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New coronavirus disease 2019 (COVID-19), as a pandemic disaster, has drawn the

attention of researchers in various fields to discover suitable therapeutic approaches

for the management of COVID-19 patients. Currently, there are many worries about

the rapid spread of COVID-19; there is no approved treatment for this infectious dis-

ease, despite many efforts to develop therapeutic procedures for COVID-19. Emerg-

ing evidence shows that mesenchymal stromal/stem cell (MSC) therapy can be a

suitable option for the management of COVID-19. These cells have many biological

features (including the potential of differentiation, high safety and effectiveness,

secretion of trophic factors and immunoregulatory features) that make them suitable

for the treatment of various diseases. However, some studies have questioned the

positive role of MSC therapy in the treatment of COVID-19. Accordingly, in this

paper, we will focus on the therapeutic impacts of MSCs and their critical role in

cytokine storm of COVID-19 patients.
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1 | INTRODUCTION

New coronavirus disease 2019 (COVID-19) is regarded as a pandemic

disaster.1 As of 1 August 2021, the outbreak of COVID-19 generated

171 474 925 confirmed cases, including 3 565 330 deaths worldwide.

There is accumulating evidence that shows this virus identifies the

angiotensin I converting enzyme 2 (ACE2) receptor via its spike pro-

tein, fusing with host cells. Furthermore, this virus enters the host cell

and spreads to other body parts by priming the spike protein via cellu-

lar transmembrane protease serine 2 (TMPRSS2).2,3 In lung alveolar

type II cells and capillary endothelial cells, the expression level of the

ACE2 receptor and TMPRSS2 is high.3,4 Thus, severe respiratory fail-

ure is considered the main symptom of COVID-19.

After infection and the occurrence of cytokine storm, the level of

several proinflammatory cytokines, such as macrophage inflammatory

protein-1 alpha (MIP1A), interleukin 2 (IL-2), IL-6, IL-1β, IL-7, mono-

cyte chemoattractant protein 1 (MCP-1), interferon-inducible protein

10 (IP-10) and tumour necrosis factor α (TNF-α), increases. By increas-

ing these proinflammatory cytokines, acute respiratory distress,

edema and other infections occur.5,6 Currently, for the diagnosis of

COVID-19, some methods, such as reverse transcriptase-polymerase

chain reaction (RT-PCR), real-time RT-PCR and reverse transcription

loop-mediated isothermal amplification (RT-LAMP), are employed.7,8

Currently, there are many worries about the rapid spread of

COVID-19; there is no approved treatment for this infectious disease,

despite many efforts to develop therapeutic procedures. Several stud-

ies have suggested various therapeutic options for the management

of this pandemic; in this regard, choosing the most effective option is

necessary to end this pandemic. Among these investigated options,

mesenchymal stromal/stem cell (MSC) therapy has been suggested to

be an appropriate choice to manage COVID-19.9-11 Besides, several

vaccines have been developed to protect against this virus, includingGolnaz Goodarzi and Sadra Samavarchi Tehrani contributed equally to this study.
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Pfizer, Covishield, AstraZeneca, Sputnik V, Janssen, Moderna, Sinopharm

and Sinovac-CoronaVac.12

MSCs, as multipotent stem cells, can be isolated and expanded

from a range of tissue sources, such as bone marrow (BM), amniotic

membrane, fat tissue, umbilical cord and perinatal tissues (PTs).13,14

Therapeutic MSCs were initially isolated from BM in 1994. With

growing interest in MSCs in clinical trials, the contribution of adipose

tissue (AT) and PT became evident.15 In a preclinical setting, MSCs

demonstrate several biological properties (including the potential of

differentiation, high safety and effectiveness, secretion of trophic fac-

tors and immunoregulatory features) that make them suitable for the

treatment of various diseases.16-18 Regarding the potential of MSCs in

the modulation of the immune system, these cells could be used as an

appropriate treatment for patients with COVID-19.19-21 However,

based on clinical trials and in vivo studies, MSCs have been widely

used to treat a variety of diseases, but translation into clinical practice

has proven to be far more challenging.

Despite the fact that in the past 5 years, MSCs from BM, AT and

PT with almost equal frequency have been used in clinical trials due to

a great diversity in MSC products, the tissue source from which MSCs

are derived is very important.22 Thus, due to variable levels of highly

procoagulant tissue factor (TF/CD142), which are expressed by MSC

products, the safety and effectiveness of cell therapy in COVID-19

are not clear.23 In other words, some studies have questioned the

beneficial effects of MSCs therapy on COVID-19 and focused on its

complications. Hence, in the present review, we will highlight the criti-

cal roles of MSCs in cytokine storm of COVID-19 and discuss the dif-

ferent therapeutic effects of MSCs on COVID-19.

2 | COVID-19: ORIGIN, EVOLUTION,
TRANSMISSION AND CLINICAL MANIFESTS

COVID-19 is generally known as a coronavirus and, as a member of the

subfamily Orthocoronavirinae, belongs to the family of Coronaviridae.24,25

This big virus family is severely pathogenic and often considered infec-

tious, as caused the epidemic of severe acute respiratory syndrome coro-

navirus (SARS-CoV) in 2002 and Middle East respiratory syndrome

(MERS) in 2012.26,27 In late December 2019, the outbreak of a new coro-

navirus that caused a respiratory-associated disease was reported in

Wuhan, Hubei, China; it was then announced as a global health disaster

by theWorld Health Organization (WHO); nowadays, the disease is widely

called COVID-19.28

A great number of studies first concentrated on raccoon dogs and

palm civets as an important reservoir of infection in the case of SARS-

CoV. At the beginning of 2020, they were misdiagnosed as seasonal

flu; also, the pathogenesis and aetiology of such pneumonia-like

symptoms remained unidentified. Based on some studies, epidemiolo-

gists discovered that the cluster was related to the human seafood

market in Wuhan, which led to the hypothesis of zoonotic disease

transmission. According to the phylogenomic analysis of COVID-19, it

has been demonstrated that the novel coronavirus is most closely

linked to two SARS-like-CoV sequences, which were obtained in bats

between 2015 and 2017, proposing that the bats' coronavirus and

COVID-19 share similar ancestry. As a result, COVID-19 is known as

SARS-CoV-2, a SARS-like virus.

Moreover, the two bat viruses were isolated in Zhoushan, China; in

this regard, it was thought that COVID-19 might have first appeared

close to Zhoushan.29,30 Coronaviruses consist of alpha-, beta-, gamma-

and delta-coronavirus subfamilies. Alpha- and beta-coronaviruses can

cause infection in mammals, whereas the other two types are more likely

to infect birds.31 COVID-19 shares about 80%, 50% and 96% sequence

likeness with SARS-CoV, MERS and bat coronavirus, respectively.32

Unlike other coronaviruses, this emerging virus is a positive-sense

single-stranded RNA (ssRNA) virus. Moreover, its genome size ranges

between about 27 000 and 32 000 base pairs (bp). This novel virus is

spherical with a diameter of about 125 nm, which is translated into

structural proteins (eg, spike, envelope, membrane and nucleocapsid)

and nonstructural proteins (eg, replicas [orf1a/b]), nsp2, nsp3 and

accessory proteins (orf3a and orf7a/b).33-35 The virus can be transmit-

ted through the environment, droplets or aerosols, coughing and

sneezing, and direct contact with infected individuals.

The disease quickly spread not just throughout China but also

throughout the ancient continent. It did not take long for the disease

to spread throughout the globe and become a global pandemic.36 Less

than 3 months after the outbreak began, >100 000 cases and about

4500 deaths were reported worldwide.37 When dozens of countries

were witnessing a growing number of new cases, the pattern of dis-

ease spread in China was declining. At the beginning of the public

spread of the disease, some countries, such as Iran and Italy, became

significantly more affected by the disease.38

Early clinical manifestations of COVID-19 patients are dry cough,

fever, myalgia, sore throat, diarrhoea and difficulty breathing,39 and

the prognosis of infected people was correlated with host features.40

It was reported that during hospitalization, respiratory failure occurred

in approximately 90% of patients.39 A number of biochemical parame-

ters change during the disease course, including decreased white

blood cells (WBC) and lymphocytes, as well as increased aspartate

aminotransferase (AST), alanine aminotransferase (ALT), lactate dehy-

drogenase (LDH) and C-reactive protein (CRP).41 After about 2 to

5 days, the symptoms manifest.42

The average interval from the onset of symptoms to death has

been considered 14 days,43 depending on the patient's immune sys-

tem and age. This average interval is shorter in people >70 years of

age than in people <70 years of age.44 A chest computed tomography

(CT) scan can confirm pneumonia, but there are some aberrant charac-

teristics, such as RNAaemia, acute respiratory distress syndrome

(ARDS), acute heart damage and incidence of grand-glass opacities, all

of which culminated in death.45 Cytokine storm in the lungs is a hall-

mark of SARS-CoV-2 pathogenesis. Acute cytokine release of GCSF,

IL-2, IL-6, IL-7, IP-10, MCP-1, MIP1A and TNF caused by a virus cau-

ses pulmonary edema, airway dysfunction and ARDS.

In the vast majority of cases, SARS-CoV-2 infections vary from

asymptomatic to symptoms similar to seasonal flu, and about 14%, 6%

and 3% of patients showed severe, critical and fatal outcomes, respec-

tively.46 Due to lung and multiorgan failure, tissue destruction and
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virus-induced cytokine storm with a unique pattern, severe patients

necessitate intensive care unit (ICU).47 Secondary clinical manifesta-

tions, including cardiomyopathy, acute cardiac damage, acute renal

infection, bacterial infection, organ failure and sepsis, occur in about

5% of all cases.48

Patients with severe COVID-19 are more likely to experience

complications such as ARDS, acute lung injury (ALI) and sepsis.49-51

ARDS is the most severe type of ALI52 with neutrophil, monocyte and

lymphocyte infiltration in the bloodstream.53 It is generally divided

into categories depending on the clinical circumstances, such as sep-

sis, transfusion or trauma.54 Based on evidence, sepsis-induced ARDS

is the most prevalent cause.55 All three ARDS, ALI and sepsis are

defined by the release of abnormally high levels of cytokines, which

can cause systemic problems.56 The frequency and severity of ALI is a

key determinant of the prognosis of COVID-19 patients.

In the ICU, over 30% of COVID-19 patients have significant pul-

monary edema, dyspnea, hypoxemia or possibly ARDS.57 A large num-

ber of critically ill COVID-19 patients (who have a poor prognosis) are

in a systemic procoagulant condition, which puts them at risk for dis-

seminated intravascular coagulation (DIC), thrombosis and thrombotic

multiorgan failure (which is one of the major reasons for mortality in

these patients). Because of the risk of damage to these patients, sys-

temic intravenous (IV) MSC therapy would be a contraindication.23

The Chinese Center for Disease Control and Prevention conducted

the largest study on COVID-19 patients in China; they analysed data

from 72 314 COVID-19 patients and found that 81% of cases were

mild with an overall case fatality rate of 2.3%, and 5% of them pres-

ented with respiratory failure, septic shock and multiorgan dysfunc-

tion with 50% of fatality.58

3 | MESENCHYMAL STROMAL/STEM
CELLS

MSCs were reported by Friedenstein et al as fibroblast-colony for-

ming cells derived from rat BM.59,60 Besides BM, MSCs can be

obtained from AT,61 dental pulp,62 umbilical cord blood,63 fetal lung64

and placenta.65 Based on growing evidence, MSCs, as a heteroge-

neous population of cells, have the capability of differentiation into

mesodermal lineages. These cells have several biological properties

(including the potential of differentiation, tissue remodelling, secretion

growth factors and immune protective cytokines, safety and easy iso-

lation) that make them suitable for stem cell-based therapy.66

MSCs can home to injured sites and release various factors (such

as vascular endothelial growth factor [VEGF], insulin-like growth fac-

tor 1 [IGF-1], IL-6, stromal-derived factor 1 [SDF-1], hepatocyte and

nerve growth factors), which can promote cell survival.67,68 However,

due to the occurrence of instant blood mediated inflammatory

response (IBMR), which poses a serious threat to graft survival and

function, this is not a very efficient process. In addition, the expres-

sion of TF (CD142) has been identified as a key trigger of

IBMIR.18,22,23,58 On the other hand, MSCs' therapeutic effects on lung

injury are due to their ability to secrete some factors such as nitric

oxide (NO), transforming growth factor β (TGF-β), prostaglandin E2,

indoleamine 2, 3 dioxygenase (IDO) and keratinocyte growth factor

(KGF).69,70 Prostaglandin E2 stimulates the conversion of alveolar

macrophages from the proinflammatory M1-macrophages to the anti-

inflammatory phenotype, which can release IL-10 and decrease the

severity of inflammation.71 Besides, prostaglandin E2, NO, IDO and

KGF can also suppress T-cell–dependent inflammation.72-74

Furthermore, numerous studies have indicated the immunomodu-

latory properties of MSCs. The immunomodulatory potential of these

cells occurs by altering the function of T cells, B cells, natural killer

(NK) cells and monocytes/macrophages.71,75-77 In addition, these cells

can decrease interferon-γ (IFN-γ), TNF-α and IL-17 production while

increasing IL-10 production, resulting in a modulation of the host

immune response.70 There is no effective therapy for COVID-19, but

MSC therapies have shown promising outcomes in treating inflamma-

tion, sepsis and ARDS (these are the leading mortality cause of

COVID-19 patients). Thus, immunomodulatory and regenerative char-

acteristics suggest that MSCs could be used as a cellular therapy for

COVID-19 patients with lung injury.78

4 | CROSS TALK BETWEEN MSCs AND
CYTOKINE STORM IN COVID-19

MSCs can release different cytokines by paracrine secretion or inter-

acting directly with immune cells, resulting in immunomodulation.79

The activation of toll-like receptors (TLRs) in MSCs is induced by

pathogen-associated molecules (including double-stranded RNA from

viruses); this activation enhances the immunomodulatory actions of

MSCs.80,81 Self-renewal, multidirectional differentiation and immuno-

suppression are the advantages of MSCs.82 These cells can play a vital

role in COVID-19 treatment due to their anti-inflammatory and immu-

nomodulatory effects.83 MSCs control a wide range of effectors

(including T cells, B cells, macrophages, neutrophils, NK cells and den-

dritic cells [DCs]) to affect innate and adaptive immunity (Figure 1).

SARS-CoV-2 interacts with TLRs, causing the production and

release of proinflammatory IL-1, IL-6 and TNF, which are key mediators

in the inflammatory cascade.84,85 TIR domain–containing adapter-

inducing interferon-β (TRIF) or myeloid differentiation primary response

88 (MyD88) promotes the activation of tumour necrosis factor

receptor-associated factor 6 (TRAF6). TRAF6 promotes caspase 1, caus-

ing pro-IL-1 cleavage and inflammasome activation, as well as tumour

growth factor-activated kinase and I kappa B kinase (IKK). Then,

proinflammatory cytokines (such as TNF, IL-6 and IL-1) initiate inflam-

matory processes in the lungs.86,87

SARS-CoV-2 may generate cytokine storm as a result of defective

acquired immune responses and uncontrolled inflammatory innate

responses.5 During the cytokine storm associated with COVID-19,

increased serum levels of IP-10, MCP-1, granulocyte colony-stimulating

factor (G-CSF), MIP1A, IL-2, IL-7, IL-6 and TNF cause pulmonary

edema, respiratory tract dysfunction and ARDS in patients.88,89

MSCs have many unique immunomodulatory functions, which

control the cytokine storm or balance immune responses via restoring
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the pulmonary microenvironment, preserving alveolar epithelial cells

and treating COVID-19 pneumonia.90 In a clinical trial conducted by

Leng et al, seven patients with COVID-19 were given only one IV

infusion of MSCs. After 3 to 6 days, the patients' health improved sig-

nificantly, inflammatory cytokine levels declined, anti-inflammatory IL-

10 levels increased and overactivated cytokine-secreting T cells and

NK cells vanished.91

Despite several efforts to comprehend the therapeutic effects

of MSCs in ARDS, their mechanism has not yet been fully

defined.92 On the other hand, most COVID-19 patients are at high

risk for DIC, thromboembolism and thrombotic multiorgan fail-

ure.23 MSC-based products can express variable levels of TF

(CD142), leading to blood clotting and thrombotic multiorgan

dysfunction.23

5 | THERAPEUTIC PROPERTIES OF MSCs
IN COVID-19

MSCs have been widely used in cell-based therapies, from basic

research to clinical trials.93 The efficacy and safety of MSCs have been

shown in clinical studies.94,95 Although the International Society for

Stem Cell Research (ISSCR) has recently announced that there is no

approved stem cell-based strategy for COVID-19 prevention and

treatment, MSCs are currently proposed as one of the therapeutic

techniques for treating COVID-19.9,96

The important anti-inflammatory activities of MSCs suggest that

they could be used as a treatment for serious and life-threatening

COVID-19 complications.11 Cell contact-dependent and paracrine

activities, such as the release of IL-10, TNF-stimulated gene 6, IDO,

F IGURE 1 Crosstalk between MSCs and COVID-19
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adenosine and extracellular vesicles (EVs), are among the immuno-

modulatory mechanisms of MSCs.97 This modulation is based on mod-

ifying immune cell activation and effector function, inhibiting lung-

infiltrated cells and improving pulmonary edema resolution.98

MSCs convert inflammation from a proinflammatory state with a

massive release of proinflammatory cytokines (such as IL-6, IL-1, TNF,

MCP-1, MIP-2, chemokine [CXC motif] ligand 1 [CXCL1] CXCL2, IL-12,

IL-17 or type II IFN) and proteases (such as MMP-2, MMP-9 and MMP-

12) to an anti-inflammatory state by releasing cytokines such as IL-10,

IL-4, CC chemokine ligand 18 (CCL18), TGF-α and prostaglandin E2. As a

result of this transition, inflammation decreases, and tissue repair

occurs.99,100 IV infused MSCs are considered to aggregate in the lungs,

producing several paracrine substances that can preserve or rejuvenate

the epithelial cells of the alveoli, combat fibrosis and improve lung func-

tion.101 However, it is not yet clear whether IV infusion of MSCs is a safe

and effective process to deliver COVID-19 patients. The reason is that

they induce the expression of highly procoagulant TF (CD142) by MSC-

based products. A significant increase in complement C3 activation frag-

ment a (C3a) and coagulation activation marker thrombin-antithrombin

complex (TAT), as well as a decrease in platelet count and a significant

increase in fibrinolysis marker D-dimer, was observed after ex vivo

expanded MSCs administered in patients. In this way, certain cell formu-

lations, such as MSCs, with low-dose heparin can suppress complement

activity and tend to provide better clinical outcomes.23

The interactions of MSCs with B lymphocytes, NK cells, DCs, neutro-

phils and macrophages have been the focus of MSC-regulated immuno-

modulation.71,102 These interaction mechanisms are dependent on cell-cell

contact and the release of soluble immune components.103 Immunosup-

pressive ligands on the surface of MSCs, such as programmed death-ligand

1 (PD-L1) and Fas ligand (Fas-L), attach to receptors on the surface of

immune cells, causing immune cells to lose function.104,105

In the context of neutrophils and macrophages, MSCs can control

these immune cell responses.71 Macrophages are classified into M1

(which is a classically activated macrophage) and M2 (which is an

alternatively activated macrophage).106 Pathogen phagocytosis and

antigen epitope presentation to DCs, as well as promoting TH1

responses, are performed by M1 macrophages. However, M2 macro-

phages are considered immunosuppressive cells as they stimulate TH2

responses.107 By activating M2 macrophages, inflammatory cytokines

are expressed at low levels, while anti-inflammatory IL-10 is produced

at high levels. MSCs can promote M2 macrophage activation through

paracrine or cell-to-cell connections.79,106

Another immunomodulatory function of MSCs is the inhibition of

DC maturation via soluble factor production.106,108,109 MSCs can limit

DC maturation by inactivating signalling cascades mediated by mitogen-

activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) via pro-

ducing TNF-stimulated gene 6 (TSG-6).110 It has been reported that pros-

taglandin E2 (PGE2) released by activated MSCs plays a key function in

DC maturation inhibition.106

Furthermore, it has been discovered that NK cells and MSCs have

a highly complicated interaction.111 NK cells are lymphocytes in the

innate immune system.112 They have several receptors that can trans-

mit by either activating or inhibiting signals.113 The production of

soluble substances by MSCs suppresses the immune response of NK

cells.106 IL-2-induced NK-cell responses can be inhibited by IDO and

PGE2.106,114 Additionally, MSCs have TLRs, which appear to play an

important function. The TLR3 activation in MSCs results in enhanced

immunosuppression of NK cells.115

These types of stem cells release some chemicals that can influence

B-cell and T-cell responses positively or negatively.116 Through the pro-

duction of PGE2, IDO, TGF and hepatocyte growth factor (HGF), MSCs

can effectively limit T-cell proliferation.106,117 Direct cell-to-cell contacts,

mostly involving the Fas/Fas-L, TNF-related apoptosis-inducing ligand/

death receptor (TRAIL/DR), death signalling and PD-L1/PD-1 pathways,

can cause B cell apoptosis.118,119 Besides, cell cycle arrest of B cells can be

caused by IDO and PGE2, as well as the synthesis of TGF-1 and HGF.120

MSCs inhibit viral reproduction, shedding and lung epithelial cell

(LEC) damage caused by viruses. Through transferring RNAs from EVs

to LECs, MSC-derived extracellular vesicles (MSC-EVs) enhance both

anti-inflammatory and antiviral characteristics.121 Exosomes and

ectosomes are examples of EVs, which can be thought of as miniature

maps of their origin cells and can make any of the therapeutic benefits

of MSCs.122-125 MSC-EVs may offer various advantages over MSCs

as a COVID-19 treatment. For example, although MSCs are most

commonly delivered via IV infusion,126 systemic administration of EVs

is not required and can be administered intranasally or through inhala-

tion. Furthermore, since EVs do not self-replicate, they do not pose

the risk of uncontrolled cell division that has been raised in the past

regarding cell-based treatments.83,127

MSCs were found in greater abundance in lung tissue from patients

with fibrotic lung disorders.128 Early application of MSCs to alleviate inflam-

mation and lung tissue remodelling with mild fibrosis was established in

animal models.128 The lung osmotic gradient created by active ion trans-

port across the alveolar epithelium causes alveolar fluid clearance (AFC).129

AFC decreases in COVID-19 patients with ARDS, linked to increased mor-

bidity and death.130 Patients who die of ARDS had much decreased fluid

clearance.131 MSC interaction with chloride and sodium ion channels

improves AFC and facilitates the clearance of pulmonary edema.132,133

Based on Tang et al's findings, following MSC treatment, oxygen-

ation and immunological indicators improved, and inflammatory indi-

cators were reduced. They indicated that clinical data on the therapy

of COVID-19 were provided via MSC transplantation.19 A case-report

study was conducted on a COVID-19 patient with worsening condi-

tions and signs of liver injury despite rigorous treatment. After human

umbilical cord MSC (hUCMSC) therapy, most laboratory tests and CT

scans revealed that the inflammatory symptoms waned. The patient

was taken off the ventilator and able to walk 4 days after her second

cell injection without any critical side effects.134

In another study, Leng et al assessed MSC transplantation in

seven COVID-19 pneumonia patients. They discovered that 4 days

after MSC injection, the functional outcomes of the patients consider-

ably improved with no adverse effects.91 Similar to these results, in

China, a study on the treatment of a severe COVID-19 patient with

human umbilical cord Wharton's jelly-derived MSCs (hWJCs) showed

that intravascular transplantation of hWJCs for the treatment of

COVID-19 pneumonia was found to be safe and effective.135
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The use of MSCs for COVID-19 has become a hot topic among

researchers. MSC therapy improved COVID-19 patients' outcomes; it

could be a good option for disease treatment,21 but further preclinical

and clinical research is needed to further investigate its mechanism,

safety, and efficacy136 (Table 1). In addition, it is effectively used in

clinical trials for the treatment of various disorders, such as multiple

TABLE 1 Ongoing clinical studies exploring the contribution of MSCs

Conditions Treatment Source Enrolment Phase Clinical trial number

Covid19

Pneumonia

Multiple organ failure

Corona virus infection

MSCs 30 Phase 1/2 NCT04392778

Acute respiratory distress syndrome due for

COVID-19

MSCs 10 Phase 2 NCT04416139

COVID-19 patients Wharton's Jelly-MSCs 5 Phase 1 NCT04313322

COVID-19 patients MSCs 20 Phase 1 NCT04252118

COVID-19 pneumonia UC-MSC 30 Phase 1/2 NCT04339660

Severe COVID-19 patients Allogeneic human dental pulp mesenchymal

stem cells

20 Phase 1/2 NCT04336254

Severe corona virus disease 2019 MSCs 90 Phase 2 NCT04288102

SARS-CoV-2-related acute respiratory distress

syndrome

MSCs 60 Phase 2/3 NCT04366063

COVID-19 patients MSCs 106 Phase 2 NCT04366271

Acute respiratory distress syndrome due for

COVID-19

MSCs 300 Phase 3 NCT04371393

Acute respiratory distress syndrome due for

COVID-19

MSCs 30 Phase 1/2 NCT04390139

COVID-19 patients UC-MSC 24 Phase 1/2 NCT04355728

COVID-19 pneumonia UC-MSCs 10 Phase 2 NCT04269525

Acute respiratory distress syndrome UC-MSC derived CD362 enriched MSCs 75 Phase 1/2 NCT03042143

COVID-19 patients UC-MSCs 48 NA NCT04293692

Severe COVID-19 patients AT-MSC exosomes 30 1 NCT04276987

Acute respiratory distress syndrome induced

by epidemic influenza A (H7N9)

Menstrual-blood-derived MSCs 17 NTC02095444

COVID-19 pneumonia UC-MSCs 48 NA NCT04273646

COVID-19 pneumonia cord blood mesenchymal stem cells 60 0 ChiCTR2000029816

Acute COVID-19 pneumonia NK cells and UCB-MSCs 60 0 ChiCTR2000029817

Acute COVID-19 pneumonia MSCs 63 0 ChiCTR2000029606

Acute COVID-19 pneumonia MSCs 70 0 ChiCTR2000029580

High-risk COVID-19 pneumonia UC-MSCs 9 1 ChiCTR2000030300

Severe COVID-19 pneumonia MSCs 32 NA ChiCTR2000030224

Novel COVID-19 pneumonia UC-MSCs 60 0 ChiCTR2000030173

Severe COVID-19 pneumonia UC-MSCs 60 2 ChiCTR2000030138

Acute respiratory distress syndrome of

COVID-19 pneumonia

UC-MSCs 16 NA ChiCTR2000030116

Severe COVID-19 pneumonia UC-Wharton's jelly MSCs 40 0 ChiCTR2000030088

COVID-19 pneumonia MSCs 20 NA ChiCTR2000030020

COVID-19 pneumonia MSCs 120 Phase1/2 ChiCTR2000029990

Severe and critically COVID-19 pneumonia UC-MSCs CM 30 0 ChiCTR2000029569

COVID-19 pneumonia MSC exosomes 26 0 ChiCTR2000030261

COVID-19 pneumonia UC-MSCs and exosomes 90 NA ChiCTR2000030484

Acute COVID-19 pneumonia UCBMCs 60 0 ChiCTR2000029812

COVID-19 pneumonia UCBMCs 30 0 ChiCTR2000029572
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sclerosis and osteoarthritis. MSCs possess both regenerative and

immunomodulatory features, the latter of which can be employed to

reduce the severity of SARS-CoV-2 infection.137

6 | CONCLUSION

Based on recent studies, MSC-based treatments in COVID-19

patients have become a hot topic among researchers. Regarding the

properties of MSCs to combat viruses, immunomodulatory features

and their potential for tissue regeneration, this type of therapy has

attracted the attention of researchers and could be used more to treat

COVID-19 patients. Moreover, MSC therapy has not indicated any

negative side effects on patients. However, multiple challenges exist

related to cell-based treatment. Nowadays, the safety, efficacy and

timing of MSC administration, suitable and effective dose and route

preparation for infusion source of MSC delivery are under investiga-

tion as well. Hence, MSC-based treatments could be one of the most

appropriate therapeutic approaches to treat COVID-19 patients.
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