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The maturation of machine learning and technologies that generate high

dimensional data have led to the growth in the number of predictive

models, such as the “epigenetic clock”. While powerful, machine

learning algorithms run a high risk of overfitting, particularly when

training data is limited, as is often the case with high-dimensional data

(“large p, small n”). Making independent validation a requirement of

“algorithmic biomarker” development would bring greater clarity to the

field by more efficiently identifying prediction or classification models to

prioritize for further validation and characterization. Reproducibility has

been a mainstay in science, but only recently received attention in defining

its various aspects and how to apply these principles to machine learning

models. The goal of this paper is merely to serve as a call-to-arms for

greater rigor and attention paid to newly developed models for prediction

or classification.
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Introduction

In recent years, the number of publications describing machine learning models

for the estimation of chronological and biological age have risen dramatically. The

most well-known example is that of the “epigenetic clock,” although models have

also been developed using transcriptomics, miRNA, proteomics, and clinical

phenotypes (Peters et al., 2015; Horvath and Raj 2018; Huan et al., 2018; Tanaka

et al., 2018; Sun et al., 2021). Here, we define a “model” as a specific algorithm that

uses a specific set of input variables (e.g., DNA methylation markers) to estimate a

specific output (e.g., chronological age). The current trend in constructing these

models or “algorithmic biomarkers” utilizes machine learning methods, but more

primitive algorithmic “scores” have existed for decades. (Matthews et al., 1985;

Wilson et al., 1998).

Algorithmic biomarkers differ from conventional biomarkers in that they consist

of mathematical calculations often from multiple markers rather than a single

physical marker that can be observed directly. Determining the parameters of

each model requires a “training” dataset in which the model parameters are

OPEN ACCESS

EDITED BY

Morten Scheibye-Knudsen,
University of Copenhagen, Denmark

REVIEWED BY

Irina Conboy,
University of California, Berkeley,
United States
Michael Robert MacArthur,
ETH Zürich, Switzerland

*CORRESPONDENCE

Brian H. Chen,
b1chen@ucsd.edu

SPECIALTY SECTION

This article was submitted to
Interventions in Aging,
a section of the journal
Frontiers in Aging

RECEIVED 22 March 2022
ACCEPTED 05 August 2022
PUBLISHED 13 September 2022

CITATION

Chen BH (2022), Minimum standards for
evaluating machine-learned models of
high-dimensional data.
Front. Aging 3:901841.
doi: 10.3389/fragi.2022.901841

COPYRIGHT

© 2022 Chen. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Aging frontiersin.org01

TYPE Perspective
PUBLISHED 13 September 2022
DOI 10.3389/fragi.2022.901841

https://www.frontiersin.org/articles/10.3389/fragi.2022.901841/full
https://www.frontiersin.org/articles/10.3389/fragi.2022.901841/full
https://www.frontiersin.org/articles/10.3389/fragi.2022.901841/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fragi.2022.901841&domain=pdf&date_stamp=2022-09-13
mailto:b1chen@ucsd.edu
https://doi.org/10.3389/fragi.2022.901841
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/journals/aging#editorial-board
https://www.frontiersin.org/journals/aging#editorial-board
https://doi.org/10.3389/fragi.2022.901841


optimized to fit the data (e.g.,minimizing the squared error in

a regression). The field of machine learning involves a diverse

set of approaches that seek to identify patterns and develop

models that fit a set of data. However, advances in computing

power, the ability to generate large amounts of data, and the

efficiency of machine learning algorithms can lead to highly

complex models that fit the training data too well, such that

the model does that generalize to independent samples (i.e.,

poor out-of-sample performance). Thus, the need for a

machine-learned model’s performance to be reproduced in

multiple studies is of even greater importance than other

realms of science.

The growing ease of computing, generating high dimensional

data, and data sharing, in combination with current trends in the

development of “second generation epigenetic clocks” and clocks

in non-human species, lead one to surmise that the number of

machine learning models will continue to increase (Levine et al.,

2018; Lu et al., 2019; Belsky et al., 2020; Arneson et al., 2022).

Furthermore, the number of potential models that could be

created are immense. Entirely different models can be

developed with even the most subtle of changes that vary

combinations of inputs, tuning parameters, study populations,

and multiple other factors in the training data. The resulting

number of possible models for a single outcome, such as

chronological age, may eventually eclipse the number of

original inputs used to build the models. This can lead to

confusion in the field as to where to focus research efforts.

Thus, there is a need to raise the bar for reproducible models

that have been replicated in independent datasets at the outset, as

is common in fields such as genomics (Kraft, Zeggini, and

Ioannidis 2009). It should be noted that reproducibility occurs

at multiple levels—from development to validation of models

(Figure 1). Moreover, greater efforts are also needed to better

characterize available models to understand their robustness

across different contexts, such as in different study populations.

Purpose-driven creation of machine
learning models

Scientific innovation has always been driven by identifying

gaps in knowledge and designing studies to fill those gaps.

FIGURE 1
Key considerations for evaluating and enhancing the performance of prediction or classification models using high dimensional data.
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However, one unintended consequence of advances in generating

large amounts of data and increased computing efficiency has

been the relative ease and appeal of developing machine learning

models using any available data. In some cases, available data

included measures that were unique to the original dataset,

thereby making independent validation of the model

inherently challenging (Sun et al., 2021).

Scientific advances can occur at multiple levels from gaps in

knowledge to performance improvements. Gaps in knowledge

can include whether a specific set of plasma proteins can estimate

an individual’s bone mineral density or risk of osteoporosis.

Including this set of proteins in one’s model may boost

performance. But gaps in performance of existing models may

also serve practical purposes and provide reason to develop new

models with specific characteristics, even if the input variables

remain the same. Factors such as model accuracy, technical

reproducibility, cost, and existing patents and licenses may

dictate certain criteria that a specific model must meet. For

example, in cases where a diagnostic test is burdensome and/

or expensive (e.g., tumor biopsy), developing an inexpensive but

highly sensitive screening test may be desirable (e.g., circulating

tumor DNA). Models designed to fit a practical need often helps

the researcher to articulate the specific parameters and

problem(s) that the model will attempt to address.

Notable examples of improvements in existing epigenetic

clocks included second-generation epigenetic clocks that were

designed to capture physiological aging (rather than

chronological age). Other clocks addressed a clear gap in the

field by using methodological approaches that employed

principal components analysis and restricting inputs to

technically reproducible probes (Higgins-Chen et al., 2021;

Sugden et al., 2020). Model descriptions that clearly

communicate their distinct contribution to the field can help

identify the specific use-case for each new model.

Multi-layered reproducibility

Goodman et al. made the distinction between “truth” and

“reproducibility,” where the latter is foundational to the

former, but both are distinct notions (Goodman, Fanelli,

and Ioannidis 2016). Without reproducible science, it

would be difficult to draw any conclusions that move us

closer to any truths. Highly reproducible findings are more

likely to be true. Less reproducible findings call into

question—but do not necessarily rule out—whether a

finding is true or not.

In the grand view of reproducibility described by Goodman

et al., there exist three distinct layers for reproducibility to occur

for a given study—(1) methods reproducibility, (2) results

reproducibility, and (3) inferential reproducibility (Goodman,

Fanelli, and Ioannidis 2016). Methods reproducibility is the

ability to reproduce the results given the same conditions,

methods, analytical datasets, and codes used by the authors.

In the field of machine learning this is sometimes referred to as

technical reproducibility or computational reproducibility (Heil

et al., 2021; McDermott et al., 2021).

Methods reproducibility can be enhanced by practices such

as providing detailed descriptions of one’s methods, making

analytical datasets available for independent verification,

making available software codes and detailed instructions,

including descriptions of the computing environment, and to

make available entire workflows that make verification simple

(Heil et al., 2021). Other ideas that have been proposed to

enhance methods reproducibility include taking advantage of

novel data licenses, privacy-preserving analytic frameworks, and

co-authorship to investigators tasked strictly for validation

(Peng, Dominici, and Zeger 2006). Moreover, leveraging a

differential privacy framework can preserve anonymity of

individual data by introducing a predetermined amount of

“fake data,” which can then be accounted for when training

models (Heil et al., 2021).

Results reproducibility involves reproducing the same

findings after following the same experimental methods but

using independently generated data. The notion of results

reproducibility is often used interchangeably with replicability,

external validation, or independent validation. Oftentimes,

results reproducibility is driven by the availability of certain

datasets, which often differ in a multitude of ways. In an ideal

world, validation should be evaluated in many large datasets,

each differing from the other in only one distinct way whether it

be in a certain measure, methodology, population, or ground

truth measure. Such a setup allows a model to be evaluated across

a range of contexts to identify characteristics and limitations of a

model that one could not evaluate by looking at any single

dataset alone. This would be akin to identifying sources of

heterogeneity in a large meta-analysis, except the goal would

be to identify factors driving differences in performance, if any.

Adopting an ongoing approach to validating models can help

identify the performance, robustness, and limits of specific

models. Only through understanding the strengths and

weaknesses of each model can we begin to understand how,

when, where, and for whom each model should be used.

In practice, validation datasets may differ from the training

dataset in many ways, so a lack of replication should not lead one

to automatically discount the model being evaluated since,

oftentimes, not all experimental methods were followed. As an

example, a predictive mortality model designed for patients in an

assisted living home would not be applicable to a young adult

population of military soldiers, as both the population and their

immediate risks differ dramatically. That said, a failure to

independently validate a model, while not entirely conclusive,

does provide some evidence as to the robustness of a model. In

other words, the model does not work in at least one specific

context. In contrast, successful validation in an independent

dataset, however large the sample size, is rarely definitive.
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Each independent validation study is but a single stone in

building a wall of evidence supporting the results

reproducibility of a model.

Validation can also be improved at the model-building level

by utilizing techniques that may enhance model accuracy or

reproducibility. To date, biological age estimators using high

dimensional data have included DNA methylation, miRNA, and

proteomics (Horvath 2013; Huan et al., 2018; Levine et al., 2018;

Tanaka et al., 2018). Detailed descriptions of the unique

challenges of the various technological platforms are beyond

the scope of this paper, but each are well described elsewhere

(Lappalainen and Greally, 2017; Joshi and Mayr, 2018) Sugden

et al. demonstrated that improving the technical reproducibility

of the input variables may also improve the reproducibility of the

model outputs (Sugden et al., 2020). Higgins-Chen et al. recently

demonstrated that principal components can be used to improve

the reliability of specific epigenetic clocks (Higgins-Chen et al.,

2022). Thus, models can differ in performance even with the

same training data and initial sets of inputs.

The need for extensive, ongoing independent validation

across a multitude of datasets is even more essential with

machine learning models. Several notable examples exist

where machine learning algorithms captured unintended

artifacts of the data. One example of a machine learning

model designed to discriminate images of huskies from wolves

was found to have relied solely on the background of the images

of wolves, which tended to be photographed in snowy

environments (Ribeiro, Singh, and Guestrin 2016). Another

more medically related example was a study of chest x-rays,

which were used to build a machine learning model to detect

pneumonia only to find that the models were focused on artifacts

in the image that denoted which hospital the images were taken

(Zech et al., 2018). An extreme example in the aging field may

occur when older individuals are selected differently or

ascertained differently from younger individuals in the same

study, such as in the case of recruiting “healthy agers” across the

age range, but not all healthy 20 year-olds end up as healthy

100 year-olds; thus, the selection criteria are not uniform across

the age spectrum. Because unintended features may be common

across datasets, evaluating models across a wide range of datasets

can also help uncover unintended behaviors of models.

It should be noted that the extent to which a validation study

follows the methodology of the original experimental protocol is

difficult to assess in reality. While conceptually simple, attempts

to replicate the methodology of a study are made difficult by a

lack of methodological details in the original publication or

inability to reproduce every factor in the experimental setup,

as there may be many, some that the researcher may have been

unaware of, such as the temperature in the laboratory. Similarly,

the definition of a successful replication also lacks consensus

(Collaboration and Open Science Collaboration 2015). As an

example, focusing exclusively on p-value “significance” may be

misleading if the p-value is 0.051 yet the regression coefficients

are of similar magnitude and direction in both the original and

validation studies. Whether a consensus definition or sufficiently

detailed methodological descriptions are achievable or practical,

the fact remains that reproducibility is not as black-and-white as

one might think.

Lastly, inferential reproducibility refers to the fact that two

researchers may interpret the same set of results differently or

choose to reanalyze the data differently, both of which may lead

to different conclusions than the original author(s). While

achieving this level of reproducibility may not be easy, models

that achieve this level should be prioritized as they are more likely

to reproduce in future studies than models lacking any attempt at

reproducibility.

Ongoing characterization of machine
learning models

In addition to the various layers of reproducibility, models that

show promise should be further characterized, as is typically

required for Clinical Laboratory Improvement Amendments

(CLIA) validation of a standard (plasma) biomarker. Aside from

data demonstrating the reproducible accuracy of a model against an

established ‘ground truth’measure, the reproducibility of a measure

across technical replicates would be valuable. Further investigation

could determine through what range of values the model remains

accurate and reliable. For instance, an epigenetic clock that relies on

or correlates highly with specific blood cell counts may not be

relevant in patients undergoing chemotherapy, where blood cell

counts may change rapidly and drastically.

Understanding the major sources of variation becomes vital

for determining the utility of machine learning models that

utilize biological data. However, variation is introduced at

multiple levels and multiple sources. Technical variation

across replicate samples can describe the reliability of a

biological assay. Technical variation can be further subdivided

into within-batch and between-batch variation, and “batches”

can be subdivided further across different levels from laboratory,

days, or certain steps in a protocol.

Another source of variation unique to machine learning

models is model variation. This is often due to noise in the

training data or the use of randomness in the algorithms (e.g.,

splitting/shuffling data or initializing parameters). While both

technical and model variation are undesirable, a third source of

variation can be informative.

Biological variation includes circadian rhythms and the

natural biological response to intrinsic and extrinsic forces

leading to variation in a biomarker. Understanding the major

sources of biological variation in a biomarker provides insights

into its proper use and interpretation. As an example, plasma

insulin levels respond to food intake, thus fasting levels are

needed for proper interpretation in some contexts or, in other

contexts, its response to a standardized amount of glucose may be
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important. Only by understanding the biological sources of

variation in a biomarker, even an algorithmic biomarker, can

we learn how to utilize and interpret it properly.

Depending on the use-case, one may want to explicitly

evaluate whether or not a model is biased against certain

subgroups of a population, particularly disadvantaged,

underrepresented, and protected classes. Bias, in this context,

refers to differences in performance (e.g., accuracy) and not

differences in the distributions of model results. To illustrate

this point more clearly, men, on average, weigh more than

women, so an algorithmic biomarker that estimates age

should recapitulate the sex differences in weight. However, the

accuracy or reproducibility of the algorithmic biomarker at

estimating weight should perform similarly for men and

women, separately—or this bias should be accounted for when

interpreting results.

The development of benchmarking datasets, such as

ImageNet for labeled images, is common in the machine

learning field. Since aging clocks are a particular application

of machine learning, the development of one or several

benchmarking datasets could be helpful. The challenge will be

in the data sharing and harmonization of large amounts of data

in addition to the relatively limited sample sizes in existing aging

cohorts. Because of the large number of variables generated from

high dimensional data, the sample sizes needed and commonly

found in benchmarking studies would also need to be large.

Clinical trials or longitudinal studies may offer opportunities

to demonstrate that model results change within individuals,

particularly in ways that one expects in response to known

interventions and changes in conjunctions with expected

changes in other health or behavioral measures. Completed

clinical trials and other datasets with banked biospecimens

could be repurposed in such a way as to serve as a resource

for rapid validation.

Discussion

As a call-to-arms was published encouraging replication

as a minimum requirement in all genome-wide association

studies, the same is needed for machine learning models that

utilize “-omic” data (e.g., genomics, epigenomics,

phenomics) (Kraft, Zeggini, and Ioannidis 2009). While

the multiple layers of reproducibility described above may

prove excessive, the bar must be raised beyond where it lies

today lest we find ourselves in a world full of unvalidated and

poorly characterized models.

As a growing number of consumer products enter the market

touting their ability to estimate biological age, independent

validation of these model’s accuracy and reproducibility in

multiple populations is essential and often lacking. More

important may be the transparency, clarity, and accuracy of

what is communicated to the consumer about their biological age

estimate. Consumers will need help to properly interpret their

results.

Contributing to the challenge in proper interpretation or

explainability of machine learning models is the double

standard to which they are held. Oftentimes, machine

learning models are given a large set of inputs whose

biological function is not well understood (e.g., DNA

methylation levels at 860,000 loci). Then the machine

learning algorithms are tasked with finding the optimal set

of variables to best fit the data without any requirements for

biological plausibility. However, after the fact, the models are

unfairly vilified for failing to elucidate any biological

mechanisms. While metrics exist to aid in the

explainability of a model (e.g., examining the feature

weights or SHAP values), the current state of the

technology will ultimately fall short of being able to fully

explain the biology, but that may be sufficient for certain

purposes as long as the models are reproducible in their

particular use-case. Machine learning models are designed to

predict or classify, and so biological plausibility should be

considered a nice-to-have rather than an essential element to

demonstrate a model’s validity.

My recommendations can be summarized at a high level.

First, developing models with a clear purpose that address a

major gap in knowledge can help one’s model stand out.

Second, taking great strides to allow the methods to be

reproduced with analytic datasets and codes adds to the

veracity of the model and, subsequently, its adoption.

Further work is needed by journals and professional

groups as to how data can be protected yet still allow full

vetting of a model. Third, replication of results using

independent datasets must be deemed essential for

publication and as an ongoing exercise rather than a

binary hit-or-miss. Accomplishing these three

recommendations provides a step forward in identifying

models that may be more likely to be worth the effort of

being thoroughly vetted through additional replication and

characterization.

Ultimately, the utility of a model is driven by the model’s

characteristics and how it will be used. Not all models need to

meet the standards of a clinical diagnostic. Most models may

still be useful as long as its performance is well documented to

enable proper interpretation of its results. Cost, ease of use,

accuracy, technical reproducibility, and acceptability by

biospecimen donors are some of many factors that are

often weighed to determine a model’s utility. However,

reproducible findings in independent datasets should be a

minimum requirement.
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