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The transient receptor potential (TRP) channel is a type of channel protein

widely distributed in peripheral and central nervous systems. Genes encoding

TRP can be regulated by natural aromatic substances and serve as a therapeutic

target for many diseases. However, the role of TRP-related genes in lung

adenocarcinoma (LUAD) remains unclear. In this study, we used data from

TCGA to screen and identify 17 TRP-related genes that are differentially

expressed between LUAD and normal lung tissues. Based on these

differentially expressed genes (DEGs), we classified all patients with LUAD

into two subtypes. Significant differences in prognosis, clinical features, and

immune cell infiltration characteristics were observed between the two

subtypes. Subsequently, a prognostic signature with 12 genes was

established by applying the least absolute shrinkage and selection operator

(LASSO) Cox regression method, and all patients with LUAD were classified into

low- and high-risk groups. Patients with LUAD in the low-risk group had a

significantly longer survival time than those in the high-risk group (p < 0.001),

which was confirmed by LUAD data from the GSE72094 and

GSE68571 validation datasets. Combined with clinical characteristics, the risk

score was found to be an independent predictor of overall survival (OS) in

patients with LUAD. Additionally, patients with high TRP scores exhibited poorer

clinical characteristics and immune status while showing a sensitive response to

chemotherapeutic agents. In conclusion, the TRP score is a promising

biomarker for determining the prognosis, molecular subtype, tumor

microenvironment, and guiding personalized treatment in patients with LUAD.
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Introduction

Lung cancer is one of the most common causes of cancer-

related deaths worldwide. Primary lung cancer is caused by

exposure to smoking, ionizing radiation, and environmental

pollution. Non-small cell lung cancer (NSCLC) accounts for

the vast majority of lung cancer cases, among which lung

adenocarcinoma (LUAD) is the most common histological

subtype of lung cancer (Denisenko et al., 2018; Bade and Dela

Cruz, 2020; Zhang et al., 2020). Despite recent developments in

targeted therapy and immunotherapy in the treatment of lung

cancer, which have improved patient prognosis, the 5-year

survival rate remains below 20% (Hirsch et al., 2017;

Greenawalt et al., 2019). Given the limitations of LUAD

treatment, new therapeutic targets are needed to improve

clinical outcomes; therefore, there is an urgent need to

establish reliable and novel prognostic models to make

targeted therapy more feasible.

Members of the TRP channel family are potential biomarkers

and drug targets in tumor therapy (Xing et al., 2021). Recent

studies have identified the TRP channel interactome as a new

therapeutic target for breast cancer and have shown that it

promotes proliferation and poor prognosis in esophageal

squamous cell carcinoma (María Paz et al., 2021; Wang et al.,

2021). In addition, TRP-related genes are associated with tumor

progression in adenocarcinoma of the prostate (Di Donato et al.,

2021) and colon (Liu et al., 2022) and urothelial carcinoma of the

bladder (Shapovalov et al., 2016). Therefore, uncovering the role

of TRP-related genes in the prognosis of LUADwould be of great

significance.

In this study, we performed a systematic expression analysis

of TRP-related genes between the normal lung and LUAD tissues

and explored the prognostic value of these genes. A 12-gene TRP-

related prognostic signature was developed by analyzing RNA-

seq data from patients with LUAD in TCGA database and

corresponding clinical information. Subsequently, further

validation was obtained by analyzing data from the

GSE72094 and GSE68571 cohorts. Finally, we analyzed the

correlation between TRP-related prognostic signatures and the

tumor immune microenvironment. Thus, our data may provide

additional evidence for prognostic biomarkers and therapeutic

targets in LUAD.

Materials and methods

Data collection

The transcriptome data in the FPKM format and

corresponding clinical information of 58 para-cancerous

samples and 497 LUAD samples were collected from

TCGA database (https://portal.gdc.cancer.gov/). The

expression data for GSE72094 and GSE68571 cohorts, as

well as the clinical data, were downloaded from the GEO

(https://www.ncbi.nlm.nih.gov/geo/) database as the

validation set for the risk model. TRP-related genes were

derived from the REACTOME_TRP_CHANNELS pathway

in the MsigDB database and inflammatory mediator

regulation of the TRP channel pathway in the KEGG

database, and those genes with duplicate values were

removed.

Differential expression analysis

Differential expression analysis was performed on LUAD

samples and normal samples from TCGA using the limma R

package. The Benjamini–Hochberg (FDR) corrected p-value

adj. p-value < 0.05 and |log2 FC| > 0.585 were used as

thresholds to screen for DEGs. The same method was used

to perform differential expression analysis between tumor

subtypes and to screen for genes with significant differences

in their expression.

Clustering analysis

Consistent clustering analysis was performed on LUAD

samples using the ConsensusClusterPlus R package. The

Euclidean method was used to calculate the clustering

distance (the clustering method was k-means), and

100 replications were performed to ensure the stability of the

classification. KM survival curves were plotted for patients with

subtypes using the survival R package, and the significance of

prognostic differences between subtypes was determined using

the log-rank test.

Construction of the prognostic risk model
and survival difference analysis

One-way Cox regression analysis was performed to screen

genes associated with prognosis (OS) based on DEGs among

tumor subtypes (p < 0.01). Finally, LASSO regression was used to

further screen out key prognosis-related genes and construct a

multifactorial regression prognostic model. Tumor samples were

classified into high- and low-risk groups using the median risk

score as the threshold point, and survival curves for prognostic

analysis were generated by the Kaplan–Meier method, and the

significance of differences was determined using log-rank tests.

ROC (receiver operating characteristic) curves were then plotted

using the timeROC R package to evaluate the prediction of

scoring by the perturbation scoring model. The risk score was

calculated using the following formula: Risk score � β1pX1 +
β2pX2 + . . . + βipXi (βi: weighting factor for each gene; Xi:

[log2FPKM] for each gene). The risk value of the model is the
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sum of each candidate gene expression value multiplied by its

weight.

Analysis of immune score and immune
infiltration

The CIBERSORT algorithm is a method to characterize

complex tissues based on their gene expression profiles. A

leukocyte signature gene matrix of 547 genes, LM22, was used

to distinguish between 22 immune cell types, including myeloid

subpopulations, natural killer (NK) cells, plasma cells, naive and

memory B cells, and seven T-cell types. CIBERSORT combined

with the LM22 signature matrix was used to estimate the

proportion of 22 cell phenotypes in samples, with the sum of

the proportions of all immune cell types in each sample

equal to 1.

Immune checkpoints refer to a series of molecules expressed

in immune cells that regulate the level of immune activation and

play an important role in the occurrence of autoimmune diseases.

This study aimed to explore the correlation between immune

checkpoint gene expression and TRPRS.

FIGURE 1
Differential heatmap of 73 TRP-related genes (A); volcanomap shows the 17 of themost significantly DEGs (B); Protein-protein Interaction (PPI)
of TRP-related Genes (C).
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Drug sensitivity analysis

The sensitivity of 138 drugs in the GDSC database (IC50

values) was predicted using the pRRophetic R package, combined

with the expression data of model genes, and the sensitivity of

patients with LUAD to drug treatment was assessed by IC50

values. The differences in IC50 values between high- and low-risk

groups were also compared by the Wilcoxon test, and drugs with

significant differences between the two groups were screened.

Mutation display

Waterfall plots were plotted using the maftools R package to

demonstrate mutations in LUAD samples with mutation

frequencies in the top 20 genes and differences in mutations

in high- and low-risk groups. The analysis of copy number

variations in LUAD samples from TCGA was performed

using GISTIC2, and these variations were mapped to highlight

CNV differences between the high- and low-risk groups.

Statistical analysis

The Wilcoxon test was used to compare differences between

two sample groups, and the Kruskal–Wallis test was used to

compare differences between multiple sample groups, where ns

indicates p > 0.05, * indicates p ≤0.05, ** indicates p ≤0.01, ***
indicates p ≤0.001, and **** indicates p ≤0.0001.

Results

Analysis of the dysregulated expression of
transient receptor potential-related genes
in tumors

First, we obtained 4,363 DEGs, including 73 TRP-related

genes, using differential expression analysis of tumor samples

(N = 497) and normal samples (N = 58) (Figure 1A, p < 0.05).

Then, we selected 17 of the most significantly DEGs to plot the

gene volcanoes (Figure 1B, p < 0.001). To better understand TRP-

FIGURE 2
Differential heatmap of TRP-related genes in different clinical subgroups.
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related gene interactions, we used the STRING database to obtain

TRP-related protein–protein interaction (PPI) networks, with

red representing upregulated genes and green representing

downregulated genes (Figure 1C). Subsequently, we analyzed

the differences in the expression of TRP-related genes in different

clinical subgroups according to the grouping of the clinical

information of the samples (Figure 2).

Tumor classification based on the
transient receptor potential-related genes

Based on all TRP-related genes, 497 tumor samples were

classified into two different subtypes using consistent clustering:

cluster1 (N = 269) and cluster2 (N = 228) (Figure 3A). The results

from the Kaplan–Meier plot showed the significant differences in

the survival probability and recurrence rate among these two

subtypes (Figure 3B, p = 0.029). We further analyzed the CDF

delta area curve and found that the area under the CDF curve

tended to be stable after two clusters (Figure 3C). Heat maps of

TRP subtypes and clinical features were generated from the

clustering results, and statistical tests were performed to

calculate the significance of the correlation between the results

of subtype grouping and those of clinical feature grouping. We

found that sex, ethnicity, T stage, and tumor stage were

significantly associated with TRP subtypes (Figure 3D).

Finally, we clustered the TCGA-LUAD dataset, calculated the

proportion of 22 types of immune cells between subtypes, and

found significant differences in immune cell infiltration between

the two subtypes (Figure 3E).

Transient receptor potential-related
prognostic signature construction

We performed univariate Cox screening of prognosis-related

genes using DEGs among TRP subtypes, resulting in

158 prognostic factors. The univariate Cox results were then

FIGURE 3
Consistent clustering result of tumor samples (A); Survival curves and CDF curves of the two subtypes were obtained according to the clustering
results (B,C); Heat map of TRP subtypes and clinical features (D); 22 immune cell infiltration differences between subtypes (E). *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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further downscaled using LASSO linear regression to screen

12 prognostic-related signatures (Figures 4A–C). The samples

from the TCGA LUAD training set were divided into two groups

of high and low risk using the median risk score as the threshold.

As shown in Figure 4D, there was a significant survival difference

between high- and low-risk groups. The ROC curves for the

prognostic features had AUC values of 0.720/0.695/0.671 at 1/3/

5 years. Subsequently, we validated and confirmed the validity of

the signature in the GSE72094 and GSE68571 validation datasets

(Figures 4E, F).

Risk score and correlations with
clinicopathological characteristics

To explore the association of risk scores with different clinical

characteristics, we performed a subgroup analysis of different

clinical characteristics and found significant differences in risk

scores with respect to age (p = 0.0024), sex (p = 0.006), TNM stage

(p = 1.2e-07), N stage (p = 5.6e-07), T stage (p = 2.7e-06), and

smoking history (p = 8.6e-06) (Figures 5A–F). We used univariate

andmultivariate Cox regression analyses to assess whether the risk

score could be used as an independent prognostic factor. The

results of TCGA training set validation are shown in Figure 6A.

Risk scores and tumor stage were independent factors for poor

survival in patients with LUAD. This result was further verified by

univariate and multivariate analyses of the GSE72094 validation

set (Figure 6B). We also performed chi-squared tests for clinical

characteristics such as age, gender, stage, and smoking in control

and tumor groups, which showed no significant differences

(Supplementary Table S1). In addition, the risk score was a

good predictor of patient prognosis in groups with different

clinical characteristics (Figures 7A–H).

Risk score and correlations with the tumor
microenvironment

Mutations in genes can promote, cause, or orchestrate the

malignant progression of tumors, and the study of mutations

at the genomic level is important for the development of

targeted cancer drugs and novel cancer therapies. To

demonstrate the distribution of somatic variants between

high- and low-risk groups and to demonstrate the

distribution of mutations between samples with different

clinical characteristics, the top 20 genes with the highest

mutation frequencies were selected for the waterfall plot, as

shown in Figure 8A Supplementary Table S2. Because the

prognosis of patients in the high-risk group was worse than

that of patients in the low-risk group, we speculated whether

the risk degree is related to the mutations of some common

cancer-promoting genes. Therefore, we further analyzed the

gene mutations between high- and low-risk groups. We found

a higher frequency of mutations in cancer-promoting genes,

such as TP53, MUC16, and TTN, in the high-risk

group. Therefore, we demonstrated a correlation between

FIGURE 4
LASSO linear regression and univariate Cox analysis screened 12 feature genes associated with prognosis (A-C); Survival curve and ROC curve
between the high-risk and low-risk groups, verified by E and F validation sets (D-F).
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the expression of the degree of risk and the mutation of

cancer-promoting genes. Additionally, we compared

whether high- and low-risk groups had different levels of

amplification and deletion. In high- and low-risk groups, we

counted the number of amplifications and deletions of

22 groups of chromosomes. As shown in Figure 8B and

Supplementary Table S3, there was a large degree of

amplification and deletion in the high-risk group. To

explore the correlation between high- and low-risk groups

and the tumor microenvironment, we calculated the

difference in immune infiltration between high- and low-

risk groups based on the TCGA-LUAD dataset. As shown

in Figure 8C, we found significant differences between the

low- and high-risk groups in nine immune cell types (memory

B cells, resting dendritic cells, M0 macrophages, activated

mast cells, resting mast cells, monocytes, resting NK cells,

memory-activated CD4 T cells, and memory-resting

CD4 CT cells). The low-risk group had more immune cell

infiltration than the high-risk group.

Risk score and correlations with
chemotherapy response

To screen for antineoplastic drugs, we predicted the

sensitivity (IC50 values) of 138 drugs in the GDSC database

FIGURE 5
Correlation between risk scores and different clinical characteristics (A–F).
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FIGURE 6
Univariate and multivariate Cox regression analyses were performed to assess the risk score and verified by validation set B (A,B).

FIGURE 7
Survival outcomes of patients with different clinical characteristics in the high and low groups (A–H).
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based on the expression profiles of all the characterized genes in

our model and screened 53 LUAD-associated drugs (Table 1).

Then, we found that response to 41 drugs differed significantly

between high- and low-risk groups, and the top 8 drugs

(pazopanib, salubrinal, GW843682X, docetaxel, sorafenib,

paclitaxel, cytarabine, and temsirolimus) with the most

significant differences in their responses are shown in Figure 9.

Discussion

Transient receptor potential (TRP) channels are a

versatile family of ion channels. Within the TRP ion

channel family, TRPV1 primarily mediates pain and

burning induced by spicy compounds in the

somatosensory system (Steinritz et al., 2018). TRP

channels play an important role not only in mediating

pain but also in the cell cycle, often by regulating gene

transcription and affecting other cellular processes such as

proliferation, apoptosis, or cell motility (Shapovalov et al.,

2016; Yu et al., 2016). Previous studies have shown that the

TRP ion channel family is associated with the progression of

several cancers. For example, the increased expression of

TRPM7 is associated with poor prognosis and metastasis

in nasopharyngeal carcinoma. TRPC1, TRPC5/6, TRPM4,

TRPM7/8, TRPV1/2, TRPV4, and TRPV6 are strongly

associated with progression and could be new therapeutic

targets for breast invasive carcinoma (Chen et al., 2015;

Saldías et al., 2021). In addition, several studies have

identified the TRP ion channel family genes as promising

predictors of prognosis and immunotherapeutic efficacy in

patients with cancer through pan-cancer analysis (Pan et al.,

2022; Wu et al., 2022). However, the role of the TRP ion

channel family in LUAD remains elusive. Therefore, we

searched for TRP-related genes through the TRP pathway

and performed a clustering analysis of patients with LAUD.

FIGURE 8
I plotted the waterfall and selected the top 20 genes with the highest frequency of mutations (A); Amplification and deletion of chromosomes in
the high-low risk groups (B); Differential results of immune infiltration in high-low risk groups (C). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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TABLE 1 53 LUAD-associated drugs.

y Group1 Group2 p p.adj p.format p.signif Method

Pazopanib Low High 1.02E-35 1.00E-35 < 2e-16 **** Wilcoxon

Salubrinal Low High 3.75E-32 3.70E-32 < 2e-16 **** Wilcoxon

GW843682X Low High 1.36E-28 1.40E-28 < 2e-16 **** Wilcoxon

Docetaxel Low High 8.41E-28 8.40E-28 < 2e-16 **** Wilcoxon

Sorafenib Low High 6.42E-26 6.40E-26 < 2e-16 **** Wilcoxon

Paclitaxel Low High 2.72E-25 2.70E-25 < 2e-16 **** Wilcoxon

Cytarabine Low High 6.83E-25 6.80E-25 < 2e-16 **** Wilcoxon

Temsirolimus Low High 2.52E-24 2.50E-24 < 2e-16 **** Wilcoxon

Bortezomib Low High 2.58E-21 2.60E-21 < 2e-16 **** Wilcoxon

CMK Low High 3.20E-21 3.20E-21 < 2e-16 **** Wilcoxon

Elesclomol Low High 9.21E-19 9.20E-19 < 2e-16 **** Wilcoxon

Pyrimethamine Low High 3.69E-18 3.70E-18 < 2e-16 **** Wilcoxon

CCT007093 Low High 3.31E-17 3.30E-17 < 2e-16 **** Wilcoxon

AZD8055 Low High 2.10E-16 2.10E-16 < 2e-16 **** Wilcoxon

Vorinostat Low High 2.16E-16 2.20E-16 < 2e-16 **** Wilcoxon

Vinblastine Low High 8.49E-16 8.50E-16 8.50E-16 **** Wilcoxon

Shikonin Low High 8.82E-16 8.80E-16 8.80E-16 **** Wilcoxon

Rapamycin Low High 6.04E-15 6.00E-15 6.00E-15 **** Wilcoxon

Erlotinib Low High 4.78E-14 4.80E-14 4.80E-14 **** Wilcoxon

Methotrexate Low High 8.87E-14 8.90E-14 8.90E-14 **** Wilcoxon

DMOG Low High 7.48E-13 7.50E-13 7.50E-13 **** Wilcoxon

Axitinib Low High 1.48E-12 1.50E-12 1.50E-12 **** Wilcoxon

Lapatinib Low High 2.81E-12 2.80E-12 2.80E-12 **** Wilcoxon

Tipifarnib Low High 9.08E-12 9.10E-12 9.10E-12 **** Wilcoxon

Cisplatin Low High 2.45E-11 2.40E-11 2.40E-11 **** Wilcoxon

SB590885 Low High 2.19E-08 2.20E-08 2.20E-08 **** Wilcoxon

Bexarotene Low High 1.84E-07 1.80E-07 1.80E-07 **** Wilcoxon

AZ628 Low High 8.69E-06 8.70E-06 8.70E-06 **** Wilcoxon

Etoposide Low High 1.95E-05 2.00E-05 2.00E-05 **** Wilcoxon

Lenalidomide Low High 3.07E-05 3.10E-05 3.10E-05 **** Wilcoxon

Embelin Low High 3.24E-05 3.20E-05 3.20E-05 **** Wilcoxon

Imatinib Low High 5.76E-05 5.80E-05 5.80E-05 **** Wilcoxon

Thapsigargin Low High 8.88E-05 8.90E-05 8.90E-05 **** Wilcoxon

Camptothecin Low High 0.000224914851455118 0.00022 0.00022 *** Wilcoxon

Gemcitabine Low High 0.000556403606421614 0.00056 0.00056 *** Wilcoxon

FH535 Low High 0.000578246872199532 0.00058 0.00058 *** Wilcoxon

AZD6482 Low High 0.0101272818535892 0.01 0.01013 * Wilcoxon

Nilotinib Low High 0.0109494621404446 0.011 0.01095 * Wilcoxon

Parthenolide Low High 0.0105378894590561 0.011 0.01054 * Wilcoxon

Vinorelbine Low High 0.0290182377811531 0.029 0.02902 * Wilcoxon

Bleomycin Low High 0.029126211188871 0.029 0.02913 * Wilcoxon

Sunitinib Low High 0.068383120007987 0.068 0.06838 ns Wilcoxon

GSK269962A Low High 0.0848611578629623 0.085 0.08486 ns Wilcoxon

Dasatinib Low High 0.0871069712669459 0.087 0.08711 ns Wilcoxon

Doxorubicin Low High 0.318323080639613 0.32 0.31832 ns Wilcoxon

AS601245 Low High 0.323173430084827 0.32 0.32317 ns Wilcoxon

AZD7762 Low High 0.363853871726053 0.36 0.36385 ns Wilcoxon

(Continued on following page)
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Then, to investigate the link between patient prognosis and

the TRP pathway, we built a survival prediction model based

on TRP-related subtypes.

In this study, we downloaded expression profile data and

mutation data from TCGA database and analyzed them for

differential expression. After screening for DEGs, we

performed clustering analysis and determined the differential

relationships between subtypes and prognosis, clinical features,

and immune infiltration. The focus of this study was to screen

out prognostic genes and construct a TRP prognostic

stratification scoring system. We downloaded and screened

TRP-related crossover genes from MsigDB and KEGG

databases, screened 12 prognosis-related signatures, and used

the median gene expression as the cutoff value for high- and low-

risk groups. The expression data and clinical data were

downloaded from the GEO database as the validation set for

the risk model, and the stability of the model validity was tested

by evaluating and validating training and validation sets. Some of

these 12 signatures have been confirmed to be closely related to

the occurrence and development of lung cancer. For example,

TABLE 1 (Continued) 53 LUAD-associated drugs.

y Group1 Group2 p p.adj p.format p.signif Method

Bicalutamide Low High 0.544354106852985 0.54 0.54435 ns Wilcoxon

Gefitinib Low High 0.559528107176579 0.56 0.55953 ns Wilcoxon

Midostaurin Low High 0.605884604352698 0.61 0.60588 ns Wilcoxon

Bosutinib Low High 0.856310661540995 0.86 0.85631 ns Wilcoxon

QS11 Low High 0.881705656416548 0.88 0.88171 ns Wilcoxon

Cyclopamine Low High 0.896062326936675 0.9 0.89606 ns Wilcoxon

FIGURE 9
High-risk and low-risk groups respond differently to the eight drugs (A–H). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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induction of AREG expression sensitizes lung cancer cells to

EGFR TKI and increases the tumorigenic dependence of non-

small cell lung cancer on the AREG-induced EGFR signaling

pathway, thus enhancing the progression of NSCLC (Tu et al.,

2018). High CCR2 expression is associated with a poor prognosis

of various cancers, while inhibition of CCR2 expression may

enhance the inhibitory effect of PD-1 on tumors. Simultaneously,

Yi et al. discovered that CCR2 expression was connected with

prognosis, favorably correlated with survival rate and prognosis

of the M type, negatively correlated with the prognosis of T and

N types, and correlated with immune cell infiltration of different

malignancies (An et al., 2017). Functional CDKN3, but not

dominant-negative CDKN3 mutants, is overexpressed in

LUAD, and overexpression of major CDKN3 transcripts is

associated with poor survival in patients with LUAD (Fan

et al., 2015). RHOV is expressed in lung cancer cell lines and

is upregulated in most of the lung tumor cases studied (Shepelev

and Korobko, 2013). The overexpression of RHOV in LUAD

promotes the progression of LUAD and EGFR-TKI resistance,

which may be related to the activation of the AKT/ERK pathway

(Chen et al., 2021). RHOV plays a key role in LUAD metastasis

and may provide a biomarker for the prognosis and treatment of

LUAD (Zhang et al., 2021). Correlations between different

clinical characteristics and model scores were explored based

on the grouping of clinical characteristics and risk values for each

sample in the model. Based on univariate and multivariate Cox

regression analyses, we found that risk groups can be used as

independent risk factors. In difference analysis, chi-squared tests

were performed on the clinical traits such as age, gender, stage,

and smoking in the control group and tumor group, and no

significant differences were found. The risk score also constructs

the survival curve of clinical characteristics, which is clearly

important in guiding clinical outcomes. We found that the

high- and low-risk groups not only possessed higher

mutations and CNV alterations but also predicted worse

prognosis, clinical characteristics, and the tumor

microenvironment in patients with LUAD. In addition to

that, there were significant differences in the frequencies of

mutations between high- and low-risk groups for COL11A1,

CSMD3, FAT3, LRP1B, MUC16, PCDH15, PCLO, RYR2,

SPTA1, TP53, TTN, XIRP2, ZFHX4, and other genes.

Additionally, we found a large degree of amplification and

deletion in the high-risk group. Finally, the IC50 value for

multiple drugs was predicted to be significantly different

between high- and low-risk groups based on the expression of

all characteristic genes in the constructed model. In conclusion,

our study provides new insights into the individualized treatment

of LUAD.

The median risk score is used as a threshold to distinguish

between high- and low-risk groups, and the essence of the grouping

is to find factors influencing tumor development. Our study not only

illustrates the differences between high- and low-risk scores in

clinical traits and survival prognosis but also demonstrates the

correlation between high- and low-risk groups in terms of

genetic mutations, immune cell infiltration, and tumor drug

resistance. The clinical term high risk includes mainly the risk of

the disease, the risk of disease progression, the difficulty of curing the

disease, and the risk of tumor recurrence. Thus, the high-risk group

constructed in our study has an inclusive relationship with clinical

high-risk, and our risk model can be used to predict the

development of clinical risk and prognosis for survival, to assess

the degree of clinical risk and to guide clinical treatment options.

There are still some limitations to our study. The problem of

sample imbalance is an important and common problem in data

analysis and is largely related to the original data itself and the

method of analysis. Although we try to avoid the effects of sample

imbalance when analyzing the data, the imbalance cannot be

completely avoided, and we can only try to reduce the

interference of sample imbalance in the analysis of data, the

construction of models, and the evaluation of model validity.

Although several independent external validations were

performed in this study, there may be an innate case-selection

bias in the results when collecting tissue and information

retrospectively in publicly available databases. Therefore,

reliable in vitro and in vivo experiments as well as large-scale

prospective clinical trials are needed to confirm our findings.

In conclusion, we performed a comprehensive and systematic

bioinformatics analysis and identified the TRP-related prognostic

gene signature for LUAD patients. The TRP score is a promising

biomarker for determining the prognosis, molecular subtype, tumor

microenvironment, and drug selection in patients with LUAD.

Therefore, our study provides new insights into the individualized

treatment of LUAD.
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