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Abstract
The abundance and type of immune cells in the tumor microenvironment (TME) sig-
nificantly influence immunotherapy and tumor progression. However, the role of im-
mune cells in the TME of gastric cancer (GC) is poorly understood. We studied the 
correlations, proportion, and infiltration of immune and stromal cells in GC tumors. 
Data analyses showed a significant association of infiltration levels of specific immune 
cells with the pathological characteristics and clinical outcomes of GC. Furthermore, 
based on the difference in infiltration levels of immune and stromal cells, GC patients 
were divided into two categories, those with “immunologically hot” (hot) tumors and 
those with “immunologically cold” (cold) tumors. The assay for transposase- accessible 
chromatin using sequencing and RNA sequencing analyses revealed that the hot and 
cold tumors had altered epigenomic and transcriptional profiles. Claudin- 3 (CLDN3) 
was found to have high expression in the cold tumors and negatively correlated with 
CD8+ T cells in GC. Overexpression of CLDN3 in GC cells inhibited the expression of 
MHC- I and CXCL9. Finally, the differentially expressed genes between hot and cold 
tumors were utilized to generate a prognostic model, which predicted the overall 
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1  | INTRODUC TION

Gastric cancer is the third leading cause of cancer- related deaths 
worldwide. Gastric cancer has no effective treatment, so surgical re-
section is the only option; however, the success rate is only 60% and 
unfortunately most patients with advanced disease do not undergo 
surgical resection.1,2 Clinical trials of immune checkpoint inhibitors 
PD- 1 and PD- L1 have shown that disease progression is inhibited in 
many cancers, including GC, but the clinical response was observed 
in a small subset of patients and many patients failed to respond.3- 5 
Therefore, it is crucial to elucidate the relevant mechanisms of tumor 
progression to improve the immunotherapy response in GC patients. 
The tumor immunomicroenvironment is the most important factor 
for studying immunotherapy response, which is usually classified 
into two phenotypes, noninflamed and immune- inflamed tumors. 
Noninflamed tumors have two subtypes, immune- excluded and im-
mune desert phenotypes. These two phenotypes could reflect the 
absence of pre- existing antitumor immunity.6 Several studies have 
reported that the immune- inflamed and noninflamed phenotypes 
could be relevant in response to immune checkpoint inhibitors.7,8 
Therefore, converting a noninflamed into immune- inflamed tumor is 
necessary for therapeutic approaches.

In the current study, we applied xCell, ssGSEA, and TIMER tools 
to quantify the comprehensive tumor immune milieu of GC patients. 
Considering the difference in immune response as an essential driver 
of the GC progression and response to treatment, we classified GC 
tumors into “immunologically hot” (hot) and “immunologically cold” 
(cold) tumors, then ATAC- seq and RNA- seq were used to determine 
their differences. We further identified target genes that regulate 
immune cell infiltration in the TME. In addition, based on the DEGs 
between hot and cold tumors, we constructed a model for predicting 
the OS of GC and patients treated with immunotherapy.

2  | MATERIAL S AND METHODS

2.1 | Data acquisition

The RNA- seq data and clinical information of the GC patients were 
obtained from the UCSC Cancer Browser. For the immunotherapeu-
tic efficiency analysis, three transcriptomic datasets from patients 
with metastatic urothelial cancer treated with anti- PD- L1 agents 
(atezolizumab; http://resea rch- pub.gene.com/IMvig or210 CoreB 
iolog ies/), patients with melanoma treated with anti- PD- 1 agents 

(nivolumab; Gene Expression Omnibus, GSE91061), and patients 
with metastatic melanoma treated with anti- PD- 1 agents (pembroli-
zumab or nivolumab; Gene Expression Omnibus, GSE78220) were 
downloaded.9- 11 The sequencing data of ATAC was downloaded 
from the NCI website (https://gdc.cancer.gov/about - data/publi catio 
ns/ATACs eq- AWG).12

2.2 | Immune estimation

A total of 64 immune and stromal cells were calculated using the 
R package “xCELL”; samples with P < .05 were selected for further 
analysis.13,14 Next, 34 immune cells containing markers were calcu-
lated using the R package “GSVA”.15 The six tumor- infiltrating im-
mune cell types were downloaded from TIMER.16 The immune score, 
stromal score, and tumor purity were calculated using the R package 
“ESTIMATE”.

2.3 | Analysis of DEGs

Based on the immune score and immune cell infiltration level, 
the samples were divided into hot and cold tumors. The R pack-
age “limma” was used to calculate DEGs with criteria as follows: 
|logFC|>1 and adjusted P value <.05.

2.4 | Functional enrichment analysis and 
PPI network

All DEGs with a P value (adjusted P value) less than .05 were ana-
lyzed for function prediction through KEGG and GO. In addition, the 
PPI network of overlapping DEGs with |logFC|>1 was obtained from 
STRING then reconstructed by Cytoscape.

2.5 | Construction of prediction model

The RNA- seq data of GC tumors with survival information of the 
patients were randomly divided into training and testing cohorts 
using the R package “caret” then univariate survival analysis was 
undertaken on the DEGs. Furthermore, LASSO analysis was carried 
out using R package “glmnet” and for optimization of the prediction 
model a stepwise proportional hazards model was used.

survival of GC as well as patients with immunotherapy. Overall, we undertook a com-
prehensive analysis of the immune cell infiltration pattern in GC and provided an ac-
curate model for predicting the prognosis of GC patients.
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2.6 | Survival analysis

To undertake survival analysis of the immune and stromal cells, sam-
ples were divided into two groups. The log- rank test was used to 
determine the significant effect of the cells on OS and PFS of pa-
tients with GC. Survival analysis was undertaken using R package 
“survival” and ROC curves were analyzed by “survivalROC”.

2.7 | Immunohistochemistry analysis

The GC tissue specimens were harvested, fixed in 10% buffered for-
malin, sectioned, and stained with anti- CLDN3 (1:50; #16456- 1- AP; 
Proteintech) and anti- CD8α (D8A8Y) (1:200; #85336; Cell Signaling 
Technology). Based on the intensity of both nuclei and membrane 
staining (0, blank; 1, light yellow; 2, yellow; and 3, brown) and the 
extent of stained cells (0, <10%; 1, 10%- 40%; 2, 40%- 70%; and 3, 
>70%), each specimen was assigned a score and calculated by multi-
plying two items into a total score (range, 0- 9).

2.8 | Cell culture

The human gastric cancer cell lines SGC7901 and AGS were pur-
chased from the Institute of Biochemistry and Cell Biology of the 
Chinese Academy of Sciences. All cells were cultured in RPMI- 1640 
medium supplemented with 10% FBS at 37°C and 5% CO2 in a hu-
midified incubator.

2.9 | Quantitative real- time PCR

Total RNA was extracted from GC tissues and cells (AGS and 
SGC7901) using TRIzol (TaKaRa) and cDNA was synthesized by a 
reverse transcription kit (Toyobo). The quantitative PCR was carried 
out using the QuantiNova SYBR Green PCR kit (Qiagen) and a set of 
specific primers (Table S1). Relative gene expression was calculated 
by the 2−ΔΔCt method.

2.10 | Plasmids and transfection

The full cDNA of human CLDN3 was amplified by PCR and cloned 
into the mammalian expression vector pcDNA3.1- myc- His. Gastric 
cancer cells were transfected CLDN3- pcDNA3.1- myc- His (OE- 
CLDN3) using Lipofectamine 2000.

2.11 | Western blotting

The cells were lysed in RIPA lysis buffer (Solarbio) containing pro-
teinase inhibitors (Sigma- Aldrich) and total protein was quantified 
by BCA electrophoresed using 12% SDS- PAGE gels. Blots were 

transferred to a PVDF membrane, blocked with 5% skimmed milk, 
and incubated with anti- CLDN3 (1:1000, #ab214487; Abcam), and 
anti- β- Actin (1:1000, #3700; Cell Signaling Technology) Abs over-
night at 4°C. The following day, membranes were washed and incu-
bated with secondary Abs for 1 hour and detected with an enhanced 
chemiluminescence reagent.

2.12 | Immunofluorescence

The cells were cultured on coverslips for 24 hours, fixed in 4% PFA 
for 15 minutes, then blocked with blocking buffer (PBS- T, 3% BSA) 
for 30 minutes and incubated with HLA class I ABC polyclonal Ab 
(1:50, #15240- 1- AP; Proteintech) for 1 hour at room temperature. 
Cells were washed and stained with corresponding secondary Ab for 
1 hour at room temperature. Finally, a mounting medium containing 
DAPI was dropped on the slide for nuclear staining and images were 
taken by confocal microscope.

2.13 | Enzyme- linked immunosorbent assay

Cells were transfected with the OE- CLDN3 plasmid and 48 hours 
later stimulated by γ- interferon and tumor necrosis factor - α (50 ng/
ml each) (PeproTech) as previously described.17 After incubating 
for 24 hours, media were harvested, and ELISA was undertaken for 
CXCL9 and CXCL10 using the ELISA kits (Lianke Bio). All samples 
were assessed in triplicate.

2.14 | Statistical analysis

All the statistical analyses were carried out with the R and GraphPad 
software packages. The χ2 test was used for studying correla-
tions between immune infiltration and pathological parameters. 
Wilcoxon’s test was used to compare the infiltration of immune 
cells in normal and tumor tissues, as well as in hot and cold tumors. 
Analysis of variance was used to compare the immune score, stromal 
score, and tumor purity among the three clusters. For the survival 
analysis, P values were calculated using the log- rank test. A P value 
of less than .05 was considered statistically significant.

3  | RESULTS

3.1 | Immune landscape related to histopathological 
characteristics of GC

To explore the effect of infiltrating cells on the malignancy of GC, 
we determined the association between different immune cell 
subsets and GC pathological characteristics. For this purpose, the 
RNA- seq data of 341 GC patients from TCGA database were ob-
tained and the score of cells calculated using xCell (Figures 1 and 
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S1). Elevated levels of Tregs, CD8+ Tems, platelets, and sebocytes, 
and decreased levels of HSCs and fibroblasts were detected in 
older patients. Gender- based analysis showed higher levels of im-
mune effector cells (CD4+ T cells, CD4+ memory T cells, and CD8+ 
Tcm) in male patients. Of note, CD8+ T cells and memory B cells 
increased in patients with higher T stage, grade, and advanced 

pathological stage. In addition, tumors with microsatellite instabil-
ity had significantly higher proportions of Th1, Th2, pro- B, NK, and 
endothelial cells, basophils, and Tregs. Overall, infiltration levels 
of specific immune cells showed association with the pathological 
characteristics of GC, suggesting that they play a vital role in regu-
lating the progression of GC.

F I G U R E  1   Landscape of immune and stromal cell types infiltrating the tumor microenvironment of gastric cancer. Heatmap showing the 
correlation of 64 types of infiltrating cells (columns) and clinical parameters (rows). Cells with red and blue indicate a significant difference; 
white indicates no significant difference. cDC, conventional dendritic cell; CLP, common lymphoid progenitor; CMP, common myeloid 
progenitor; DC, dendritic cell; GMP, granulocyte- monocyte progenitor; iDC, immature dendritic cell; MEP, megakaryocyte- erythrocyte 
progenitor; MPP, multipotent progenitor; MSC, mesenchymal stem cell; NK, natural killer; Tcm, central memory T cell; Tem, effector memory 
T cell; Tgd, gamma delta T cell; Th1/Th2, T helper 1/2 cell; Treg, regulatory T cell



     |  3573REN Et al.

3.2 | Prognostic associations of subsets of 
infiltrating cells

Considering the critical role of the composition of infiltrating cells in 
prognosis, we further investigated their association with survival of 
GC. The results showed that pro- B, Th1, megakaryocyte- erythroid 
progenitor, NK, Treg, and CD4+ memory T cells were associated with 
favorable OS and PFS. In contrast, skeletal muscle, HSC, astrocytes, 
fibroblasts, adipocytes, neurons, chondrocytes, megakaryocytes, 
and hepatocytes were associated with poor OS and PFS (Figures 2 

and S2). Our data indicated that specific immune cells were related 
to the prediction of clinical outcomes.

3.3 | Immune- based subtyping of GC tumors

To further explore the patterns of cell infiltration in TME, we 
grouped the GC patients into different categories and evaluated 
the correlations between infiltrated immune cells. The results re-
vealed that immune cells infiltrated in the TME coexisted, and CD8+ 

F I G U R E  2   Prognostic associations of subsets of immune cells in Cox regression analysis. Forest plots showing the association between 
each immune cell subset and survival in The Cancer Genome Atlas total dataset. A, Overall survival (OS). B, Progression- free survival (PFS). 
Unadjusted hazard ratios (HR) are shown with 95% confidence intervals (CI). aDC, activated dendritic cell; cDC, conventional dendritic cell; 
CLP, common lymphoid progenitor; CMP, common myeloid progenitor; DC, dendritic cell; GMP, granulocyte- monocyte progenitor; HSC, 
hematopoietic stem cell; iDC, immature dendritic cell; MEP, megakaryocyte- erythrocyte progenitor; MPP, multipotent progenitor; NK, 
natural killer; pDC, plasmacytoid dendritic cell; Tcm, central memory T cell; Th1/Th2, T helper 1/2 cell; Treg, regulatory T cell. *P < .05, **P < 
.01, ***P < .001
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T cells were strongly correlated with Th cells, dendritic cells, and 
macrophages (Figure 3A). Surprisingly, immune- suppressive Tregs 
and M2 macrophages were also positively correlated with immune 
cells, indicating an immunosuppressive microenvironment induced 
by tumor cells. Additionally, stromal cells showed a negative correla-
tion with immune cells; this extracellular organization could inhibit 
the infiltration of immune cells in TME. Furthermore, hierarchical 
clustering of the major types of the cells identified three clusters. 
Immunocytes and antigen- presenting cells were significantly higher 
in cluster 1, whereas cluster 2 and 3 had comparatively low num-
bers of immune cells (Figure 3B). Patients displaying a high immune 
response signature had significantly improved OS rate (cluster 1 vs. 
cluster 2) (Figure S3). The different immune regulatory molecules 
showed a high expression pattern in patients from cluster 1 to clus-
ter 3 (Figure 4); however, CD276 showed an opposite expression 
trend.

3.4 | Validation of tumor classification 
by ssGSEA and TIMER tool

Based on the genes expressed in all three clusters, we defined clus-
ters 1 and 2 as hot tumors and cluster 3 as cold tumors. We precisely 
analyzed the differential distributions of immune cells in the two 
groups estimated by ssGSEA (Figure 5A) and TIMER tool (Figure 5B) 
in hot and cold tumors. The results showed that the hot tumors had 
high infiltration levels of immune cells, whereas the cold tumors had 
relatively low levels of immune cells. The consistency between the 

immune profiles in different computational algorithms verified the 
reliability of our classification method.

3.5 | Different chromatin accessibility of hot and 
cold tumors

Based on the median immune scores, we evaluated the changes in 
chromatin accessibility between hot and cold tumors by dividing sam-
ples into immunologically hot and cold groups (Figure 6A). A total of 
766 differentially expressed genes showing substantial chromatin 
remodeling function were identified from the ATAC- seq data of hot 
and cold tumors (Figure 6B). Hot tumors showed altered epigenomic 
profiles characterized by upregulation of immunoregulatory genes 
specifically involved in antigen presentation (Figure 6C,E). However, 
the regions that were more accessible in cold tumors were associated 
with cancer- related signaling pathways such as I- κB kinase/nuclear 
factor- κB signaling and cell- cell junction organization (Figure 6D,F).

3.6 | Transcriptome analysis revealed differences in 
molecular mechanisms of hot and cold tumors

To gain further insight into the molecular features of hot and cold tu-
mors, we undertook a global transcriptome analysis (Figure 7A), and 
hierarchical cluster analysis showed hot tumors were relatively well 
separated from cold tumors (Figure 7B). Differentially expressed genes 
in cold and hot tumors were chosen for GO and KEGG analyses. The top 

F I G U R E  3   Clustering gastric cancer patients. A, Correlation heatmap depicting correlations between infiltrating cells in tumor. B, 
Distribution of 34 types of cells in three clusters. aDC, activated dendritic cell; cDC, conventional dendritic cell; DC, dendritic cell; iDC, 
immature dendritic cell; NK, natural killer; pDC, plasmacytoid dendritic cell; Tcm, central memory T cell; Tem, effector memory T cell; Tgd, 
gamma delta T cell; Th1/Th2, T helper 1/2 cell; Treg, regulatory T cell
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10 upregulated genes in cold tumors (Table 1) were mainly involved in 
the Wnt signaling pathway, Rap1 signaling pathway, and tight junctions; 
however, upregulated genes in hot tumors were related to immune 
response (Figure 7C- F). Furthermore, we constructed a PPI network 
of DEGs and identified the top 20 hub genes mainly expressed in hot 
tumors; these genes were mainly Th1 like chemokines and receptors, 
including CXCL9, CCL5, and CCR5. In contrast, only two genes, NOTUM 
and CEACAM6, were expressed in cold tumors (Figure 7G).

3.7 | CLDN3 is positively correlated with 
immunosuppressive function in GC

To identify novel immune- related therapeutic targets in GC, we evalu-
ated the relationship between gene expression and immune infiltra-
tion. Among the top 10 upregulated genes in cold tumors (Table 1), 

CLDN3 was negatively correlated with immune cells (Figure 7H), 
specifically highly significantly negatively related with CD8+ T cells 
(Figure S4). Furthermore, wet lab analysis confirmed this strong nega-
tive correlation between CLDN3 and CD8+ T lymphocyte infiltration in 
tumor tissues (Figure 8A,B). Gastric cancer tissues with high expres-
sion of CLDN3 showed decreased levels of CD8+ T cells, and showed 
negative correlation with CD8A, CXCL9, and CXCL10 (Figure 8E- H). 
CLDN3 had low endogenous expression in GC cell lines SGC7901 and 
AGS (Figure 9A), therefore, we overexpressed CLDN3 in SGC7901 and 
AGS cells (Figure 9B- D), which did not affect the biological function 
of the GC cells (Figure S6). Further investigation in CLDN3 overex-
pressed cells showed downregulation of MHC class I, which is required 
for CD8+ T cell antigen recognition (Figure 9C- H). We also found a 
decreased level of CXCL9 in the CLDN3 overexpressed cells. Of note, a 
positive correlation between the expression of CXCL9 and CD8A lev-
els was observed in the TCGA dataset and inhouse GC tumor samples.

F I G U R E  4   Different immune characteristics of the clusters. A- D, Comparison of (A) co- inhibitory molecules, (B) MHC antigen 
presentation- related molecules, (C) cellular immune killer molecules, and (D) T cell- attracting chemokines, and gene expression levels among 
the clusters



3576  |     REN Et al.

F I G U R E  5   Violin plot comparing the proportions of immune cells between hot and cold tumor samples using (A) single- sample Gene Set 
Enrichment Analysis and (B) TIMER tool. Horizontal and vertical axes represent immune cells and relative percentages, respectively. Red and 
blue represent hot and cold tumor samples, respectively. Data were assessed using the Wilcoxon rank- sum test. MDSC, myeloid- derived 
suppressor cell; ns, not significant
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3.8 | Construction and validation of a prediction 
model for OS

To comprehensively assess the relationship between immune- related 
genes and tumor recurrence in patients with GC, we first undertook 
a univariate analysis using DEGs and then used a LASSO regression 
model to select the best combination of the genes’ sets (Figure 10A,B). 
To determine whether this model contained only the most predictive 
genes, a stepwise Cox proportional hazards regression model was 
applied, which identified a final set of 14 genes (Figure 10C). In the 
TCGA training cohort, patients were assigned to the high- risk group 
and low- risk group based on the optimized risk value (Figure 10D). 

Kaplan- Meier survival analyses showed that patients with a high- risk 
score had an unfavorable survival (Figure 10E, P < .0001). To evaluate 
the predictive performance, we calculated the time- dependent area 
under the ROC curves. The results showed that the areas under the 
curves for the risk model in predicting 2- , 3- , 4- , and 5- year survival 
were 0.769, 0.805, 0.83, and 0.829, respectively (Figure 10F), which 
indicates a good capability for predicting OS in patients using the 14- 
gene combination. Moreover, we explored whether our prediction 
model could predict the immunotherapeutic benefits. Surprisingly, 
the Kaplan- Meier curve (Figure 10G- I) revealed that the high- risk 
group was associated with unfavorable survival in patients who re-
ceived immunotherapy.

F I G U R E  6   Changes in chromatin accessibility between hot and cold tumors. A, Violin plot showed the immune score between the two 
groups. B, The volcano plot shows the different peaks of gene expression between the two groups identified by assay for transposase- 
accessible chromatin with sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of more 
open chromosome regions in the (C, E) hot tumors and (D, F) cold tumors
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F I G U R E  7   Comparison of gene expression profile for hot and cold tumors. A, Volcano plot for differentially expressed genes between 
hot and cold tumors. Red shows high and blue shows lower expressing genes in hot tumors. B, Heatmap of commonly upregulated or 
downregulated differentially expressed genes (DEGs) in hot and cold tumors. Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes pathway analysis of (C, D) upregulated DEGs and (E, F) downregulated DEGs. G, Interaction network of the DEGs. Circle and 
diamond nodes represent upregulated and downregulated DEGs, respectively. Red nodes represent hub genes. H, Correlation analysis of the 
top 10 upregulated genes and six immune cells
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4  | DISCUSSION

Immune checkpoint inhibitors that block the PD- 1/PD- L1 pathway 
can induce durable and robust responses in patients with various 
cancers, including GC.3- 5 However, clinical responses only occur in 
a subset of patients. Immunotherapy concentrates on the activation 
of immunologic molecular components to defend against cancer 
cells in the TME. Thus, it is essential to deeply explore the influence 
of the TME on GC immunotherapy.

In this study, we discovered the levels of CD4+ naive T cells, CD4+ 
memory T cells, CD8+ T cells, CD8+ Tcm, B cells, and memory B cells 
increased with tumor progression. Possibly, advanced tumors might 
have more mutations in the genome than early- stage tumors, and 
the more mutation- related neoantigens (targets of tumor immunity) 
can activate more T cells and produce a stronger immune response. 
In the TME, stromal cells express a large number of surface and se-
cretory molecules, which directly inhibit CD4+ and CD8+ T cells, and 
activate immunosuppressed myeloid cells.18,19 We also found poor 
prognosis of most of the stromal cells in the TME, and the stromal 
cells are negatively correlated with most of the immune cells, indi-
cating that the presence of stromal cells might affect the infiltration 
of immune cells. Natural killer cells are the crucial component of the 
innate immune system that can produce inflammatory cytokines and 
destroy malignant cells.20,21 The current study showed that infiltra-
tion of NK cells had a positive correlation with CD8+ Tcm and CD8+ 
Tem, and also associated with prolonged OS and PFS, indicating their 
protective role in GC development. CD4 memory T cells are the Th 
cells, but also assist many other types of cells and act as a catalyst, 
increasing immune protection through many different pathways.22 

Our results also revealed that high infiltration of CD4 memory T 
cells was associated with improved treatment outcomes. Eosinophils 
are related to angiogenesis and metastasis, and elevated eosino-
phil levels are associated with poor prognosis.23,24 Our study is in 
agreement with previous research showing that eosinophils are as-
sociated with poor PFS. However, xCELL has some limitations, such 
as detecting unrelated cells. In the current study, we analyzed 64 
cells by xCELL. Based on differential expression of the genes, xCELL 
detected some unrelated cells like osteoblasts, chondrocytes, sebo-
cytes, and hepatocytes. To overcome this issue, we applied other 
tools like ssGSEA and TIMER and successfully validated the results.

Our study also found that GC was distinctly separated into im-
munogenic and immune- resistant subtypes; based on the infiltration 
of 34 immune cells, we classified GC into three clusters. Clusters 1 
and 2 had an abundance of immune cells, antigen- presenting cells, 
and immune regulatory molecules, suggesting a pre- existing antitu-
mor immune response. In contrast, cluster 3 had low numbers of im-
mune cells, MHC molecules, and immune regulatory molecules. We 
defined clusters 1 and 2 as the hot tumors and cluster 3 as the cold 
tumors. We then revealed the differential mechanism of hot and cold 
tumors at the genomic and transcriptome levels.

CD276, also known as B7- H3, a member of the B7 superfam-
ily, was previously known to inhibit T cell activation and autoimmu-
nity.25,26 We found significantly high expression of CD276 in cold 
tumors, which is different from other immune checkpoint molecules 
(Figure 4A), suggesting its role as an alternative therapy for immune 
checkpoints in patients not responding to PD- 1/PD- L1 treatment.

To explore the differential mechanism of hot and cold tumors, 
ATAC- seq showed that more accessible regions in hot tumors were 

Gene symbol
|Log 
FC| P value Function

CLDN3 1.64 1.45E- 09 Involved in tight junction- specific 
obliteration of the intercellular space

MAGEA6 1.21 1.78E- 06 Enhances ubiquitin ligase activity of RING- 
type zinc finger- containing E3 ubiquitin- 
protein ligases

TM4SF4 1.19 5.15E- 06 Regulates the adhesive and proliferative 
status of intestinal epithelial cells

MAGEA3 1.19 1.78E- 05 Enhances ubiquitin ligase activity of RING- 
type zinc finger- containing E3 ubiquitin- 
protein ligases

WFDC2 1.16 2.44E- 05 Broad range protease inhibitor

BMP7 1.15 6.94E- 11 Induces cartilage and bone formation

SPINK4 1.14 0.000156 Includes serine- type endopeptidase inhibitor 
activity

CEACAM6 1.12 0.000197 Involved in cell adhesion and tumor 
progression

KLK6 1.11 0.000235 Includes serine- type endopeptidase activity 
and peptidase activity

KRT17 1.07 0.000313 Regulates protein synthesis and epithelial 
cell growth

Abbreviation: FC, fold change.

TA B L E  1   Top 10 upregulated genes in 
cold tumors
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associated with important immunoregulatory genes and key immune 
pathways. However, the cold tumors displayed upregulation of cancer- 
related signaling pathways that could be regulated by chromatin 
remodeling.

Furthermore, we undertook GO and KEGG pathway enrich-
ment analyses on DEGs obtained from the RNA- seq analysis to 
uncover the differential mechanism of hot and cold tumors at 
the transcriptome level, which revealed that hot tumors were 
enriched with immune- related signaling and cold tumors showed 
enrichment of cancer- related signaling pathways, such as the Wnt 
signaling pathway, Rap1 signaling pathway, and tight junctions. 

Protein- protein interaction results identified 20 hub genes in the 
hot tumors, which were mainly related to immunity. However, the 
only two hub genes in cold tumors, CEACAM6 and NOTUM, con-
tribute to the progression of malignancy.27,28 These results are 
similar to our ATAC- seq analysis, indicating that the key immune 
pathways were activated in hot tumors. In contrast, cold tumors 
could facilitate the progression of GC at both transcriptomic and 
genomic levels.

The claudin family consists of 27 members and plays a vital role in 
the formation, integrity, and function of tight junctions.29 Claudin 3 
is a member of the claudin family, and several studies have reported 

F I G U R E  8   Correlation between claudin 3 (CLDN3) and CD8+ T cells in gastric cancer (GC) samples. A, Immunohistochemical (IHC) 
staining for CLDN3 and CD8, showing high (left panel) and low (right panel) expression levels of CLDN3 (n = 20). B, IHC score of CLDN3 and 
CD8 in GC tumors. C, E, G, Correlation analysis CLDN3 with (C) CD8A, (E) CXCL9, and (G) CXCL10 expression in The Cancer Genome Atlas 
(TCGA) database. D, F, H, Correlation analysis of CLDN3 with (D) CD8A, (F) CXCL9, and (H) CXCL10 in patient- derived GC samples (n = 28)
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an association between CLDN3 and GC progression,30,31 but the un-
derlying mechanisms remained unclear. In the current study, CLDN3 
was upregulated in cold tumors and negatively associated with im-
mune cells in GC. In clinical samples CLDN3 was found to have neg-
ative correlation with CD8+ T lymphocytes as well as CXCL9 and 
CXCL10, the chemokines which are vital for CD8+ T lymphocyte re-
cruitment.32- 34 Overexpression of CLDN3 did not affect the cell pro-
liferation, cell colony formation, cell apoptosis, or cell wound healing 
in SGC7901 cells and AGS cells, suggesting that CLDN3 might not di-
rectly affect the biological function of GC cells; thus, it prompted us 
to explore the function of CLDN3 on the reprogramming of immune 

response in the TME of GC. As expected, overexpression of CLDN3 
reduced the MHC- I expression in GC cells, indicating that CLDN3 
could inhibit the immunogenicity of GC. Moreover, decreased lev-
els of CXCL9 found in GC cells with upregulated CLDN3, clinical 
samples, and the TCGA dataset showed a positive correlation be-
tween CXCL9 and CD8A levels, suggesting that CLDN3 suppresses 
immune response by inhibiting CD8+ T cell- related chemokines. In 
short, these findings favor the immunosuppressive role of CLDN3; 
thus, it could be a potential target of immunotherapy.

Several studies have used different prediction models to 
predict potential responses to immunotherapy, including the 

F I G U R E  9   Claudin 3 (CLDN3) modulated the expression of MHC class I genes and the secretion level of CXCL9 in cancer cells. A, 
Relative expression levels of CLDN3 in three gastric cancer (GC) cell lines. B, Western blot analysis of CLDN3. C, D, Relative mRNA 
expression and (E- H) immunofluorescence of MHC- I in CLDN3- overexpressed (OE) and control cells (scale bar, 50 μm). I, J, ELISA for CXCL9 
and CXCL10 in CLDN3- overexpressed cells. K, L, Correlation analysis of CXCL9 and CD8A expression in The Cancer Genome Atlas (TCGA) 
database and patient- derived GC samples (n = 28)
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immunopredictive score (IMPRES) model for melanoma,35 a neo-
antigen fitness model for melanoma and lung cancer,36 and the 
immune- related risk score model for breast cancer.37 However, 
the choice of effective prediction markers for GC immunother-
apy is limited. Based on the DEGs between hot and cold tumors, 
we constructed a clinical prediction model related to immune 
infiltration, and to predict the OS of patients receiving immuno-
therapy. A large number of the genes in this model were closely re-
lated to the immune response. For example, NPC2 is involved in 
the lipoprotein metabolism and innate immune signal pathways,38 
ENTPD2 promotes differentiation of monocytic myeloid- derived 
suppressor cells into dendritic cells, and increase the efficacy of 
anti- PD- 1/CTLA- 4 immunotherapy.39 HTRA3 has been related to 
immune infiltration in GC and is critical for malignancy and prog-
nosis.40 Qin et al reported that cancer- associated fibroblasts af-
fect cancer progression by affecting the CXCL12- CXCR4 axis in 
GC,41 and upregulated POU1F1 promoted GC metastasis by reg-
ulating macrophage polarization in a CXCL12/CXCR4- dependent 
manner.42 PDCD1 and CTLA4 are the prognostic markers of immu-
notherapy. Overall, this model is highly reliable for the prognosis 
of OS and selecting suitable molecular markers for effective im-
munotherapy for GC.

In summary, we provided an in- depth analysis of the GC immune 
microenvironment. Our results revealed that the different molecu-
lar mechanisms of hot and cold tumors, both at the epigenomic and 
transcriptomic levels, suggest that hot tumors could alter chroma-
tin accessibility and activate immune function- related pathways. 
However, cold tumors might induce epigenomic changes to promote 
tumorigenesis through both genome instability and shifts in tran-
scription. In particular, we found that CLDN3 act as a key immune- 
suppressive modulator; targeting CLDN3 might reprogram cold into 
hot inflamed tumors, thus enhances the efficacy of tumor immuno-
therapy. In addition, a prediction model was constructed based on 
the differences in DEGs between hot and cold tumors to help clini-
cians in their routine clinical practice in the diagnosis and prognosis 
of GC patients and selecting appropriate targets for immunotherapy.
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