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Abstract: By the end of spring (31 May), the COVID-19 death rate was remarkably unevenly dis-
tributed across the countries in Europe. While the risk of COVID-19 mortality is known to increase
with age, age-specific COVID-19 death rates across Europe were similarly unevenly distributed. To
explain these mortality distributions, we present a simple model where more favorable survival
environments promote longevity and the accumulation of health frailty among the elderly while less
favorable survival environments induce a mortality selection process that results in lower health
frailty. Because the age-related conditions of frailty render the elderly less resistant to SARS-CoV-2,
pre-existing survival environments may be non-obviously positively related to the COVID-19 death
rate. To quantify the survival environment parameter of our model, we leveraged historic cohort-
and period-based age-specific probabilities of death and life expectancies at age 65 across Europe. All
variables are significantly correlated with indicators of frailty like elderly dependence on others for
personal and household care for a subset of European countries. With respect to COVID-19 death
rates, we find significant positive relationships between our survival indicators and COVID-19 death
rates across Europe, a result that is robust to statistical control for the capacity of a healthcare system
to treat and survive infected persons, the timing and stringency of non-pharmaceutical interventions,
population density, age structure, case rates and the volume of inbound international travelers, among
other factors. To address possible concerns over reporting heterogeneity across countries, we show
that results are robust to the substitution of our response variable for a measure of cumulative excess
mortality. Also consistent with the intuition of our model, we also show a strong negative association
between age-specific COVID-19 death rates and pre-existing all-cause age-specific mortality rates
for a subset of European countries. Overall, results support the notion that variation in pre-existing
frailty, resulting from heterogeneous survival environments, partially accounts for striking differences
in COVID-19 death during the first wave of the pandemic.

Keywords: COVID-19; frailty; longevity

1. Introduction

At the end of spring (31 May), the COVID-19 death rate (deaths over population) was
strikingly unevenly distributed across Europe (Figure 1). Among the hardest hit countries
in the first wave of the pandemic were Belgium, Spain, Italy, and the United Kingdom with
COVID-19 death rates of 816, 580, 553, and 552 deaths per 1 million, respectively. As of 31
May 2020, the United Kingdom’s COVID-19 death rate exceeded the similarly developed
economy of Germany (102 per million) by more than a factor of 5. Few epidemiological
indicators distinguish the countries of Europe by such an extent.
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Figure 1. Uneven Distribution of Wave I (ending 31 May 2020) COVID-19 mortality risk across the 
countries of Europe. NOTE: The countries of Europe are arranged in descending order by reported 
COVID-19 deaths per million, as of 31 May 2020. COVID-19 death data by country are from Johns 
Hopkins Coronavirus Resource Center (JHU CSSE) (https://github.com/CSSEGISandData/COVID-
19 Unified-Dataset (accessed on 15 June 2020)). 

Because the risk of COVID-19 death is significantly higher among the elderly, one 
might assume that variation in the COVID-19 death rate across Europe in this period re-
flects differences in age structure [1,2]. Consider Figure 2 that plots age-specific COVID-
19 death rates (as of 31 May 2020) for nine European countries with readily available data. 
The size of each point plotted in Figure 2 reflects the share of total reported COVID-19 
deaths that can be attributed to each age group within a country. Most striking is that the 
cross-national variation observed in Figure 1 remains. England’s age-specific death rates 
are roughly five times that of Germany’s across all age groups. The within-age-group var-
iation in COVID-19 death rates across countries implies that the age structure of the pop-
ulation cannot account for observed differences in COVID-19 mortality risk between Eu-
ropean countries. In fact, the percentage of the population ≥ 65 (r = 0.134, p = 0.480) and 
≥75 (r = 0.186, p = 0.325) years of age is statistically uncorrelated with the COVID-19 death 
rate during this phase of the pandemic. 

Figure 1. Uneven Distribution of Wave I (ending 31 May 2020) COVID-19 mortality risk across the
countries of Europe. NOTE: The countries of Europe are arranged in descending order by reported
COVID-19 deaths per million, as of 31 May 2020. COVID-19 death data by country are from Johns
Hopkins Coronavirus Resource Center (JHU CSSE) (https://github.com/CSSEGISandData/COVID-
19 Unified-Dataset (accessed on 15 June 2020)).

Because the risk of COVID-19 death is significantly higher among the elderly, one
might assume that variation in the COVID-19 death rate across Europe in this period reflects
differences in age structure [1,2]. Consider Figure 2 that plots age-specific COVID-19 death
rates (as of 31 May 2020) for nine European countries with readily available data. The size
of each point plotted in Figure 2 reflects the share of total reported COVID-19 deaths that
can be attributed to each age group within a country. Most striking is that the cross-national
variation observed in Figure 1 remains. England’s age-specific death rates are roughly
five times that of Germany’s across all age groups. The within-age-group variation in
COVID-19 death rates across countries implies that the age structure of the population
cannot account for observed differences in COVID-19 mortality risk between European
countries. In fact, the percentage of the population ≥ 65 (r = 0.134, p = 0.480) and ≥75
(r = 0.186, p = 0.325) years of age is statistically uncorrelated with the COVID-19 death rate
during this phase of the pandemic.

https://github.com/CSSEGISandData/COVID-19
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Figure 2. Heterogeneous Wave I (ending 31 May 2020) COVID-19 mortality risk by age group across 
select European countries. NOTE: COVID-19 death and population data (closest to 31 May 2020) by 
age and country are from National Institute for Demographic Studies (INED) 
(https://dccovid.site.ined.fr/en/data/ (accessed on 15 June 2020)). 

While the percent of elderly is statistically independent of the COVID-19 death rate, 
the risk of death by COVID-19 is manifestly related to age. Except for Ukraine, across the 
countries in Figure 2, persons 70 years of age and older account for more than 80% of all 
reported COVID-19 deaths. A theory of the puzzling distribution of the COVID-19 death 
rate across Europe at the end of spring must therefore account for the age-related nature 
of COVID-19 death risk. 

Frailty is a notion used to describe a range of age-related conditions that render the 
elderly less resistant to health shocks [3–6]. Several clinically validated measures of frailty 
such as muscle weakness, fatigue, low physical activity, poor balance, visual impairment, 
and cognitive impairment that increase elderly dependence on others are correlated with 
age. The accumulation of frailty in a society may be non-obviously positively related to 
the survival environment [7,8]. Societies characterized by higher pre-existing rates of el-
derly survival and consequent frailty accumulation may be more susceptible to higher 
rates of COVID-19 death, at least initially before the arrival of more effective treatment 
modalities. 

Consider two similarly economically developed countries with varying rates of sur-
vival to age 75. Suppose that one country has high and the other a low survival environ-
ment with respect to all causes of death. Persons surviving to 75 in the low survival envi-
ronment are more positively selected on the underlying ability to persist from 1 year to 
the next—i.e., longevity. Given positive mortality selection, elderly persons over the age 
of 75 in the low survival country may be more likely to withstand adverse health shocks 
than similarly aged persons in the high survival country because of lower underlying 
frailty. Similarly, persons surviving to 75 in a high survival environment are more nega-
tively selected on the underlying ability to persist, rendering such persons less likely to 

Figure 2. Heterogeneous Wave I (ending 31 May 2020) COVID-19 mortality risk by age group across
select European countries. NOTE: COVID-19 death and population data (closest to 31 May 2020) by
age and country are from National Institute for Demographic Studies (INED) (https://dccovid.site.
ined.fr/en/data/ (accessed on 15 June 2020)).

While the percent of elderly is statistically independent of the COVID-19 death rate,
the risk of death by COVID-19 is manifestly related to age. Except for Ukraine, across the
countries in Figure 2, persons 70 years of age and older account for more than 80% of all
reported COVID-19 deaths. A theory of the puzzling distribution of the COVID-19 death
rate across Europe at the end of spring must therefore account for the age-related nature of
COVID-19 death risk.

Frailty is a notion used to describe a range of age-related conditions that render the
elderly less resistant to health shocks [3–6]. Several clinically validated measures of frailty
such as muscle weakness, fatigue, low physical activity, poor balance, visual impairment,
and cognitive impairment that increase elderly dependence on others are correlated with
age. The accumulation of frailty in a society may be non-obviously positively related to the
survival environment [7,8]. Societies characterized by higher pre-existing rates of elderly
survival and consequent frailty accumulation may be more susceptible to higher rates of
COVID-19 death, at least initially before the arrival of more effective treatment modalities.

Consider two similarly economically developed countries with varying rates of sur-
vival to age 75. Suppose that one country has high and the other a low survival environment
with respect to all causes of death. Persons surviving to 75 in the low survival environment
are more positively selected on the underlying ability to persist from 1 year to the next—i.e.,
longevity. Given positive mortality selection, elderly persons over the age of 75 in the low
survival country may be more likely to withstand adverse health shocks than similarly
aged persons in the high survival country because of lower underlying frailty. Similarly,
persons surviving to 75 in a high survival environment are more negatively selected on
the underlying ability to persist, rendering such persons less likely to withstand adverse

https://dccovid.site.ined.fr/en/data/
https://dccovid.site.ined.fr/en/data/
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health shocks than similarly aged persons in a low survival environment because of higher
underlying frailty.

In this paper we develop a simple and highly stylized model of longevity and accu-
mulated health frailty that captures the intuition of positive and negative mortality above
more formally. Each country begins with an identical underlying distribution of health
frailty among the population. Then, heterogeneous survival environments across countries
induce mortality selection processes that generate varying amounts of accumulated health
frailty in subsequent periods. Specifically, more favorable survival environments promote
longevity and a larger amount of accumulated health frailty, while less favorable survival
environments induce a relatively strict mortality selection process that results in a lower
amount of accumulated health frailty among the elderly. With respect to an exogenous
health shock that disproportionately targets the relatively health frail, like SARS-CoV-2,
this simple model implies that countries with more favorable pre-existing survival en-
vironments will have larger susceptible (health frail) populations and, therefore, higher
COVID-19 death rates.

To measure a survival environment, we collected data on pre-existing all-cause age-
specific death rates (measured in both period and cohort-specific terms), data on life
expectancy at age 65, and developed an index of survival that is integrative of these
measures. All measures of the survival environment are highly correlated with more
explicit indicators of elderly frailty, including percent of disabled persons ≥ 65 years that
need the assistance of others, percent of persons ≥ 65 years that need help with personal
care activities, and percent of persons ≥ 65 years that need help with household activities.
Across measures of the survival environment, we show that a more favorable pre-existing
survival environment is strongly positively associated with the COVID-19 death rate across
Europe. These results are robust to statistical control for competing theories of COVID-19
prevalence and mortality, including the capacity of a healthcare system to manage and
survive infected persons, the timing and stringency of non-pharmaceutical interventions,
population density, age structure, and the volume of inbound international travelers.
Results are also robust to the substitution of our response variable—the COVID-19 death
rate—with a measure of cumulative excess mortality that addresses possible concerns of
reporting heterogeneity across Europe. Finally, for a subset of European countries with
readily available data, and compatible with our longevity-frailty model, we show a strong
negative association between age-specific COVID-19 death rates and pre-existing all-cause
age-specific mortality rates.

In the next section we describe our theoretical model, outlining the basic relationship
between a country’s survival environment and the expected accumulation of health frailty
among the elderly. In Section 3 we detail data sources, variable operations, and statistical
models to test our model. In Section 4 we present results, including a series of robustness
tests. In Section 5 we conclude with a summary of key findings and how our simple model
is consistent with other facts of the first wave of the COVID-19 pandemic in Europe.

2. Model

Consider a very simple model of survival with two periods, t = (1, 2). In period
t = 1, a country (j) begins with a representative population of individuals (i) who are
each in possession of a level of health frailty ( fi). Health frailty ranges from 0 (least frail)
to 1 (most frail) and, for simplicity and illustration of logic, is assumed to be distributed
normally across the population with the restriction that Pr[0 ≤ f ≤ 1] = 1 since f ∈ [0, 1].
The assumed distribution of health frailty across the population is inconsequential for the
comparative statics of this simple model.

The likelihood that an individual survives to period t = 2 is determined by a Bernoulli
trial. Specifically, individual i in country j survives to period t = 2 with probability p

(
fi; δj

)
or, equivalently, dies in period t = 1 with probability 1− p

(
fi; δj

)
. The survival probability
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function p( f ; δ), defined over the domain of health frailty, and dropping the subscripts for
simplicity, takes the following functional form

p( f ; δ) = 1− f δ (1)

where δ > 1. Taking the first and second derivative of the survival probability function
with respect to health frailty shows that the probability of survival increasingly deteriorates
with health frailty

∂p
∂ f

= −δ f δ−1 < 0 (2)

∂2 p
∂ f 2 = −δ(δ− 1) f δ−2 < 0 (3)

with certain survival for the least frail—p(0; δ) = 1—and certain death for most frail—
p(1; δ) = 0. For a given level of health frailty in the range (0, 1), a more favorable survival
environment increases an individual’s likelihood of surviving into older age. Specifically,

∂p
∂δ

= − ln( f ) f δ > 0 (4)

so that larger values of δ reflect a more favorable survival environment.
Given the survival probability function, we can derive the expected accumulation of

health frailty in period t = 2. Let N1
f denote the number of individuals in period t = 1 with

health frailty f . Then the expected number of persons with health frailty f ≥ h that survive
to period t = 2 is given by

E
[

N2
f≥h

]
=
∫ 1

h
N1

f p( f ; δ)d f =
∫ 1

h
N1

f

(
1− f δ

)
d f (5)

and the expected number of relatively frail individuals ( f ≥ h) that survive to period t = 2
is increasing in δ

∂E
[

N2
f≥h

]
∂δ

= −
∫ 1

h
N1

f ln( f ) f δd f > 0; h ∈ (0, 1). (6)

Thus, this simple model outlines a clear relationship between a country’s survival
environment (δ) and the expected accumulation of health frailty among the elderly (period
t = 2). It is important to note that an individual’s health frailty is not endogenously
determined in this simple model. For instance, a less favorable survival environment may
positively contribute to the accumulation of health frailty through “scarring” or “weath-
ering” effects even though the process of mortality selection negatively contributes to
accumulated health frailty, or what some refer to as the “culling” effect [9]. A model that
incorporates these competing effects would provide a more general theoretical understand-
ing of accumulated health frailty that could account for within-country variation in health
outcomes and/or mortality across groups—for example, the relatively high COVID-19
death rates observed for African Americans in the US [10] or the positive association
between COVID-19 death risk and multiple deprivation in the UK [11].

That said, because frail persons are more susceptible to a range of age-related condi-
tions that render them less resistant to health shocks or sudden changes to the survival
environment like SARS-CoV-2, we predict that higher survival environments are positively
associated with higher COVID-19 death rates. While we do not explicitly model the deter-
mination of δ, this environmental parameter is a function of several factors that contribute
to the longevity of individuals across a health frailty distribution—e.g., income, nutrition,
public health, vaccination, medical treatments, and social welfare policy—and, therefore, δ
is likely to vary within countries over time [12]. These factors may operate on populations
in period-specific ways or cumulatively on a specific cohort over the life-course. For exam-
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ple, the period-based influenza hypothesis argues that COVID-19 death rates are higher in
Sweden than neighboring Nordic countries because Sweden experienced remarkably lower
death rates from flu over the last seasons [13]. The period-specific attenuation of influenza
mortality produced relatively higher rates of frailty that rendered the elderly in Sweden
more susceptible to COVID-19 death. In the next section, we develop and describe various
indicators of the survival environment used to test our model.

3. Data and Methods
3.1. Survival Environment Indicators

Cohort Survival. To obtain a cohort-based measure of survival environments across the
countries of Europe we employ cohort death rate data from the Human Mortality Database
(HMD). HMD data were accessed at https://www.mortality.org/ (accessed 15 June 2020).
First, we subset the HMD data for countries in our sample to all cohorts born between 1910
and 1960—i.e., data for individuals at least 60 years of age in the year 2020—and collect
mx, the observed death rate at age x. This generates different amounts of data for each
country-cohort group. For instance, for the cohort born in 1920, data may be available for
the age range of 0–106 years. For the cohort born in 1960, however, death rate data will
only be available for the 0–56 years age range. Further, there is missing death rate data
for some cohort-age observations for some countries. For the sake of comparability across
countries, we subset the cohort mx data to all cohort-age observations that are available for
all countries in our sample. Thus, the cohort-based measure of survival is generated using
an age-truncated sample of data—e.g., x = 23 to x = 102.

To calculate qx for each country-cohort-age group, which is defined as the probability
that a person of age x will die within one year, we perform the following life table calculation

qx = mx/(1 + αxmx) = mx/(1 + 0.5mx) (7)

under the imposed assumption (shown above) that αx = 0.5 for all age groups, which is
consistent with the HMD Methods Protocols (pp. 36–37) [14]. Thus, for each country-
cohort-age observation we are able obtain 1− qx which is the probability that a person
of age x will survive to the following year. To get an average measure of the survival
environment across cohorts for each country, we perform a LOESS regression of 1− qx on
age to get 1− qx values.

To get an overall measure of the cohort-based survival environment across all age
groups by country, we then perform the following calculation

102

∑
x=23

1− q̃x (8)

which is a discrete measure of the area under the 1 − qx curve. For reference, across
the 28 European countries in our sample for which cohort data are readily available—
Germany and Croatia excluded—the minimum area calculated 1− qx is 73.05 (Bulgaria),
the maximum area calculated is 75.41 (France), and the mean and median areas are 74.62
and 74.37, respectively.

Period Survival. We employ the most recently available all-cause age-specific death
rate data from HMD life tables—2016 for all countries except for Ukraine where the
most recently available data are 2013—to obtain our first period-based measure of the
survival environment for the countries of Europe. Specifically, for each country-age group—
0–110 years for each European country—we collect qx, which, again, is defined as the
probability that a person of age x will die within 1 year. Then, transforming this measure to
1− qx we obtain the probability that a person of age x will survive to the following year.
Given that HMD measures terminate at 110 years of age, we impose the restriction that
1− q110 = 0 for all countries.

https://www.mortality.org/


Int. J. Environ. Res. Public Health 2022, 19, 2434 7 of 19

Like our cohort-based measure of survival environment, we perform the area under
the curve calculation

110

∑
x=0

1− qx (9)

to get an overall measure of the survival environment across all age groups, by country.
Across the 30 European countries in our sample, the minimum area calculated is 99.84
(Bulgaria), the maximum area calculated is 102.43 (France), and the mean and median areas
are 101.42 and 101.55, respectively. In addition to the period-based measure presented
above, we also employ the most recently available life table measure of life expectancy at
65 years of age as a period-based measure of survival environment. This is obtained directly
through the HMD life tables.

Survival Index. Our three indicators of survival (described above) are all highly
correlated. Thus, using Principal Component Analysis (PCA), we combine our cohort- and
period-based measures of survival environment into one integrative index. Our results
indicate that roughly 94% of the variation observed across these three measures is captured
through the first principal component. The standardized predicted PCA score for each
country in our sample serves as an additional indicator of survival to be employed in
analyses of COVID-19 death risk across the countries of Europe.

Validation of Survival Environment Indicators. Our simple model outlines a clear
relationship between a country’s survival environment and the accumulation of health
frailty among the population. Insofar as our indicators of survival are an appropriate char-
acterization of relative differences in survival environments across the countries of Europe,
it follows that they can proxy, albeit roughly, for relative differences in the accumulation of
health frailty.

Using data from the European Commission Eurostat database, we test the conceptual
validity of our simple model and indicators of survival. Eurostat data were accessed
at https://ec.europa.eu/eurostat/data/database (accessed on 15 June 2020). Data are
available for 14 of the 30 countries in our sample—see Appendix A Table A1 for the list
of countries where Germany is excluded given the absence of a cohort-based indicator of
survival environment. We begin by constructing an elderly care index from three separate
measures of elderly frailty; percent of disabled persons ≥ 65 years that need the assistance
of others, percent of persons ≥ 65 years that need help with personal care activities, and
percent of persons ≥ 65 years that need help with household activities. Employing PCA,
we derive an integrative index of the need for elderly care using these measures. Across
these three measures that proxy for elderly frailty and the need for care, the first principal
component accounts for roughly 68% of overall variation.

In Appendix A Table A1 we present scores for the three indicators of survival and the
Survival Index alongside the three measures of elderly frailty and the Elderly Care Index
for 13 similarly economically developed countries. The four countries that score highest
according to our Survival Index—France, Spain, Italy, and the United Kingdom—also score
highest on the Elderly Care Index, in the same order. Additionally, Iceland, Austria, and
Finland rank in the bottom four countries across both indices. Further, in Appendix A
Figure A1, we present a correlation matrix that, using the data presented in Appendix A
Table A1, shows that each individual indicator of the survival environment and need for
elderly care, as well as associated indices, are positively correlated with each other. We
see this as an indication that our Survival Index, comprised of various indicators of the
survival environment, proxy for relative differences in accumulated health frailty among
the elderly across our subset European countries.

3.2. COVID-19 Mortality Risk

Our measure of COVID-19 mortality risk comes from the John Hopkins University
Center for System Sciences and Engineering COVID-19 Unified Dataset. JHU CSSE data
were accessed at https://github.com/CSSEGISandData/COVID-19 Unified-Dataset (ac-
cessed on 15 June 2020). Specifically, we combine COVID-19 death data with population

https://ec.europa.eu/eurostat/data/database
https://github.com/CSSEGISandData/COVID-19
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data from the UN to calculate the daily cumulative COVID-19 death rate (deaths divided
by population) over the period of 4 March–31 May 2020, corresponding to the end of spring
and the first wave of the pandemic.

We note here that the COVID-19 death rate may be biased by testing regimes and
capabilities. The issue of testing bias is particularly problematic for our analysis if COVID-
19 testing regimes and capabilities are correlated with survival environments. For instance,
one might expect that countries with greater COVID-19 testing capabilities are likely to
be the same countries that have the healthcare infrastructure necessary to cultivate a
relatively favorable survival environment. This would result in a positive relationship
between the COVID-19 death rate and survival environment that is merely an illusion of
testing capabilities. The standard econometric approach in this case would be to employ a
fixed effects regression model, where unobserved heterogeneity in the response variable—
such as testing capabilities—is controlled for through country fixed effects. However,
given the time-invariant nature of our variables of interest, as well as the other control
variables included in or model, we are unable to undertake this approach. Instead, we
employ a second-best alternative—random effects regression model—which we discuss
below. In the next section, we describe a series of control variables that account for these
alternative explanations.

3.3. Control Variables

The control variables included in our empirical models account for alternative hy-
potheses of variation in COVID-19 mortality risk. These hypotheses include the timing
and strength of epidemic seeding from exported cases; the capacity of healthcare systems
to manage and survive infected persons; the stringency of non-pharmaceutical interven-
tions (NPI); population density; the confirmed case rate to account for epidemic intensity;
age structure; and whether a country requires mandatory Bacille Calmette-Gu’erin (BCG)
vaccination, suspected to ameliorate SARS-CoV-2 infection [15].

To control for timing and strength of international seeding, we collected the most
recently available data from the World Bank on the annual count of inbound international
tourists (2018). The intuition being that a country with a larger number of inbound interna-
tional tourists would likely have a stronger initial seeding of the virus, which would likely
influence the trajectory of the pandemic in each country. Population density data are from
the World Bank, capturing the count of persons per square kilometer as of 2019, proxying
for risk of spread. We also include World Bank data on hospital beds per capita (2015/2016),
physicians per capita (2015/2016), and nurses per capita (2015/2016) to control for the
capacity of healthcare systems in each country to manage and survive infected persons.
Our measure of NPI stringency comes from the Oxford COVID-19 Government Response
Tracker and is collected from the John Hopkins University Center for System Sciences and
Engineering COVID-19 Unified Dataset. The Oxford COVID-19 Government Response
Tracker collects information on several common policy responses that governments have
implemented to respond to the pandemic, such as school closures, workplace closures,
cancellation of public events, and stay at home orders to name a few. We use the Strin-
gency Index, which combines information about containment and closure policies with
information about public information campaigns to generate a daily stringency score for
each country that ranges from 0 to 100. Our models also control for the confirmed case
rate, meant to proxy for epidemic intensity. These data are also from the John Hopkins
University Center for System Sciences and Engineering COVID-19 Unified Dataset. Finally,
with data from the World Bank, we include a control for age structure, captured as the
percent of the population over the age of 65 years or older.
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3.4. Statistical Models

Due to the time-invariant nature of our survival environment measures of interest,
as well as the cross-sectional time-series nature of the data, we estimate versions of the
following random effects model

ln
(
CoVjt

)
= α + βSEIj + δXj + γZjt + νj + εjt (10)

with
εjt = ρjεjt−1 + ηjt (11)

where j indexes refers country, and t indexes refers to day. CoV is the COVID-19 death
rate. SEI is the survival environment indicator of interest, which, as we have previously
shown, proxies for the accumulation, or build-up, of health frailty in a country. X is a
vector of time invariant control variables, including the number of inbound international
tourists, hospital beds per capita, physicians per capita, nurses per capita, percent elderly,
population density, the confirmed case rate, and mandatory BCG vaccination status (a),
while Z represents our only time-variant control, NPI policy stringency. νj is a country-
specific random effect, and εjt is the model disturbance term, which is assumed to follow
the AR(1) process shown above—where |ρ| < 1 and ηjt is independently and identically
distributed (i.i.d.) with mean 0 and variance ση

2. The country-specific random effect is
meant to account for omitted variables like cross-national differences in comorbidities like
diabetes, cardiovascular disease, as well as demographic risk factors such as socioeconomic
status linked to COVID-19 mortality.

We estimate three specifications of the general model presented above. First, we
include our measures of interest, the indicators of survival environment (SEI), as a con-
tinuous variable—the natural log of life expectancy at 65 (lnLE65), the natural log of the
cohort-based survival area (lnCS), the natural log of the period-based survival area (lnPS),
and the natural log of the Survival Environment Index (lnSI)—so that

ln
(
CoVjt

)
= α + β ln

(
SEIj

)
+ δXj + γZjt + νj + εjt (12)

with εjt defined to follow the AR(1) process described by Equation (11). According to our
theoretical intuition that links favorable survival environments with larger amounts of
accumulated health frailty, we expect the estimated β coefficient to be positive. In other
words, we expect that countries with pre-existing survival environments that are relatively
more favorable will have a higher COVID-19 death rate, all else equal. Specifically, the
estimated β coefficient is interpreted as elasticity. For example, in the case where the
survival indicator is lnLE65, a 1% increase in life expectancy at 65 is associated with a β
percent increase in the COVID-19 death rate, all else equal.

Second, we include the indicators of survival environment as a categorical variable
by grouping our sample of European countries into terciles along the measure of interest
so that

ln
(
CoVjt

)
= α + β1SEI2nd

j + β2SEI3rd
j + δXj + γZjt + νj + εjt (13)

where SEI2nd
j

(
SEI3rd

j

)
is a dummy variable equal to 1 if country j is in the second (third)

tercile group for the survival environment indicator of interest—e.g., life expectancy at 65—
and 0 otherwise. Again, εjt is the model disturbance term that is assumed to follow the AR(1)
process shown above—where |ρ| < 1 and ηjt is independently and identically distributed
(i.i.d.) with mean 0 and variance ση

2. Here, the reference group is all countries that fall
into the first tercile range of the measure of interest. The interpretation of the β coefficients
is less straight forward than in the previous specification. The exponentiated coefficient
exp(β1) is the ratio of the expected geometric mean for the second tercile group over the
expected geometric mean for the first tercile group, all else equal. Thus, [exp(β1) − 1] × 100
gives the associated percentage increase, or decrease if the difference is negative, in the
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COVID-19 death rate for the second tercile group relative to the first tercile group, all else
constant [16].

Lastly, we continue with the categorical treatment of the Survival Index (SI) and
interact it with week fixed effects to allow the estimated relationship between CoV and SI
to vary over time. Specifically,

ln
(
CoVjt

)
= α + Wt + β1SI2nd

j + β2SI3rd
j + β3Wt × SI2nd

j + β4Wt × SI3rd
j + δXj + γZjt + νj + εjt (14)

where Wt are the included week fixed-effects. In analyses that follow, we report the results
of this model via post-estimation predicted margins, visually representing the divergence
of COVID-19 deaths across survival environments in time.

4. Results

We begin with a simple assessment of the relationship between the COVID-19 death
rate and our indicators of the survival environment. As expected by our model, we find
strong positive correlations between the COVID-19 death rate and our indicators of the
survival environment: life expectancy at 65 (r = 0.72, p < 0.001), period survival (r = 0.69,
p < 0.001), cohort survival (r = 0.74, p < 0.001), and our survival index (r = 0.73, p < 0.001).
In other words, higher pre-existing rates of elderly survival are associated with higher rates
of COVID-19 death.

Figure 3 displays the correlation spatially. Countries in yellow have the most unfavor-
able survival environments, while countries in purple have the most favorable, according to
our survival index that integrates our three indicators. Hyper-imposed on the map are grey
circles of varying size, corresponding to the observed COVID-19 death rate as of 31 May
2020. The spatial correspondence between pre-existing elderly survival and the COVID-19
death rate is evident.
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Next, we test whether observed relationships between the COVID-19 death rate are
robust to inclusion of variables that operationalize other candidate hypotheses, including
timing and strength of epidemic seeding from exported cases, the capacity of healthcare
systems to manage and survive infected persons, the stringency of non-pharmaceutical
interventions (NPI), age structure, population density, epidemic intensity as measured by
the confirmed case rate, and whether a country requires mandatory Bacille Calmette-Guerin
(BCG) vaccination. Importantly, our statistical models include a country random-effect and
week fixed-effects to account for unobserved heterogeneity by place and time.

Table 1 reports regression coefficients from our random effects regression model
(Equation (12)) for all measures of the survival environment with and without control
variables. The estimate of β, corresponding to our measures of the survival environment,
is expected to be positive, indicating that higher pre-existing rates of survival among the
elderly are associated with higher COVID-19 death rates. The necessary assumption for
the identification of β is E[vj|SEj|] = 0, with a similar condition being required for the
identification of the coefficients on the other covariates. In other words, vj is assumed to be
the realization of an i.i.d. process with mean 0 and variance ση

2.

Table 1. Coefficients of interest for regression of Ln cumulative COVID-19 death rate on Ln survival
environment indicators.

(1) (2) (3) (4) (5) (6) (7) (8)

Life Expectancy at 65 (LE) 12.73 ***
(1.75)

4.17 **
(1.86)

Cohort Survival (CS) 132.35 ***
(17.88)

44.61 ***
(16.92)

Period Survival (PS) 176.67 ***
(28.11)

45.19 *
(24.18)

Survival Index (SI) 0.73 ***
(0.098)

0.23 ***
(0.09)

Constant −39.16 *** −23.08 −572.02 −203.55 *** −817.79 *** −219.60 *** −1.74 *** −11.83 ***
(5.16) (5.90) (77.07) (72.48) (129.87) (111.62) (0.20) (2.51)

ρˆ 0.91 0.85 0.90 0.85 0.91 0.85 0.90 0.85
Bhargava et al.

Durbin−Watson 0.39 0.36 0.37 0.36 0.39 0.36 0.37 0.36

Baltagi−Wu LBI 0.42 0.41 0.41 0.40 0.42 0.41 0.41 0.40

Observations 2670 2670 2492 2492 2670 2670 2492 2492
Countries 30 30 28 28 30 30 28 28

Country RE Yes Yes Yes Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes

NOTE: Standard errors in parentheses. Levels of statistical significance are indicated by *** p < 0.01, ** p < 0.05,
* p < 0.1. All models incorporate an AR(1) disturbance structure and the estimated ρ is reported along with the
associated modified Bhargava et al. Durbin-Watson and Baltagi-Wu locally best invariant (LBI) test statistics, both
of which have complicated distributions [17,18]. In all cases, we reject the null hypothesis of ρ = 0. Estimates are
from Equation (12).

As expected, all coefficients are positive and statistically distinguishable from chance.
Starting with column (7), corresponding to our integrative survival index (SI) and in the
absence of controls for alternative explanations of the uneven distribution in COVID-19
mortality during the first wave of the epidemic in Europe, we find that a standard deviation
increase in the pre-existing survival environment increases the COVID-19 death rate by 73%
(95% CI: 53, 92). In column (8), we find that a standard deviation increase in the pre-existing
survival environment increases the COVID-19 death rate by 23%, other variables held
equal. For context, a standard deviation increase in the survival index, for example, is
the equivalent of moving from Greece (SI = 1.28) to Spain (SI = 2.22). The estimate of ρ
is reported for all models in Table 1 along with the associated modified Bhargava et al.
Durbin-Watson and Baltagi-Wu locally best invariant (LBI) test statistics under the null
hypothesis ρ = 0 [17,18]. This null hypothesis is rejected across all models presented in
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Table 1, implying that the modeled AR(1) disturbance structure appropriately corrects the
model estimated standard errors.

Figure 4 shows predicted COVID-19 death rates from Equation (12) across percentile
scores of all indicators of the pre-existing elderly survival environment. We derive predicted
COVID-19 death rates by fixing other model covariates pertaining to inbound international
travelers, healthcare system capacity, the stringency of non-pharmaceutical interventions
(NPI), population density, percent elderly, the confirmed case rate, and week of observation,
set at their sample means. We observe high statistical agreement across indicators of
the elderly survival environment. Results indicate that the expected COVID-19 death
rate is 2.4× higher for countries at the 75th percentile of our survival index as compared
to countries at the 25th percentile. Overall, Figure 4 implies that the rate of COVID-19
mortality increased linearly in pre-existing elderly survival over the first wave of the
COVID-19 pandemic in Europe.
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Table 2 reports coefficients from Equation (13), where measures of the elderly survival
environment are divided categorically into terciles of low, medium, and high survival.
Because our response variable is measured in natural log terms, reported coefficients
have the interpretation of a semi-elasticity reflecting the percent difference in the COVID-
19 death rate of a tercile of interest relative to the reference tercile I of low pre-existing
elderly survival. Consistent with theoretical expectation, coefficients across all operational
definitions of the elderly survival environment are positive and statistically significant.
As with Table 1, we present coefficients with and without control variables for alternative
explanations. Focusing on column (8), and all other things held equal, we find that countries
in tercile II (medium survival environment) have an average COVID-19 death rate that
is 85% higher (95% CI: 42, 171) than countries in tercile I (low survival environment). To
obtain the marginal effects, in percentage terms, for the estimated coefficients in Table 2, one
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must perform the following transformation:
[
exp

(
β̂
)
− 1
]
× 100 [16]. Similarly, and relative

to tercile I (low survival environment), countries in tercile III (high survival environment)
have an average COVID-19 death rate that is 109% higher (95% CI: 51, 233). Results in
Table 2 corroborate Table 1 and Figure 4, implying that, other things held equal, the COVID-
19 death rate increased monotonically with pre-existing elderly survival over the first wave
of the pandemic.

Table 2. Coefficients of interest for regression of Ln cumulative COVID-19 death rate on categorical
survival environment indicators.

(1) (2) (3) (4) (5) (6) (7) (8)

LE Tercile II 1.80 ***
(0.41)

0.65 **
(0.32)

LE Tercile III 2.75 ***
(0.41)

1.08 ***
(0.39)

CS Tercile II 1.80 ***
(0.46)

0.52
(0.33)

CS Tercile III 2.63 ***
(0.46)

0.90 **
(0.39)

PS Tercile II 1.22 ***
(0.46)

0.40
(0.29)

PS Tercile III 2.52 ***
(0.46)

0.66 **
(0.34)

SI Tercile II 1.85 ***
(0.41)

0.84 ***
(0.35)

SI Tercile III 2.86 ***
(0.41)

1.09 ***
(0.39)

Constant −3.20 *** −11.56 *** −3.16 *** 17.18 *** −2.93 *** −11.40 *** −3.25 *** −13.44 ***
(0.31) (2.41) (0.34) (3.07) (0.35) (2.52) (0.31) (2.45)

ρˆ 0.91 0.85 0.90 0.90 0.91 0.85 0.90 0.85
Bhargava et al.

Durbin−Watson 0.39 0.36 0.37 0.32 0.39 0.36 0.37 0.36

Baltagi−Wu LBI 0.42 0.41 0.41 0.35 0.42 0.41 0.41 0.40

Observations 2670 2670 2492 2492 2670 2670 2492 2492
Countries 30 30 28 28 30 30 28 28

Country RE Yes Yes Yes Yes Yes Yes Yes Yes
Week FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls No Yes No Yes No Yes No Yes

NOTE: Standard errors in parentheses. Levels of statistical significance are indicated by *** p < 0.01, ** p < 0.05.
For each column (1)–(4), the estimated coefficients are relative to the reference group, which is tercile I for each
survival environment indicator. All models incorporate an AR(1) disturbance structure and the estimated ρ is
reported along with the associated modified Bhargava et al. Durbin-Watson and Baltagi-Wu locally best invariant
(LBI) test statistics, both of which have complicated distributions [17,18]. In all cases we reject the null hypothesis
of ρ = 0. To obtain the marginal effects, in percentage terms, for the estimated coefficients above, one must perform
the following transformation:

[
exp

(
β̂
)
− 1
]
× 100 [16]. Estimates are from Equation (13). LE is Life Expectancy at

65, CS is Cohort Survival, PS Period Survival, and SI is Survival Index.

Next, Figure 5 presents results from Equation (14), showing predicted cumulative
COVID-19 death rates by Survival Index terciles over the course of the first wave of the
European pandemic. Again, predictions are derived with all other model covariates fixed at
their sample means. The results in Figure 5 corroborate the hypothesis that the pre-existing
survival environment is positively associated with the COVID-19 death rate. By the 22nd
week of the pandemic, the predicted COVID-19 death rate of high elderly survival countries
stood at 34 deaths per million, about 2.2× higher than low survival environment countries.



Int. J. Environ. Res. Public Health 2022, 19, 2434 14 of 19Int. J. Environ. Res. Public Health 2022, 19, x  14 of 20 
 

 

 
Figure 5. Model predicted cumulative COVID-19 death rate by week of Wave I for survival index terciles. NOTE: Model 
predicted cumulative death rates by week and survival index tercile are generated via Equation (14) model estimates, 
where all other covariates are evaluated at their mean. 

5. Robustness 
5.1. Excess Mortality 

Given known inconsistencies in the reporting of COVID-19 deaths across countries—
especially during the first wave of the pandemic—excess mortality can be used as a proxy 
for COVID19 mortality that is potentially less biased by administrative differences that 
lead to under or over-reporting of COVID-19 deaths. We obtained weekly excess mortality 
Z-scores from EuroMOMO. Excess mortality Z-scores were accessed at https://www.eu-
romomo.eu/graphsand-maps (accessed on 15 July 2020). Each observation in the Euro-
MOMO data reflects the within country deviation from central tendency, or baseline, in 
all-cause mortality for a given week. Because of the within-country differenced nature of 
EuroMOMO’s excess mortality measure, we estimate the following panel-corrected stand-
ard errors model ln 𝐸𝑀 = 𝛼 + 𝛽 ln 𝑆𝐸𝐼 + 𝛿𝑋 + 𝛾𝑍 + 𝜖  (15)

where all terms carry from Equation (10), with the exception of our response variable EMjt 
which measures the cumulative excess mortality of country 𝑗 in week 𝑡 in standardized 
terms. 𝜖  follows the same AR(1) disturbance structure defined in Equation (11). 

Table 3 reports the estimated coefficients. As before, our interpretive focus is on col-
umn (4) corresponding to our integrative survival index. Because our survival index is 
measured in standardized terms, our coefficient of interest, 𝛽, has the interpretation of an 
elasticity, indicating that a standard deviation increase in the pre-existing survival envi-
ronment is associated with a 𝛽 percent change in excess mortality. Other things held 
equal, we find that a unit increase in our survival index, capturing the pre-existing elderly 
survival environment, is associated with a 5% increase (95% CI: 1, 9) in cumulative weekly 
excess mortality. 

  

Figure 5. Model predicted cumulative COVID-19 death rate by week of Wave I for survival index
terciles. NOTE: Model predicted cumulative death rates by week and survival index tercile are
generated via Equation (14) model estimates, where all other covariates are evaluated at their mean.

5. Robustness
5.1. Excess Mortality

Given known inconsistencies in the reporting of COVID-19 deaths across countries—
especially during the first wave of the pandemic—excess mortality can be used as a
proxy for COVID-19 mortality that is potentially less biased by administrative differ-
ences that lead to under or over-reporting of COVID-19 deaths. We obtained weekly
excess mortality Z-scores from EuroMOMO. Excess mortality Z-scores were accessed at
https://www.euromomo.eu/graphsand-maps (accessed on 15 July 2020). Each observa-
tion in the EuroMOMO data reflects the within country deviation from central tendency,
or baseline, in all-cause mortality for a given week. Because of the within-country dif-
ferenced nature of EuroMOMO’s excess mortality measure, we estimate the following
panel-corrected standard errors model

ln
(
EMjt

)
= α + β ln

(
SEIj

)
+ δXj + γZjt + εjt (15)

where all terms carry from Equation (10), with the exception of our response variable EMjt
which measures the cumulative excess mortality of country j in week t in standardized
terms. εjt follows the same AR(1) disturbance structure defined in Equation (11).

Table 3 reports the estimated coefficients. As before, our interpretive focus is on
column (4) corresponding to our integrative survival index. Because our survival index
is measured in standardized terms, our coefficient of interest, β, has the interpretation
of an elasticity, indicating that a standard deviation increase in the pre-existing survival
environment is associated with a β percent change in excess mortality. Other things held
equal, we find that a unit increase in our survival index, capturing the pre-existing elderly
survival environment, is associated with a 5% increase (95% CI: 1, 9) in cumulative weekly
excess mortality.

https://www.euromomo.eu/graphsand-maps
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Table 3. Coefficients of interest for regression of Ln cumulative excess mortality on Ln survival
environment indicators.

Title (1) (2) (3) (4)

Life Expectancy at 65 (LE) 2.89 ***
(0.84)

Cohort Survival (CS) 28.56 ***
(9.33)

Period Survival (PS) 13.09
(9.24)

Survival Index (SI) 0.05 **
(0.02)

Constant −10.38 *** −126.09 *** −63.56 −3.60 ***
(4.23) (40.73) (42.77) (1.18)

ρˆ 0.92 0.92 0.91 0.93

Observations 247 234 247 234
R−squared 0.88 0.85 0.88 0.85
Countries 19 18 19 18
Week FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

NOTE: Standard errors in parentheses. Levels of statistical significance are indicated by *** p < 0.01, ** p < 0.05.
All models incorporate an AR(1) disturbance structure and the estimated ρ is reported. Estimates are from
Equation (15).

5.2. Age-Specific Mortality

The National Institute for Demographic Studies (INED) collects age- and sex-specific
COVID-19 death data for select European countries. INED age- and sex-specific COVID-
19 death data were accessed at https://dc-covid.site.ined.fr/en/data/ (accessed on 15
July 2020). We collapse age-specific COVID-19 deaths into common age intervals across
the countries for which data are available and calculate corresponding pre-existing all-
cause mortality rates using data from the Human Mortality Database (HMD). Age-specific
COVID-19 death data is available for all age groups in England, France, Germany, Italy, the
Netherlands, Spain, Sweden, and Ukraine. Denmark’s age-specific data is only available
for those 60 years of age and older, Norway data is available for those 40 years of age and
older, and Portugal’s data is top-coded at 80 years of age so that comparable data is only
available for those 79 years of age and younger. Pre-existing age-specific all-cause mortality
data are anchored on the most recently available common year of 2016. To test the statistical
relationship between pre-existing all-cause mortality and the COVID-19 death rate, we
estimate the following least squares model

ln
(
CoVijt

)
= α + β ln

(
ACDRij

)
+ δi + Wt + εijt (16)

where CoV is the COVID-19 death rate for age group i in country j at time t, ACDR is the
pre-existing all-cause death rate (2016), δi is a vector of age-interval fixed effects, and Wt is
a vector of week fixed effects. ε is the model disturbance term. Our theoretical interest is in
the estimate of β, which we expect to be negative, implying that, other things equal, a 1%
increase in the age-specific all-cause death rate is associated with a β percent decrease in
the associated age-specific COVID-19 death rate.

Table 4 reports the coefficient estimates for Equation (16). The model estimates pre-
sented in column (1) are generated in the absence of age-interval fixed effects. In columns (2)
through (4) we introduce age-interval fixed effects. The inclusion of these variables results
in a between-country estimate of what is purged of the confounding within-country effect
of increasing risk of death across age intervals. According to our theoretical expectations,
preexisting all-cause mortality rates are estimated to have a strong, negative association
with the COVID-19 death rate across countries. The coefficient estimate of −1.439 (95%
CI: −1.519, −1.360) in column (2) implies that, other things equal, a 1% increase in the

https://dc-covid.site.ined.fr/en/data/
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pre-existing all-cause death rate is associated with an approximate 1.5% lower COVID-19
death rate, on average across age intervals.

Table 4. Regression of Ln cumulative age-specific COVID-19 death rates on Ln pre-existing all-cause
age-specific death rates.

(1) (2) (3) (4)

All−Cause
Death Rate

(2016)
1.112 *** −1.439 *** −4.313 *** −0.653 ***

(0.010) (0.041) (0.095) (0.034)
Age 10–19 −0.758 *** −0.169 **

(0.104) (0.072)
Age 20–29 1.664 *** 1.600 ***

(0.089) (0.061)
Age 30–39 3.595 *** 3.001 ***

(0.093) (0.065)
Age 40–49 5.570 *** 4.364 ***

(0.106) (0.078)

Age 50–59 8.101 ***
(0.132)

Age 60–69 10.408 ***
(0.160)

Age 70–79 12.831 *** 5.009 ***
(0.192) (0.104)

Age 80–89 15.571 *** 10.979 ***
(0.234) (0.201)

Age ≥ 90 17.749 *** 16.161 ***
(0.274) (0.297)

Constant 4.843 *** −17.480 *** −20.587 *** −10.379 ***
(0.501) (0.487) (0.649) (0.581)

Observations 4697 4697 2335 1820
R−squared 0.738 0.869 0.710 0.764

Week FE Yes Yes Yes Yes
Age Interval FE No Yes Yes Yes

NOTE: Standard errors in parentheses. Levels of statistical significance are indicated by *** p < 0.01, ** p < 0.05.
For columns (2) and (4) the reference age group is 0–9. For column (3) the reference age group is 60–69. Estimates
are from Equation (16).

In column (3) of the table we reduce the sample to intervals ≥ 60 years of age. The
qualitative nature of the estimates is maintained, though the negative association between
pre-existing all-cause mortality and the COVID-19 death rate appears to be stronger among
the elderly. Specifically, a 1% increase in the pre-existing all-cause death rate is associated
with an approximate 4.3% decrease in the COVID-19 death rate for those ≥ 60 years of
age, other things equal. In column (4) we restrict the sample to intervals ≤ 49 years of
age. Relative to column (3), which restricts to intervals ≥ 60 years of age, the coefficient
estimate in column (4) intuitively deflates, reinforcing that the pre-existing death rate effect
is stronger among the elderly and compatible with a longevity-frailty model.

6. Conclusions

In this paper we developed a simple model of longevity and accumulated health
frailty to explain observed differences in COVID-19 mortality across the countries of
Europe during the first wave of the pandemic. The model describes how heterogeneous
survival environments across countries induce mortality selection processes that generate
varying amounts of accumulated health frailty among elderly populations, accounting
for the surprising statistical independence of age structure and COVID-19 death rates but
also for the known increase in the risk of COVID-19 mortality with age. With respect to
an exogenous health shock that disproportionately targets the relatively health frail, like
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SARS-CoV-2, our model implies that countries with a more favorable survival environment
will have a larger susceptible (health frail) population and, therefore, a higher COVID-19
death rate.

To operationalize a country’s survival environment—a key parameter of our model—
we collected data on pre-existing all-cause age-specific death rates (measured in both
period and cohort-specific terms), life expectancy at age 65, and an index of survival that
is integrative of these variables. We showed that our various indicators of the survival
environment are correlated with more explicit measures of elderly frailty (see Appendix A
Table A1 and Figure A1), serving as adequate proxies of relative differences in accumulated
health frailty among the countries of Europe.

We then statistically linked cross-national variation in survival environments to the
puzzling distribution of COVID-19 death rates in Europe at the end of spring, finding
that a more favorable survival environment, as indicated by lower pre-existing all-cause
mortality rates, is positively associated with COVID-19 death rates. Specifically, we found
that a standard deviation increase in the pre-existing survival environment increased the
COVID-19 death rate by 23%, other variables held equal. Coupled with analyses involving
categorical measurement of the elderly survival environment, the COVID-19 death rate
appeared to increase monotonically with pre-existing elderly survival over the first wave
of the pandemic. Importantly, these relationships are robust to statistical control for the
inbound international travelers, the capacity of a healthcare system to manage and survive
infected persons, population density, percent elderly, epidemic intensity, and the timing
and stringency of non-pharmaceutical interventions, among other factors.

We followed with analyses of cumulative excess mortality instead of the COVID-19
death rate. Results behaved similarly, implying that reporting differences across European
countries is an unlikely source of our observed correlations between pre-existing survival
environments and COVID-19 mortality. We closed analyses showing a strong negative
association between age-specific COVID-19 death rates and pre-existing all-cause age-
specific mortality rates for a subset of European countries with readily available data.

Our results are consistent with other known facts concerning COVID-19 mortal-
ity during the first wave of the pandemic. Specifically, end-of-spring data show that a
large percentage of COVID-19 deaths occurred among frail populations in long-term care
facilities—Belgium (53%), Denmark (34%), France (51%), Germany (36%), Hungary (19%),
Ireland (60%), Norway (60%), Portugal (40%), and Sweden (45%). These data come from
the International Long-Term Care Policy Network [19] and Sciensano, a public research
institution that publishes very detailed epidemiological daily reports on COVID-19. In
France, Spain, and Italy, among the hardest hit countries of Europe, about half to two-thirds
of elderly require assistance for basic personal and household care activities. This fact
educates that a sizeable percentage of European elderly could not easily socially distance
in the first wave of the pandemic, compounding the risk of COVID-19 mortality.

In sum, our results support the hypothesis that variation in pre-existing frailty, stem-
ming from differences in pre-existing survival environments, partially determined the
striking differences in COVID-19 death risk observed during the first wave of the European
pandemic. Our findings also provide general intuition as to how similarly novel causes
of death might operate across countries via the heterogeneous accumulation of health
frailty among their populations. It is interesting that some reports suggest that the aged
population in developing countries show a lower COVID-19 mortality rate than seen in
Europe, which would be predicted by our model due to the poor survival environment
that the aged face in these countries [20].
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Appendix A

Table A1. Survival and elderly care indexes by country.

Country Survival
Index

Cohort
Survival

Period
Survival

Life
Expectancy

at 65

Elderly
Care
Index

% ≥ 65
Disabled

Need
Help

% ≥ 65
Need
Help

Personal
Activities

% ≥ 65
Need
Help

House
Activities

France 2.557 1.522 1.590 1.404 2.270 1.400 0.678 1.839
Spain 2.220 1.271 1.410 1.249 2.258 1.496 1.266 1.149
Italy 1.975 1.172 1.208 1.125 2.208 1.816 0.810 1.185

United Kingdom 1.259 0.778 1.004 0.476 1.115 0.746 0.611 0.575
Norway 1.040 0.519 0.558 0.803 −1.486 −0.890 −1.076 −0.613

Luxembourg 0.978 0.192 0.744 0.839 −1.144 −0.362 −1.217 −0.418
Belgium 0.969 0.574 0.608 0.571 1.394 0.623 0.310 1.470
Sweden 0.951 0.578 0.402 0.744 −0.415 −0.528 −0.219 0.029

Denmark 0.805 0.370 0.843 0.256 −0.449 −0.785 0.464 −0.437
Iceland 0.776 0.970 −0.015 0.458 −1.525 −0.944 −0.905 −0.794
Austria 0.762 0.489 0.323 0.583 −1.514 −0.814 −0.840 −0.967
Finland 0.468 0.372 −0.024 0.536 −2.158 −1.460 −0.949 −1.322

Netherlands 0.416 0.440 −0.071 0.423 −1.114 −0.873 −0.822 −0.239

NOTE: This table presents standardized scores for three indicators of survival environment and the “Survival
Index” alongside three measures of elderly frailty and the “Elderly Care Index” for 13 similarly economically
developed countries. Survival environment indicator data are from the Human Mortality Database (HMD)
(https://www.mortality.org/ (accessed on 15 July 2020)) and elderly frailty indicator data are from European
Commission Eurostat database (https://ec.europa.eu/eurostat/data/database (accessed on 15 July 2020)).Int. J. Environ. Res. Public Health 2022, 19, x  19 of 20 
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