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Abstract
The use of Bayesian adaptive designs for clinical trials has increased in recent years,
particularly during the COVID-19 pandemic. Bayesian adaptive designs offer a flexible
and efficient framework for conducting clinical trials and may provide results that are
more useful and natural to interpret for clinicians, compared to traditional
approaches. In this review, we provide an introduction to Bayesian adaptive designs
and discuss its use in recent clinical trials conducted in respiratory medicine. We illus-
trate this approach by constructing a Bayesian adaptive design for a multi-arm trial
that compares two non-invasive ventilation treatments to standard oxygen therapy for
patients with acute cardiogenic pulmonary oedema. We highlight the benefits and
some of the challenges involved in designing and implementing Bayesian adaptive
trials.
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INTRODUCTION

Researchers and funders have recognized the need for effi-
cient clinical trials, and there has been a rapid increase in
interest in adaptive designs, particularly during the COVID-
19 pandemic. Clinical trials have commonly used fixed
designs, in which data are analysed once all observations
have been collected. In such designs, the sample size per
arm is typically defined before data collection to achieve a
particular level of power given the chosen type I error rate
and assumed control and treatment arm distributions.
Therefore, they keep key design components constant dur-
ing the trial and do not make use of accumulating data on
the primary outcome as the trial progresses. Often favoured
for clinical trials for their simplicity and familiarity, fixed
designs can be inefficient, especially if the treatment effect is
much larger or smaller than originally anticipated.

Adaptive designs can offer increased flexibility and effi-
ciency for clinical trials by using results from accumulated
trial data analysed at scheduled interim looks to alter key
design components according to pre-specified rules. Adap-
tive designs can help overcome some of the uncertainties
about the initial trial design parameter assumptions. Poten-
tial adaptations may include: sample size re-estimation,

stopping arms or the trial early for efficacy or futility/
lack-of-benefit, increasing allocations to more promising
treatments (response adaptive randomization), adding new
treatments and/or refining recruitment to patients most-
likely to benefit from the intervention (enrichment).
Multiple types of adaptations may be used within a trial.
Adaptations should be planned a priori to maintain trial
integrity and validity.

Adaptive trials are often considered to be more ethical
than fixed design trials since they often require fewer
patients, potentially saving time and money and/or allocate
more patients to better-performing treatments. Adaptive
designs may be used in all clinical trial phases, and may be
used to seamlessly transition between consecutive phases.
For a general overview on adaptive designs, we recommend
Pallman et al.1

Frequentist or Bayesian methods?

Adaptive designs can be performed both within the frequen-
tist and Bayesian statistical frameworks. These two
approaches differ in how they define probabilities, how the
(unknown) model parameters are treated, how models are
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formulated and estimated, and how results are interpreted.
Frequentist methods, also known as ‘classical’ or ‘tradi-
tional’ statistical methods, typically rely on null hypothesis
testing involving calculation of test statistics, along with
p-values and confidence intervals. Due to their historical
dominance frequentist methods are more widely known and
practised, especially by clinicians. However, there has been
an increasing awareness of the problems associated with
these methods (such as misuse, misinterpretation of the
p-value and over-reliance on null hypothesis testing)2 and
there have been calls to move away from such a paradigm.

Bayesian methods provide an alternative statistical
framework and use probability distributions to represent
uncertainty of the model parameter estimates (e.g., treat-
ment effect). Bayesian methods provide a formal approach
to update parameter estimates as new data are observed, and
thus, are an ideal framework for performing interim ana-
lyses using accumulating information. Therefore, the use of
Bayesian methods in designing and analysing clinical trials
has become more prominent and they are naturally better-
suited to performing adaptations compared to frequentist
methods.

Bayesian methods incorporate the investigator’s initial
belief about the unknown parameters of interest
(e.g., treatment effect) by specifying prior distributions for
these parameters. Priors are probability distributions set up
before collecting data that account for uncertainty in the
parameter estimates. These represent a major difference to
frequentist analyses, which assume the parameters to be
fixed but unknown in value. Information from previous
studies and/or clinical expert opinion can be incorporated
into the prior distribution. Non-informative priors can be
used as default priors if there are a lack of reliable previous
studies or to avoid introducing external information into the
analysis and numerically mimic a frequentist analysis. Spie-
gelhalter et al.3 and Berry et al.4 provide some discussion
around prior distributions for clinical trials.

Once data are collected, new information becomes avail-
able and is summarized by another distribution—the likeli-
hood. Using Bayes’ theorem, the prior is updated by
combining it with the S2 likelihood function to become a
posterior distribution. An example of this updating process
is given in Figure S1 / Appendix S1 in the Supporting Infor-
mation. Decisions and inference can then be made using the
posterior which summarizes all information available at that
point in time. Bayesian analyses typically report posterior
means or medians as parameter (point) estimates, along
with credible intervals (in place of confidence intervals) to
provide the range of values for the parameters with a certain
level of posterior probability (e.g., 95%). We recommend
Kruschke5 and McElreath6 for some introductory texts on
Bayesian statistics.

Here, we provide an introduction to Bayesian adaptive
clinical trials and discuss some commonly-used design fea-
tures/adaptations along with some examples of recent respi-
ratory medicine studies that use these approaches. We focus
on later phase trials, particularly multi-arm trials, since they

offer more opportunities for adaptations. We illustrate the
approach with a case study, which compares two non-
invasive ventilation strategies to standard oxygen therapy
for patients with acute cardiogenic pulmonary oedema. We
conclude with a discussion of the benefits and some of the
challenges involved in designing and implementing Bayesian
adaptive trials.

BAYESIAN MONITORING OF A TWO-ARM
TRIAL

A frequentist approach may base monitoring of a two-arm
trial (we consider the two-arm case for simplicity) on a z-
test statistic calculated at each interim analysis, which is
compared to a boundary that is derived from a particular
mathematical function that is pre-specified. If the bound-
ary is crossed by the test statistic then the trial may be ter-
minated. Some commonly-used boundaries include
Haybittle-Peto, O’Brien-Fleming and α-spending func-
tions.7 These methods maintain the overall control of the
type I error despite looking at the data several times. See
Jennison and Turnbull7 for more details on frequentist
approaches.

Bayesian monitoring of a two-arm trial proceeds using
the following logic. At each interim analysis, the posterior
distribution of the parameter(s) of interest is computed
using the current data, and decisions or adaptations are
made using posterior probabilities and pre-specified rules.
For instance, posterior distributions can be used to calculate
the probability of a certain sized treatment effect given the
information currently available. It then becomes natural to
make decisions based on a cut-off of these posterior proba-
bilities. For example, a trial might permit early stopping for
success if the posterior probability that the relative risk
(RR) is less than one (given the available information) is
greater than the threshold C = 0.99, denoted by
Pr RR < 1jdatað Þ >C¼ 0:99. Clinically meaningful differences
could be incorporated into the stopping criteria, for exam-
ple, by imposing a high probability of observing at least a
10% reduction, that is, Pr RR < 0:90jdatað Þ > 0:99. By the
same token, early stopping for futility may be permitted if
the posterior probability the RR < 1 is low, say below 0.10. A
more aggressive approach can be chosen by adding a clini-
cally meaningful difference to the futility stopping rule. The
cut-off values C are decided by the investigator and may
vary across the interim analyses. They are often chosen to
achieve control of the (one-sided) overall type I error at the
2.5% level and Bayesian versions of frequentist stopping
boundaries can be constructed for some standard scenarios.8

Alternatively, the posterior could be used to define posterior
predictive probabilities about future observations. Posterior
predictive probabilities are typically used to predict whether
the trial will be successful if it continues to the planned max-
imum sample size, or to predict trial success based on com-
pleting the current participants’ follow-up, and can be used
in stopping rules.9
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An example of a recent two-arm trial monitored using
the Bayesian paradigm is the CLARITY trial10 which com-
pares angiotensin receptor blockers plus standard care to
standard care alone in reducing COVID-19 severity among
high-risk patients. The primary outcome is a 7-point ordinal
scale of clinical outcomes measured at 14 days. The
CLARITY trial performs interim analyses every 300 patients,
beginning at 700 patients being due for the primary out-
come measurement, and uses posterior predictive probabili-
ties to determine whether to stop for efficacy or whether
recruiting to the maximum planned sample size (N = 2200)
would be futile.

EXAMPLES OF ADAPTATIONS/DESIGNS

The general principles stated above can be used in the con-
text of adaptive trials. There are many ways to define what
‘adaptive’ means but we follow here the definition provided
by Gallo et al.11: ‘An adaptive design is a clinical study
design that uses accumulating data to decide how to modify
aspects of the study as it continues, without undermining
the validity and integrity of the trial.’ We restrict our atten-
tion to late phase Bayesian trials as they are thought to be
more relevant in the context of adaptive trials for respiratory
diseases, and focus on a few important types of adaptations.
A more general review of adaptive trials can be found in
Curtin and Heritier.12

Bayesian adaptive sample size and multi-arm
multistage designs

Group Sequential Trials (GSTs), usually conducted as two-
arm studies comparing experimental and control arms, are
one of the most commonly-used adaptive designs based on
the above definition. Using the monitoring methods
described in the Section ‘Bayesian monitoring of a two-arm
trial’, Bayesian GSTs may stop early if the posterior (predic-
tive) probabilities cross the success or futility thresholds at
an interim analysis and otherwise proceed until the next
analysis. A substantial reduction in (expected) sample size
can be obtained in this setting compared to a standard/fixed
trial that does not perform such interim analyses. This was
shown for instance in Ryan et al.13 who constructed alterna-
tive Bayesian GST designs for the OSCAR trial14 which
compared high frequency oscillatory ventilation to conven-
tional positive pressure ventilation for patients with acute
respiratory distress syndrome. Whilst Bayesian GSTs offer
some gains in efficiency, the adaptations that can be made
in two-arm trials are limited by nature to early efficacy or
futility stopping, changes in the number of looks and sample
size reassessment.

Bayesian adaptive sample sizes have been employed
when there is uncertainty around the distribution of the pri-
mary outcome and around the potential treatment effect
sizes as they offer more flexibility than their standard

frequentist counterparts.10,15 They allow for sample size
reassessment through Bayesian monitoring during the
accrual phase where the trial may stop early for efficacy or
futility (using a GST approach9,10), or may continue recruit-
ing if an indeterminant result has been obtained after
accrual of the initial planned sample size.15

Multi-arm multistage (MAMS) trials are a natural exten-
sion to GSTs offering more gains in efficiency by concur-
rently comparing multiple experimental arms, usually against
a common control arm, and may also permit head-to-head
comparisons. Multi-arm trials allow researchers to answer
multiple questions within a single regulatory framework and
study protocol, rather than running a series of two-arm trials.
Bayesian MAMS trials can be run using a similar approach to
that described in the Section ‘Bayesian monitoring of a two-
arm trial’ by computing the posterior probability of a particu-
lar treatment being superior to the control. Bayesian compar-
ative effectiveness trials may also wish to compute the
posterior probability of an intervention being the best arm
out of the study treatments explored. Posterior predictive
probabilities that consider what might happen if the trial were
to continue could also be used. Stopping rules are set using
the approach discussed in the Section ‘Bayesian monitoring
of a two-arm trial’, and are restricted by the degree of type I
error control (pairwise or overall). In addition to early stop-
ping for efficacy or futility, Bayesian MAMS designs may
incorporate adaptations that focus on more promising treat-
ments, such as dropping arms for lack-of-benefit, early selec-
tion of winners or response adaptive randomization.

Dropping arms

Arm dropping is one of the logistically simpler adaptations
that may be performed in Bayesian MAMS trials and may
be used to cease recruitment to ineffective arms. In the
Bayesian framework, arms could be dropped if there is a low
posterior (predictive) probability that the intervention shows
an improvement compared to control (any improvement or
a clinically meaningful improvement), or if an arm has a
low posterior probability of being the best arm.16 Planned
maximum sample sizes may be reduced if an arm is
dropped, or a study may continue with the original planned
maximum sample size to enable more patients to be allo-
cated to more promising treatments.

An example of a Bayesian adaptive trial that incorpo-
rated arm dropping is the CATALYST study.17 This was a
proof-of-concept trial, which compared namilumab or
infliximab to standard care in hospitalized COVID-19
patients. Interim analyses were performed every 20 evaluable
patients recruited per arm using the accumulated primary
outcome data (C-reactive protein [CRP] concentration over
time until day 14). The trial could stop early for success if
there was at least a 90% posterior probability that an inter-
vention was superior to standard care in reducing CRP con-
centration, or an intervention arm could be dropped for
futility if there was less than a 50% probability of benefit.
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The infliximab arm was dropped following an interim analy-
sis which showed a probability of benefit of 21%.

Bayesian response adaptive randomization

Response adaptive randomization (RAR) is an adaptation
that may be suitable for multi-arm trials18 and updates the
randomization probabilities based on the information accu-
mulated on the (primary) outcome thus far, in a way that
allows more participants to be allocated to better performing
arms. These adaptations may be done in stages, or may be
performed continuously (i.e., after each participant). A
range of methods have been proposed for calculating the
randomization probabilities for Bayesian RAR19–21 including
the allocations to the control arm.20,22 Prior to the first
interim analysis equal randomization may be used, which is
often referred to as a ‘burn-in’ period to allow sufficient
preliminary data to be collected.

Many consider RAR to be more ethical than fixed ran-
domization since it can potentially treat more patients with
more beneficial treatments18 and still provide information
on treatment efficacy. Nevertheless, the use of RAR is some-
what controversial, especially with regards to time trends
potentially creating biased treatment estimates, the addi-
tional operational complexities it introduces and it may not
be beneficial in some situations.21,23–25

An example of a Bayesian RAR design is the endTB
trial,26 which investigates five new treatment regimens and a
control for multidrug-resistant tuberculosis. The primary out-
come was treatment success at 73 weeks and so adaptations
were made based on preliminary outcomes (culture conver-
sion at 8 weeks and treatment success at 39 weeks) as RAR
typically requires relatively short follow-up periods. At each
interim analysis, the randomization probabilities were
updated using a power function of the posterior probability
that each intervention arm was superior to control given the
current data. The allocation to the control arm was protected
by defining the control randomization probability such that
its allocation was approximately matched with the experi-
mental arm with the highest number of enrolled patients.

Seamless designs

Seamless designs may be used to transition between consec-
utive phases of clinical trials without delay and can poten-
tially utilize data collected in both phases. For instance, a
seamless phase II/III trial may investigate multiple doses of
a drug and determine the most promising dose(s) in the
phase II trial and compare the efficacy of these doses to a
control in phase III. The phase II stage could also be used to
select among different treatments or subpopulations for
investigation in the confirmatory phase III stage. The rules
for shifting from phase II to III are pre-specified and such
trials may also decide to abandon the intervention and not
proceed to phase III.

Frequentist seamless phase II/III designs have been pro-
posed for chronic obstructive pulmonary disease (COPD)
patients27,28 and Inoue et al.29 illustrate a Bayesian approach
for a two-arm study in non-small-cell lung cancer. Alterna-
tively, a Bayesian MAMS approach could be used that allows
for early selection of promising arms, dropping poorly
performing arms or terminating the trial for futility.

CASE STUDY

As an illustrative example, we consider a case study that is
loosely-based on the Three Interventions in Cardiogenic
Pulmonary Oedema (3CPO) trial.30 This is a multi-arm ran-
domized controlled trial comparing standard oxygen ther-
apy to continuous positive-pressure ventilation (CPAP) or
non-invasive intermittent positive-pressure ventilation
(NIPPV) for patients with acute cardiogenic pulmonary
oedema. The primary outcome in this case study is death
within 7 days. Although the original trial pooled the two
interventions into a single ‘non-invasive ventilation’ arm in
the primary analysis, we will assume the CPAP and NIPPV
arms will be analysed separately (three treatment arms).
This is a superiority trial and we are interested in compari-
sons of the interventions with the control; the experimental
arms will not be compared (apart from in the RAR algo-
rithm). The trial maximum sample size is defined using a
non-adaptive frequentist power analysis which showed that
a sample size of 1500 patients (500 per arm) will have 80%
power to detect the difference of interest, a reduction from
16% to 9.5% in 7-day mortality, with a two-sided signifi-
cance level of 2.5% (Bonferroni correction for pairwise com-
parisons of each intervention to control).

Design considerations

In addition to ‘usual’ trial design parameters/features, the
following aspects should be considered when designing a
Bayesian adaptive trial: (i) the types of adaptations that can
be made; (ii) the number and timing of the interim analyses;
(iii) the decision rules for the interim and final analyses,
including allocation ratios if RAR is used; (iv) the decision
thresholds/boundaries and (v) and the prior distributions.

Adaptations should be pre-specified and depend on the
trial objectives. Here we would like to identify better per-
forming arms and drop poorly performing ones as quickly
as possible, resulting in the following types of adaptations to
be considered: early stopping of the trial for efficacy or futil-
ity, RAR and arm dropping.

Interim monitoring

The number and timing of the interim analyses will depend
on the planned maximum sample size, time to observe
the primary outcome, recruitment rates and logistical
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constraints involved in performing the interim analyses and
implementing the adaptations. In our case study, we chose
to start interim monitoring for early stopping of the trial for
efficacy or futility once 750 patients have completed their
7-day follow-up and every additional 250 patients complet-
ing 7-day follow-up thereafter, until early trial stopping or
recruiting the maximum sample size (N = 1500 patients
enrolled).

Our Bayesian adaptive designs assume that the adapta-
tions are driven by the primary outcome alone. Specifically,
we will allow early stopping of the trial for efficacy if there is
a high posterior probability of either CPAP or NIPPV being
superior to the control, that is,

Pr PCPAP < PControlð Þ > Si or Pr PNIPPV < PControlð Þ > Si,

where PCPAP, PNIPPV and PControl are the 7-day mortality
rates for each arm, and Si is the stopping boundary for supe-
riority at the i-th analysis. We use a similar approach to
Connor et al.16 where the trial stops accrual once at least
one superior treatment has been identified. Note that in
some situations it may be preferable to stop recruiting to an
arm once it has demonstrated efficacy over control (early
selection) and not to stop accrual for efficacy unless all
intervention arms have demonstrated superiority over
control.31

Early stopping of the trial for futility (lack-of-benefit)
may occur if there is a low posterior probability of both
CPAP and NIPPV being superior to the control, that is,

Pr PCPAP < PControlð Þ < Fi and Pr PNIPPV < PControlð Þ < Fi,

where Fi is the stopping boundary for futility at the i-th
analysis. This would indicate that there is little evidence that
these treatments are superior to the control.

At the final analysis we consider the trial to be successful
if the posterior probability that either intervention has a
lower 7-day mortality rate than the control arm rate is
greater than 0.9875, that is,

Pr PCPAP < PControlð Þ > 0:9875 or Pr PNIPPV < PControlð Þ > 0:9875:

Table 1 displays the stopping boundaries Si and Fi, and
the final analysis success criterion for our design. These
values were tuned via simulations. A discussion on how the
stopping boundaries may be chosen is provided in
Appendix S2 in the Supporting Information.

Unlike Gotmaker et al.,31 who chose to control the pair-
wise error rate (experimental arm vs. control) at 2.5% under
the null hypothesis, our stopping boundary values control
the overall type I error rate at the 2.5% level whilst preserv-
ing high power (>80%) for a meaningful effect size
(a reduction from 16% to 9.5% in 7-day mortality). Note
that this Bayesian adaptive design is constructed as a one-
sided superiority study, which is common for this
approach.10,16

Response adaptive randomization and arm
dropping

Prior to the first interim analysis, equal randomization is
used (burn-in period). We first update the randomization
probabilities after the 500th patient has completed their
7-day follow-up and then every 250 patients. The randomi-
zation probabilities for the intervention arms are updated to
be proportional to the posterior probability that the arm is
the best intervention arm.21 The control allocation probabil-
ity is matched to the allocation probability of the best inter-
vention arm (i.e., the intervention arm with the highest
allocation probability) to ensure there is sufficient power for
comparisons with the control.

Enrolment to intervention arms could be suspended if
they had a low randomization probability (<0.1), that is,
were performing poorly, allowing the remaining interven-
tion arm to receive an increase in allocations. The suspended
arm could resume enrolment at subsequent interim analyses
if the randomization probability increased above the thresh-
old. This is known as ‘temporary arm dropping’ and is
implemented in the simulation package used for this case
study when RAR is employed.32 Treatment and follow-up
continues for patients in the suspended arm. Permanent
arm dropping may be preferred in some situations, where
enrolment is ceased to an arm for futility, and the trial may
stop for futility if all intervention arms are dropped.

Prior distribution

A discussion on the choice of prior distribution is provided
in Appendix S3 in the Supporting Information. We note
here that the choice of the prior is less critical when large
samples are used, like in this example, as the information
provided by the data (via the likelihood) is dominant in such
cases (see also Figure S2 in the Supporting Information).

TAB L E 1 Timing of interim analyses and posterior probabilities
required to stop for success (S) or futility (F) at each interim analysis, and
final analysis success criteria for the case study

Interim analysis

Number of
patients with
complete follow-up Si Fi

1a 500 NA NA

2 750 0.9984 0.1003

3 1000 0.9963 0.2591

4 1250 0.9928 0.5411

Finalb Max 1500 0.9875 NA

Note: Si is the stopping boundary for superiority at the i-th analysis; Fi is the stopping
boundary for futility at the i-th analysis.
aOnly response adaptive randomization (RAR) was performed at the first interim
analysis (i.e., no early stopping for efficacy or futility was permitted).
bIf the trial did not stop early for efficacy or futility, the final analysis was performed
once 1500 patients were recruited and followed up; if the trial stopped early, then the
final analysis was performed once the recruited patients completed follow-up.
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Simulation settings

During the design phase, computer simulations are typically
conducted under a range of plausible scenarios (e.g., treat-
ment response rates or distributions, treatment effect sizes,
stopping rules and recruitment rates) and incorporate the
adaptations of interest. Table 2 presents the scenarios of
interest for this study.

The frequentist properties of the design, known as oper-
ating characteristics, are studied by simulating the trial a
large number of times (e.g., 10,000) for each scenario. Dif-
ferent quantities are typically recorded using the simulation
results (power, type I error, average sample size, proportion
of simulations which stopped early and average allocations
to each arm) for each scenario, as analytical solutions are
usually not available. Features of the design can be updated
and simulations rerun if results are not as expected
(e.g., high type I error). The simulations of our trial design
are performed using the commercial software FACTS.32

Results

Table 3 presents the operating characteristics for our Bayes-
ian adaptive design. It has an overall (one-sided) type I error
close to our target of 0.025 (scenario 1) and a probability of
at least 0.86 to declare the trial to be successful when at least
one intervention arm has a clinically-relevant effect. For the
scenarios where only one arm has a clinically-relevant effect
(scenarios 2 and 4), we obtain a probability of at least 0.82
of declaring that arm to be superior to control. However,
when both arms have a clinically-relevant effect (scenario 3),
the probability of declaring each intervention superior to
control (individually) decreases due to the decreased average
sample size induced by the early stopping for efficacy. The
trial is often stopped for futility (73.2% of simulations) when
the interventions are harmful (scenario 6). Compared to the
fixed design (N = 1500), the average sample sizes are
reduced by approximately 130–500 patients in the scenarios

T A B L E 2 Effect size scenarios explored for the Bayesian adaptive
design case study

Scenario
PControl

(%)
PCPAP

(%)
PNIPPV

(%)

(1) Null 16% 16% 16%

(2) One intervention superior 16% 16% 9.5%

(3) Both interventions superior 16% 9.5% 9.5%

(4) NIPPV > CPAP > Controla 16% 12.5% 9.5%

(5) Both interventions have small
improvement

16% 12.5% 12.5%

(6) Harm 16% 18% 18%

Note: PControl , PCPAP, PNIPPV are the 7-day mortality rates for each arm; Note that
PCPAP and PNIPPV could be interchangeable here, depending on whether the clinicians
thought that continuous positive-pressure ventilation (CPAP) or non-invasive
intermittent positive-pressure ventilation (NIPPV) were more likely to be superior.
aHere ‘>’ means ‘better than’, that is, have lower 7-day mortality. T
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explored, with the biggest savings occurring in the presence
of a clinically-relevant benefit. RAR allocates more patients
to superior interventions but may also result in more early
stopping for efficacy. Similar numbers of patients are allo-
cated to arms that have the same treatment effect. This can
be seen in Figure 1 displaying the distribution of the sample
sizes for each arm for each scenario.

MORE COMPLEX DESIGNS—PLATFORM
TRIALS

Platform trials evaluate multiple treatments (or treatment
combinations) simultaneously in one or more patient sub-
groups for a disease or condition and operate under a single
master protocol. Adaptive platform trials also incorporate
adaptive features and can be perpetual or open in that the
number of treatment arms is not fixed and treatment arms
may be added or removed during the trial, according to pre-
defined criteria.33 The control arm may also be updated with
a new superior treatment once it has been approved, and
other flexible features such as RAR or enrichment may be
incorporated.

Adaptive platform trials typically use multifactorial
designs where patients can be randomized to one or more

different domains of treatment (such as antibiotics, antivi-
rals, corticosteroids and mechanical ventilation strategies).34

This allows for simultaneous testing of different treatment
strategies and combinations of treatments. As such, they
may be viewed as an extension of MAMS designs (where a
single domain is typically studied). Different inclusion cri-
teria may be applied for each domain, and certain patient
populations may be targeted for the testing of particular
treatment arms. New domains of treatment or new disease
subgroups may also be added to the adaptive platform.34

Adaptive platform trials utilize protocol amendments and
appendices to the master protocol, rather than designing a
new trial for each comparison, for each new treatment that
becomes available, or for new domains or subgroups that are
to be explored. Thus, platform trials are highly modular. These
trials may enable resources to be shared between multiple
sponsors and can find effective treatments more efficiently
compared to traditional randomized controlled trials.35

The Bayesian approach is well-suited for implementing
the more complex features of adaptive platform trials, such
as RAR, hierarchical modelling (which allows borrowing of
information about treatment effects across subgroups), longi-
tudinal modelling and assessment of treatment combinations
across subgroups.35 One of the most well-known Bayesian
adaptive platform trials is the REMAP-CAP study34,36

F I G U R E 1 Boxplots showing the distribution of allocations (number of patients) for each treatment arm across the 10,000 simulated trials for each
scenario (represented in separate plots) for the Bayesian adaptive design case study
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which was originally designed for adult patients with severe
community-acquired pneumonia but also included infra-
structure for pandemic respiratory infections in its design
(‘Pandemic Appendix’). REMAP-CAP is a perpetual adap-
tive platform trial that has included at least 55 interventions
in 16 domains (as of April 2022),36 and has been used to
investigate many treatments for COVID-19 and avoided the
need to set up multiple new trials. Bayesian adaptive plat-
form trials are also being conducted in other respiratory dis-
eases, such as cystic fibrosis37 and influenza-like illness.38

Platform trials can provide many opportunities for faster
therapy approval and the U.S. Food and Drug Administra-
tion (FDA) has recently released a guidance document on
Master Protocols.39

WHEN TO USE/NOT USE (BAYESIAN)
ADAPTIVE DESIGNS

Implementation of adaptive designs requires much more
statistical planning for both the study design and analysis,
and a more complex administrative infrastructure compared
to fixed/traditional designs. Additionally, planning of a
Bayesian adaptive trial can be more complex than for fre-
quentist designs with similar adaptive features and there are
generally not many off-the-shelf designs available. Custom
code or software are generally required to determine the
operating characteristics of Bayesian adaptive designs, some
of which may be computationally intensive. We discuss
some of the software available for Bayesian adaptive designs
in Appendix S4 in the Supporting Information.

Although (Bayesian) adaptive designs can be more effi-
cient than traditional designs in many scenarios, they can be
more complicated to implement and there are some situa-
tions where they might not be worthwhile. Recruitment rates
and duration of follow-up play important roles in adaptive
designs. Studies with fast recruitment and relatively long
periods to observe the primary outcome may have little infor-
mation available at interim analyses, or may finish recruit-
ment before any adaptations can be implemented.
Intermediate outcomes may be required for trials with long-
term primary outcomes to enable interim decision-making,
provided they are informative and strongly correlated with
the primary outcome and are observed fairly quickly.26,40

One should consider the availability of resources to deliver a
potential increase in the allocations to certain treatment arms
(via RAR or arm dropping), as this may not be feasible for
some types of treatments. To perform the interim analyses,
data must be collected, entered, cleaned and analysed in a
timely fashion and to a high standard. To implement RAR or
suspend recruitment to a treatment arm, one must be able to
update the randomization system rapidly and with ease.

Other operational barriers (including additional costs/
resources), potential presence of secular trends, trial com-
plexity, the importance of secondary/long-term outcomes
and potential subgroup effects and personnel expertise
should also be considered when deciding whether to imple-
ment Bayesian adaptive designs for a particular trial to

achieve the trial’s objective.40 Due to their complexity, plat-
form trials require additional design considerations, which
have been discussed in recent overviews.33,41 Ideally, Bayes-
ian adaptive designs should be generated by biostatisticians
with expertise in these designs.

DISCUSSION

We have discussed some of the common adaptations that
may be implemented in Bayesian adaptive trials and pro-
vided several examples of recent respiratory medicine studies
that have used these approaches. The potential adaptations
are not limited to the examples provided here and other
adaptations/designs may be implemented, such as: early
selection, adaptive enrichment or dose-escalation. Through
our case study, we have provided a brief outline of the pro-
cess involved in constructing a Bayesian adaptive design;
extensions to this process are required for more complex
designs, such as adaptive platform trials. This article is
intended as a starting point for clinicians interested in Bayes-
ian adaptive designs and we encourage readers to seek a dee-
per understanding by reading some of the cited materials.

Bayesian adaptive designs provide a flexible way of
designing clinical trials, particularly those with complex fea-
tures. We have shown through our case study how Bayesian
adaptive designs can provide gains in efficiency by poten-
tially reducing the sample size (compared to a standard fre-
quentist approach) and increasing allocations to more
promising treatment arms, whilst maintaining high power.
The decision rules that we have implemented here may be
more interpretable to clinicians, rather than those based on
test statistics (used in frequentist designs).

The case study that we have presented is for illustrative
purposes only. All Bayesian adaptive designs are situation-
specific and the adaptations and decision rules should be tai-
lored to the trial’s objectives. The impact of each adaptive
feature on the design’s operating characteristics should be
thoroughly investigated pre-trial.
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