences in the environment/physiological situation of the subjects
and a possible induced instability of the biomaterial used. The validation-tuning criteria
presented maximum correlations of 0.96, 0.96 and 0.96 for each sPLS-DA dimension, when
employing variable selection sizes of 50, 60 and 70 metabolites, respectively, for each
dimension. When we kept Varbetween as the discriminating value, nine clusters formed,
showing that when taking the biological variation into account, it could be considered as
the most influential factor of all.

Finally, it was essential to highlight the day-based effect by examining the two ex-
tremes of the administration days, i.e., the first vs. the fifth. We did so by subtracting
the between-subject variation Varbetween and keeping as discriminant variables the within-
subject variation and the day-based effect (Varwithin + Varday) (Figure 5b).

In this case, two main clusters could now be observed, demonstrating a systematic
difference between the placebo (P) and oleuropein (O) samples, whereas separation could
be also observed due to the day of administration. Figure 5b shows the difference between
the first and fifth day of the administration for the O samples, and interestingly, a similar
phenomenon was observed for the P samples. An elaborated version of Figure 5b is given
in Figure 5c.
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Figure 5. Two-level ML-PLS-DA analysis of the P and O urine samples analyzed by UHPLC-(+)ESI-
HRMS (a) from all the days of administration (combination of the within-subject variation and the
week-based effect (Varwithin + Varweek) as the discriminant values, with the day-based effect (Varday)
subtracted; (b) from the two extremes of the administration days, i.e., the first vs. the last (fifth)
(the combination of the within-subject variation and the day-based effect (Varwithin + Varday) with
the biological variation (Varbetween) subtracted). Then, (c) is an annotated version of panel (b). In
all cases, black represents the O samples and red the P samples. In panel (a), circles represent the
samples from the first week of administration and triangles represent the samples from the second
week of administration. A clear clustering between the first and the second week due to the first
component, and between the P and O samples due to the second component, is shown. In panel
(b), circles represent the samples from the first day of administration and diamonds represent the
samples from the fifth day of administration. Clear clustering between the first and the fifth days and
between the P and O samples is shown. In Panel (c), “1” stands for the first day and “5” the fifth day.
The distance between the first- and fifth-day metabolomes is larger for the O samples, which shows
the effect of OE administration. Furthermore, O samples from the fifth day merge with the P samples
in a common cluster—a metabolome reset effect.

The day effect was notably smaller for the P compared to the O group (schematically,
the length of the arrow between the centroids of the clusters was smaller in the case of
P samples), denoting a marked effect of OE on the metabolome. Interestingly, according
to the X-variate 1, the fifth day of OE administration was indistinguishable from the P
group, a fact that further supports the assumption of a metabolome reset for samples from
the fifth day of OE administration. Similar observations were obtained from the MVA
of the remaining serum and urine datasets. Therefore, it was considered necessary to
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proceed with the evaluation of the loading plots, to discover possible biomarkers related to
OE administration.

Overall, it is evident that simple MVA analysis is not sufficient for the full evaluation
of such complex experiments since “sub-variances” contribute to the total variance, and
the latter must be broken down mathematically. Thus, multilevel approaches should be
employed to discern viable conclusions. In the current case, it seems that the remaining
parts of the variation played a near-equally important role in the administration scheme, a
suggestion that should be also studied further.

Maximum correlations of 0.98, 0.99 and 0.99 for the variable selection sizes of 50, 60
and 70 metabolites, respectively, for each sPLS-DA dimension were obtained by applying
the validation-tuning criterion.

2.4. Metabolites

Two strategies were employed to extract the most influential loadings from the sta-
tistical analysis of all the datasets. According to the first strategy, the 10 most important
loadings (largest absolute value) of the X-variate 1 were considered, followed by the 10 most
important loadings of the X-variate 2 and consequently, on X-variate 3. The procedure
stopped when all sparse components were selected and evaluated. The second strategy
involved the selection of metabolites using adjustable-radius Euclidean distances to the
ML-sPLS-DA variable plot, starting from 0.9 and decreasing using a 0.1 step. In other
words, decreasing ellipse values were used and the variables between the Hotteling ellipse
and the adjustable radius were selected.

The sparse loadings selected by either strategy are summarized in Table 1.
Additionally, the induced in-source fragmentation was analyzed by employing a

deconvolution step using Mass Frontier 5.0.1 and its freely available counterpart AMDIS,
producing possible pseudo-fragmentation spectra. Finally, the FDR (false discovery rate)-
corrected results were evaluated to verify the significance of the up- or downregulated
metabolites, and the results are tabulated in Tables SB2–SB4. The Metaboanalyst 5.0 plat-
form was used for pathway analysis.
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Table 1. Candidate metabolites identified in O and P groups from serum- and urine-based metabolomic approaches obtained from both (+) and (–) ESI analyses. The
features presented are the (a) metabolite ID, (b) m/z feature, (c) tR (min), (d) complex/dimer/product/precursor, (e) experimental deconvoluted m/z (precursor),
(f) theoretical m/z (precursor), (g) ∆m (ppm), (h) corresponding RDB value, (i) deconvoluted pseudo-MS/MS ions, (j) possible identification name,(k) possible
molecular formula, (l) corresponding monoisotopic exact mass, (m) change trend in O group compared with P group (up- or downregulation), (n) fold change and
(o) corresponding dataset (serum or urine, positive or negative ESI dataset).

ID m/z tR (min)
Complex/

Dimer/
Product/

Precursor

Experimental
Deconvoluted
m/z (Precursor)

Theoretical
m/z

(Precursor)
∆m

(ppm) RDB Pseudo-MS/MS ions Putative
Identification

Molecular
Formula Exact Mass Trend

Fold
Change
+/− SD

Dataset

M1 188.0704 1.02 Product 205.0970 205.0972 −0.9 6.5 - L-tryptophan C11H12N2O2 204.0899 ↑ a 2.6 (0.4) Urine
ESI(+)

M2 188.0704 1.46 Precursor 188.0704 188.0703 −1.0 7.5 - Indoleacrylic acid C11H9NO2 187.1947 ↑ 1.9 (0.5) Urine
ESI(+)

M3 161.1070 3.96 Precursor 161.1070 161.1073 −1.9 5.5 - Tryptamine C10H12NO2 160.2157 ↑ 1.9 (0.3) Urine
ESI(+)

M4 206.0810 4.88 Precursor 206.0810 206.0812 0.2 6.5 -
5-methoxy-
indolelactic

acid
C11H11NO3 205.0738 ↑ 1.9 (0.3) Urine

ESI(+)

M5 221.1534 4.77 Product 286.2013 286.2013 0 2.5 - 2-octenoylcarnitine C15H27NO4 285.3792 ↑ 1.6 (0.2) Urine
ESI(+)

M6 279.1338 3.02 Precursor 279.1338 279.1339 −0.5 6.5 - L-phenylalanyl-L-
hydroxyproline C14H18N2O4 278.3037 ↑ 1.1 (0.3) Urine

ESI(+)

M7 316.2481 5.67 Precursor 316.2481 316.2482 −0.4 1.5 - Decanoylcarnitine C17H33NO4 315.4482 ↑ 1.6 (0.3) Urine
ESI(+)

M8 251.1277 5.80 Precursor 251.1277 251.1278 –0.3 5.5 - Ubiquinone-1 C14H18O4 250.2903 ↑ 1.1 (0.2) Urine
ESI(+)

M9 314.2325 5.30 Precursor 314.2325 314.2326 −0.4 2.5 - 9-decenoylcarnitine C17H31NO4 313.4323 ↑ 1.5 (0.4) Urine
ESI(+)

M10 302.2325 5.23 Precursor 302.2325 302.2326 −0.6 1.5 -
2.6

dimethylheptanoyl
carnitine

C16H31NO4 301.4216 ↑ 1.6 (0.3) Urine
ESI(+)

M11 130.0494 4.30 Product

147.0760 147.0764 −2.7 1.5

-

L-glutamine C5H10N2O3 146.1445 ↓ Urine
ESI(+)M12 293.1471 4.30 Dimer

(2M + H) - 1.1 (0.4)

M13 147.0760 4.30 Precursor -

M14 286.2012 4.55 Precursor 286.2012 286.2013 −0.5 2.5 - 2-octenoylcarnitine C15H27NO4 285.3792 ↓ 1.7 (0.3) Urine
ESI(+)
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Table 1. Cont.

ID m/z tR (min)
Complex/

Dimer/
Product/

Precursor

Experimental
Deconvoluted
m/z (Precursor)

Theoretical
m/z

(Precursor)
∆m

(ppm) RDB Pseudo-MS/MS ions Putative
Identification

Molecular
Formula Exact Mass Trend

Fold
Change
+/− SD

Dataset

M15 330.2274 4.24 Precursor 330.2274 330.2275 −0.6 2.5 - 6-keto-
decanoylcarnitine C17H31NO5 329.4317 ↑ 1.6 (0.4) Urine

ESI(+)

M16 105.0329 1.71 Product 118.0646 118.0651 −4.6 5.5 - Indole C8H8N 117.1479 ↓ 1.9 (0.3) Urine
ESI(+)

M17 137.0593 4.49 Precursor 137.0593 137.0597 −3 4.5 Phenylacetic acid C8H8O2 136.0524 ↑ 1.8 (0.3) Urine
ESI(+)

M18 349.1121 2.96 Precursor 349.1121 349.1104 4.8 8.5 215/183/171/157/133 Estrone-sulfate C18H22O5S 350.4290 ↑ 1.8 (0.2) Urine
ESI(−)

M19 201.1134 3.58 Precursor 201.1134 201.1121 6.2 2.5 183/157 Sebacic acid C10H18O4 202.2475 ↓ 1.6 (0.3) Urine
ESI(−)

M20 389.0989 0.90 Dimer
(2M + H) 194.0452 194.0448 2.1 6.5 178/96 Hydroxyhippuric

acid C9H9NO4 195.1721 ↓ 1.2 (0.4) Urine
ESI(−)

M21 357.1092 1.71 Dimer
(2M + H) 178.0501 178.0499 1.3 6.5 134/96 Hippuric acid C9H9NO3 179.1727 ↑ 1.2 (0.4) Urine

ESI(−)

M22 758.5666 20.1 Precursor 758.5666 758.5694 −3.7 3.5 - Glycerophospholipid
Skeleton C42H80NO8P 757.5621 ↑ 1.1 (0.2) Serum

ESI(+)

M23 158.0806 10.4 Precursor 158.0806 158.0812 −3.1 2.5 79/80/97/98/99 Tiglylglycine C7H11NO3 157.1671 ↓ 1.1 (0.4) Serum
ESI(+)

M24 414.2993 10.4 Precursor 414.2993 414.3003 −2.3 7.5 - N-docosahexaenoyl
GABA C26H39NO3 413.2924 ↓ 1.3 (0.2) Serum

ESI(+)

M25 465.3042 24.1 Product 465.3042 465.3033 1.9 5.5 97/385 Cholesterol sulfate C27H46O4S 466.7170 ↓ 1.3 (0.3) Serum
ESI(−)

M26 167.0214 0.9 Product 167.0214 167.0200 6.2 6.5 96/124 Uric acid C5H5O3N4 168.1103 ↓ 1.1 (0.3) Serum
ESI(−)

M27 391.2853 9.9 Product 391.2853 391.2843 1.2 5.5 – Bile acid C24H40O4 392.2926 ↓ 1.1 (0.3) Serum
ESI(−)

M28 103.0399 1.1 Product 103.0399 103.0390 3.7 1.5 – Hydroxybutyric
acid C4H8O3 104.1045 ↓ 1.2 (0.4) Serum

ESI(−)

M29 135.0302 1.0 Product 135.0302 135.0288 6.1 1.5 – Erythronic
acid/Threonic acid C4H8O5 136.1033 ↓ 1.3 (0.2) Serum

ESI(−)
a (↑): upregulated in O group; (↓): downregulated in O group.
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2.5. Biological Evaluation

OE administration increases the circulating acylcarnitines in serum, denoting elevated
fatty acid catabolism, as it is well-known that acylcarnitines mediate their transfer into the
mitochondria. The elevated levels of fatty acids in plasma result in their enhanced binding
to serum albumin and thus the release of tryptophan. This could explain the finding of
upregulated tryptophan metabolism found in O samples, where five metabolites out of 35
in total (M1–M5) contributing to this metabolic pathway could be identified.

Such an effect was observed in trained rats, where nutritional supplementation with
fatty acids [49] resulted in increased concentrations of the so-called “free tryptophan” por-
tion. This could, in turn, lead to elevated levels of the amino acid (tryptophan) in the brain,
given that the blood-brain barrier is easily permeable for tryptophan. As tryptophan is
an immediate precursor of serotonin, it can act positively on endurance and sensation of
effort [50]. Thus, it was observed that the total exercise time was increased by 49.4% after
receiving L-tryptophan versus the placebo in healthy sportsmen, as described in the litera-
ture [51]. The central fatigue phenomenon correlated with elevated L-tryptophan levels is
difficult to be accounted for and could possibly be attributed to the enhanced training pe-
riod that is induced by the activity of the amino acid. Closely related to serotonin is its main
metabolite 5-hydroxy-indoleacetic acid, along its 5-methoxy analogue (M4) [52] degraded
by monoamine oxidase (MAO), which often acts as a proxy for determining the parent
molecule in urine [53]. Metabolite M4 is produced by the action of s-adenosyl-transferase as
the methyl donor through acetylserotonin O-methyltransferase. The increased levels of the
hydroxy-indoleacetic acid molecules are according to the increased levels of L-tryptophane,
whereas it was found that high-intensity exercise increases its levels [54]. Meanwhile, M4
exhibited increased levels after exercise in transgenic mice with overexpressed PGC-1α [55].
Furthermore, M4 levels were found to be altered in dogs [56] and humans [57]. The mi-
crobial tryptophane degradation produces, among others, indoleacrylic acid (M2). The
latter can activate the aryl hydrocarbon receptor (AhR), which in turn, can stimulate xeno-
biotics’ metabolism by inducing the cytochrome P450 enzyme system. Therefore, such
mechanisms could possibly induce the fast degradation of OE, and ultimately, lead to
the metabolome reset effect. The metabolite was also found in the sweat of exercising
athletes [58]. Indole (M16) is another metabolite that is produced by the activity of gut
microflora on tryptophan [59,60]. Furthermore, indole-based derivatives seem to play a
major role in preventing oxidative effects in rats during exercise [61]. Tryptamine (M3) is
formed by the catabolism of tryptophan by gut microbiota [62], and it was found that it
acts on the parts of the brain releasing serotonin, enhancing the serotoninergic activity [63].
Therefore, it seems the proposed supplementation enhances the indole derivatives either
through the human metabolism or by their production in the gut.

Phenylacetic acid (M17) is a product of phenylalanine metabolism. It was found that
the urinary levels of the metabolite increase under strenuous exercise, which biotransforms,
and therefore, reflects the amount of phenylethylamine [64]. The latter metabolite has
strong antidepressant effects, and therefore, M17 is correlated with the euphoric effect of
physical exercise and the therapeutic potential of the latter against depression [65]. Interest-
ingly, 4-hydroxyphenyl acetic acid, a metabolite of M4, was shown to decrease during the
intensive training of young athletes [66]. Estrone sulfate (M18) is the biotransformation
product of estrone after its biotransformation by arylsulfatase. Although an estrogen, it
was found that its levels increase after exercise, especially during the recovery period [67].
Sebacic (M19), i.e., 1,8-octane dicarboxylic acid, along with its counterpart 1,8-decane di-
carboxylic acid, are considered as alternative energy sources in cases of type II diabetes or
impairment of aerobic glycolysis [68]. It is postulated that in these cases, the medium-chain
dicarboxylic acids cover part of the energy demands efficiently, reduce muscle fatigue
and promote the completion of exercise [68]. Overall, consumption of OE-based herbal
medicinal products could potentially boost the training capability.
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3. Materials and Methods
3.1. Crossover Study Design

The study was carried out at Aristotle University of Thessaloniki, Greece. Nine
young healthy males (A, B, C, D, E, F, G, H and I), physical education students in the age
range of 20–22 years with no significant difference in the demographic characteristics (age,
height, weight), participated in a double-blind crossover study. The participants received
1200 mg olive leaf extract enriched in OE or placebo, as nontransparent capsules, for one
week in a randomized, balanced, double-blind manner. The extract contained 16–24%
oleuropein and ≥30% olive phenols (10.2298/JSC0904367D). The participants provided
blood and urine samples every morning before supplementation. During the first week of
supplementation, the participants were requested to adhere to a given dietary plan and
record their actual diets and physical activity. A two-week washout period followed, in
which each participant received the alternate supplement for one week. During the second
week of supplementation, each participant repeated the diet and physical activity recorded
during the first week and was requested to follow a similar lifestyle pattern as in the first
week. During the two first days of each week, the subjects received no supplementation, to
provide samples as baseline measurements.

The protocol was approved by the Ethics Committee of the School of Physical Educa-
tion and Sport Science of Aristotle University of Thessaloniki (approval number 107/2022)
and was conducted according to the ICH-GCP guidelines (ICH GCP, 1996). All participants
signed written informed consent to participate in the study.

3.2. Biofluid Collection

Urine samples for the measurements of 8-hydroxy-2′-deoxyguanosine (serving as an
index of DNA damage [69]) and the metabolomic analysis were collected in appropriate
urine collection vessels over 24 h after the supplementation, including a 12-h overnight
fast. A gelatinized layer of metaphosphoric acid was applied to the vessels to inhibit
bacterial growth. The urine samples were centrifuged, and aliquots were stored at −80 ◦C
before use.

Blood samples were collected in vacutainer tubes. The serum and erythrocytes were
separated immediately after the collection by centrifugation at 1800× g for 10 min at
room temperature, and 500 µL aliquots of the supernatant were stored at −80 ◦C, until
subsequent analysis. Serum samples were used for the analysis of the lipidemic profile
(triglycerides, total cholesterol, HDL cholesterol and LDL cholesterol) and the metabolomic
analysis, while erythrocytes were used to measure glutathione, the main antioxidant in
the blood.

3.3. Samples for the Metabolomic Study

The participants received olive leaf extract (enriched in oleuropein or placebo) capsules,
and the corresponding samples (serum and urine) were marked either as oleuropein-treated
(O) or placebo (P), while the corresponding samples from the baseline period were marked
as baseline (B). A total of 126 serum and 126 urine samples were collected and analyzed
for the metabolomic study. The samples along with their corresponding labels are listed in
Table SB5.

3.4. Chemicals, Reagents and Instrumentation

All solvents used in this study were of LC-MS grade. Acetonitrile (ACN), methanol
(MeOH), water and formic acid were purchased from Honeywell Riedel-de Haën™ (Muskegon,
MI, USA). Ultra-HPLC (UHPLC) analysis was performed by employing an Accela system
(Thermo Scientific, Waltham, MA, USA) equipped with a binary pump, autosampler, online
vacuum degasser and temperature-controlled column compartment. HRMS analysis was
performed on a hybrid LTQ Orbitrap Discovery mass spectrometer (Thermo Scientific,
Waltham, MA, USA). Centrifuging of the serum and urine samples was performed by
a Mikro 200R centrifuge (Hettich Lab Technology, Tuttlingen, Germany), while evapora-
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tion was performed with the aid of a GeneVac HT-4X EZ-2 series evaporator Lyospeed
ENABLED (GeneVac Ltd., Ipswich, UK).

3.5. Sample Pretreatment

A total of 126 serum samples were prepared following a modification of the large-scale
metabolic profiling of serum samples [70]. The samples were allowed initially to thaw on
ice at 4 ◦C for 30–60 min. Then, a 200 µL aliquot from each serum sample was placed into a
labeled 1.5 mL Eppendorf tube, and 600 µL of MeOH was added, followed by vortexing
for 15 s. The samples were subsequently centrifuged at 15,800× g for 15 min at room
temperature to pellet the protein precipitate. Next, 185 µL aliquots from the supernatant
were transferred into two separate labeled 1.5 mL Eppendorf tubes, and finally, evaporated
(90 min at 50 ◦C). Consequently, 100 µL of water was added to each dry sample, which was
vortexed for 15 s, centrifuged at 15,800× g for 15 min and transferred to a 200 µL insert.
The inserts were placed in appropriate screw-capped autosampler vials.

Urine samples were prepared following a common metabolic profiling urine proto-
col [71]. Briefly, 60 µL of each urine sample was centrifuged at 10,000× g for 10 min at
4 ◦C to remove particulates, and 50 µL from each sample was transferred to 200 µL inserts
placed in appropriate screw-capped autosampler vials with the addition of 100 µL water.
The mixture was briefly vortexed for 30 s.

3.6. Biochemical Analyses

A series of biochemical analyses were also conducted to discern the effect of OE
supplementation on the redox status of the subjects. To this end, measurements of glu-
tathione were carried out using erythrocytes, followed by analysis of the lipidemic profile
(triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol) by photometric methods,
to measure the redox status (urate, bilirubin, malondialdehyde, protein carbonyls) and
8-hydroxy-2′-deoxyguanosine (an index of DNA damage) in athletes’ urine. Data were
analyzed by two-way ANOVA with repeated measures on both factors. All biochemical
analyses were conducted at the School of Physical Education and Sports Science at Aristotle
University of Thessaloniki (Thessaloniki, Greece) by the team of Professor V. Mougios.

3.7. UHPLC-HRMS Analysis
3.7.1. Serum Samples’ Acquisition

An ACQUITY UPLC BEH C18 (2.1 × 100 mm, 1.7 µm) reversed-phase column (Waters
Corp., Milford, MA, USA) preceded by a precolumn (Waters VanGuard 5× 2.1 mm, 1.7 µm)
was used for the chromatographic separation. The mobile phase consisted of solvents A)
aq. formic acid, 0.1% (v/v), and B) MeOH formic acid, 0.1% (v/v).

The LC/MS methodologies for the serum analysis in the positive and negative ion
modes can be found in Table SC1 [70].

3.7.2. Urine Samples’ Acquisition

An ACQUITY UPLC BEH C18 (2.1 × 100 mm, 1.7 µm) reversed-phase column (Waters
Corp., Milford, MA, USA) preceded by a precolumn (Waters VanGuard 5× 2.1 mm, 1.7 µm)
was also used for the chromatographic separation of the urine samples. The mobile phase
consisted of solvents (A) aq. formic acid, 0.1% (v/v), and (B) ACN formic acid, 0.1% (v/v).

The LC/MS methodologies for the serum analysis in the positive and negative ion
modes can be found in Table SC2.

3.7.3. Quality Control Samples

Serum and urine pooled samples were used as quality control (QC) samples. The QC
samples were created by pooling every plasma or urine sample, respectively. For both
studies, five QC samples were injected at the beginning of each analytical batch, with one
QC every 10 samples throughout the run and five QC samples at the end of the batch, while
the ion transfer tube was removed and cleaned every 50 injections.
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3.7.4. Mass Spectrometry Data Processing

The software used for peak picking were Xcalibur® (Thermo Fisher Scientific) and
MZmine 2.10 (http://mzmine.sourceforge.net, accessed on 28 December 2021). The matrix
preparation for statistical analysis was done using Microsoft Excel 2012. The xMSanalyzer
package (https://sourceforge.net/projects/xmsanalyzer/, accessed on 28 December 2021)
implemented with R statistical language 3.0.2 (http://cran.r-project.org, accessed on 28
December 2021) was employed for feature annotation and Metaboanalyst 5.0 (http://www.
metaboanalyst.ca, accessed on 28 December 2021) for pathway analysis. For pre-processing
of the MS data using QCs, the QC-RLSC algorithm was employed as implemented for the
MetMSLine scripts (https://github.com/WMBEdmands/MetMSLine_Scripts, accessed on
28 December 2021). Details can be found in Supplementary Methodologies B,C.

3.7.5. Statistical Data Analysis

MVA data analyses, including PCA, PLS-DA and OPLS-DA, were performed using
SIMCA P+ 10.5 (Umetrics, Umea, Sweden), EZinfo (Umetrics, Umea, Sweden) and Metabo-
analyst. Kernel-based MVA methods were also employed (e.g., kPCA) using a variety of
kernels such as polynomial Gaussian, etc., via the kernlab R package. Sparse principal com-
ponent analysis (sPCA), sparse independent principal component analysis (siPCA), sparse
partial least squares–discriminant analysis (sPLS-DA) and multilevel sparse partial least
squares-discriminant analysis (ML-sPLS-DA) were performed using the mixOmics package
(https://bioconductor.org/packages/release/bioc/html/mixOmics.html, accessed on 28
December 2021) as implemented in R 3.0.2 (http://http://cran.r-project.org, accessed on 28
December 2021). ANOVA was performed on the important metabolites and their intensity
values selected as biomarkers by the ML-sPLS-DA models. The statistical procedures we
employed are described in Supplementary Methodology C, except for ML-sPLSDA, which
was the methodology that provided the statistically meaningful results.

3.7.6. Multilevel Sparse Partial Least Squares–Discriminant Analysis

ML-sPLS-DA is an MVA method used for the pairwise comparison of different groups
in crossover studies, where each subject becomes its own control in a random order [40]. ML-
sPLS-DA is considered the method of choice in human metabolomics interventional studies
since the inter-individual variability caused by genetic, dietary, lifestyle and environmental
factors can obscure nutrition-related metabolic effects. In our work, ML-sPLS-DA was
performed using the mixOmics package implemented with the freely available R statistical
language 3.0.2. The quality of the ML-PLS-DA models was judged by the goodness-of-fit
(R2) and the predictive ability (Q2) parameter, calculated by internal seven-fold cross-
validation and the leave-out methodology.

3.7.7. Variable Selection—Variable Importance in the Projection

The variable importance in the projected (VIP) values of each variable were calcu-
lated as indicators of their contribution to the sample classification. Variables with a VIP
value > 1.5 were considered important in discriminating between groups.

3.7.8. Sparse Loadings

The first 50 sparse loadings as obtained from the ML-sPLS-DA models were considered
important in discriminating between groups and were selected for further evaluation. A
plot containing the selected sparse variables was constructed, using the “PlotVar” command
and by applying a “rad.in” value of 0.9.

4. Conclusions

In the present study, the integrated mass spectrometry-based metabolomic approach
consisted of two steps: an ML and an MVA approach. These were utilized to analyze
serum and urine samples from a double-blind crossover-designed study, encompassing
the administration an olive leaf extract enriched in OE to young, healthy males. The ML

http://mzmine.sourceforge.net
https://sourceforge.net/projects/xmsanalyzer/
http://cran.r-project.org
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
https://github.com/WMBEdmands/MetMSLine_Scripts
https://bioconductor.org/packages/release/bioc/html/mixOmics.html
http://http://cran.r-project.org
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approach allowed the deconvolution of the between-subject variation, which was separated
from the within-subject variation, while simultaneously taking into account the other
types of variation, such as that caused by the week or from the day of administration.
Using this approach, 29 differentially expressed metabolites were identified, revealing
pathway-specific expression profiles.

Overall, supplementation with an olive leaf extract enriched in OE was found to alter
the serum and urine metabolomes of the athletes compared to the placebo administration,
demonstrating that OE could have an impact on training. Importantly, the findings support
the notion that OE administration alters an array of factors concerning crucial biochemical
pathways that are implicated in physical activity. In this research, the metabolism of
tryptophan was found to be upregulated after OE supplementation and increased the
circulating acylcarnitines in the serum and urine.

Supplementary Materials: The following supporting information are available online at https://
www.mdpi.com/article/10.3390/metabo12020195/s1: Supplementary Figures. Figure SA1, Venn di-
agram from the two tested algorithms—“baseline cut-off” (A) and “wavelets” (B)—with 887 features
in the common section, Figure SA2, PCA score plots of representative individuals’ (B, C, H and
F) urine samples (P and O) after UV scaling, obtained from UHPLC-(+)ESI-HRMS analysis. A
clear trend toward differentiation between P (red) and O (black) samples was observed for each
individual, Figure SA3, PLS-DA score plots (UV scaled) of B, P and O urine samples from all the
days of administration, obtained by UHPLC-(+)ESI-HRMS. No significant clustering was observed
between the B (green points), O (black points) and P samples (red points), Figure SA4, PLS-DA
score plot (UV scaled) of P and O urine samples from all the days of administration, obtained by
UHPLC-(+)ESI-HRMS. No significant clustering was observed between the O (black points) and P
samples (red points), Figure SA5, OPLS-DA score plot (UV scaled) of P and O urine samples from
all the days of administration, obtained by UHPLC-(+)ESI-HRMS. No significant clustering was
observed between the O (black points) and P samples (red points), even if they tend to form two
separate classes/groups, Figure SA6, Two-level ML-PLS-DA analysis of the P and O urine samples
from all the days of administration, obtained by UHPLC-(+)ESI-HRMS. The 3D multilevel PLS-DA
score plot (Comp 1, Comp 2, Comp 3) of the combination of within-subject variation and day-based
effect (Varwithin + Varday), with the biological variation (Varbetween) subtracted. Red circles represent
the P samples. Black circles represent the O samples. Clear clustering between P and O samples is
shown. Supplementary Tables. Table SB1, A list of the tested samples along with their corresponding
labels, which we used to examine each individual. Oleuropein samples (O) are in black and placebo
(P) samples are in red. Baseline samples (Days “−1” and “0”) (light grey) were not considered in
this step of MVA, Table SB2, ANOVA results for the significant metabolite M1, Table SB3, ANOVA
results for the significant metabolite M5, Table SB4, ANOVA results for the significant metabolite
M19, Table SB5, A list of the tested samples from the crossover study along with their corresponding
labels. Baseline samples (B) are in green, oleuropein samples (O) are in black and placebo (P) samples
are in red. Supplementary Methodologies. (A) UHPLC-HRMS Methodologies Table SC1, Gradient
elution programs and MS parameters applied for the UHPLC-HRMS analysis of the serum samples
in (+) and (−) ESI modes, Table SC2, Gradient elution program and MS parameters applied for the
UHPLC-HRMS analysis of the urine samples in (+) and (−) ESI modes; (B) Mass Spectrometry Data
Processing Peak picking, data pre-processing, feature annotation and pathway analysis procedures;
(C) Statistical Data Analysis.
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