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1  |  INTRODUC TION

Based on the idea that sublethal insult may induce strong protection 
against subsequent fatal injuries, the first hypoxic preconditioning 
(HPC) study took place in 1964, which confirmed HPC- afforded tol-
erance of the brain against subsequent cerebral ischemic injury.1 In 
1990, ischemic preconditioning (IPC) was reported and proved to 
elicit protective effects on ischemic damage.2 Compared with se-
vere or pathogenic ischemic/hypoxic events, I/HPC reverses the 

pathological process through a milder and appropriate degree of 
stimulation. The brain is extremely sensitive to oxygen levels. I/HPC 
has been demonstrated to allow for resistance of various cerebral 
injuries, such as stroke, neonatal hypoxia/ischemia, and neurode-
generative diseases.3 Interestingly, repeated transient limb ischemia, 
termed “remote ischemic preconditioning (RIPC),” can also alleviate 
the ischemic injury of a distant organ, such as brain. RIPC has been 
widely studied in clinical trials in recent years and seems to be of 
more clinical value, because it avoids the direct ischemic/hypoxic 
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Abstract
As the organ with the highest demand for oxygen, the brain has a poor tolerance to 
ischemia and hypoxia. Despite severe ischemia/hypoxia induces the occurrence and 
development of various central nervous system (CNS) diseases, sublethal insult may 
induce strong protection against subsequent fatal injuries by improving tolerance. 
Searching for potential measures to improve brain ischemic/hypoxic is of great sig-
nificance for treatment of ischemia/hypoxia related CNS diseases. Ischemic/hypoxic 
preconditioning (I/HPC) refers to the approach to give the body a short period of mild 
ischemic/hypoxic stimulus which can significantly improve the body's tolerance to 
subsequent more severe ischemia/hypoxia event. It has been extensively studied and 
been considered as an effective therapeutic strategy in CNS diseases. Its protective 
mechanisms involved multiple processes, such as activation of hypoxia signaling path-
ways, anti- inflammation, antioxidant stress, and autophagy induction, etc. As a strat-
egy to induce endogenous neuroprotection, I/HPC has attracted extensive attention 
and become one of the research frontiers and hotspots in the field of neurotherapy. In 
this review, we discuss the basic and clinical research progress of I/HPC on CNS dis-
eases, and summarize its mechanisms. Furthermore, we highlight the limitations and 
challenges of their translation from basic research to clinical application.

K E Y W O R D S
hypoxia, ischemia, neurological diseases, neuroprotection, preconditioning

www.wileyonlinelibrary.com/journal/cns
https://orcid.org/0000-0001-6711-3841
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:robertjixm@hotmail.com


870  |    LIU et aL.

insults to important organs.4 In this review, we focus on the potential 
therapeutic effects of I/HPC and RIPC in central nervous system 
(CNS) diseases, discuss the underlying protective mechanisms, and 
highlight the challenges of their translation from basic research to 
clinical application.

2  |  RESE ARCH PROGRESS OF I/HPC IN 
CNS DISE A SES

Central nervous system diseases are comprised of cerebrovascular 
diseases, neurodegenerative diseases, multiple sclerosis, spinal cord 
injury, and others. As a potential therapeutic strategy, the protective 
effects of I/HPC and RIPC in CNS diseases have been extensively stud-
ied in multiple layers including in vitro cell cultures, ex vivo brain slices, 
in vivo experimental animal models, and clinical patients (Tables 1 and 
2, Figure 1). In this section, we will introduce the research progress of 
I/HPC and RIPC in both clinical and preclinical CNS diseases.

2.1  |  Cerebrovascular diseases

Ischemic stroke is caused by cerebral vascular occlusion, accounting 
for 80% of stroke cases. Thrombolytic tissue plasminogen activator is 
the best strategy, but its narrow therapeutic window limits its clinical 
usage.5 Since the 1990s, several data on I/HPC have been collected in 
animal models of focal and global cerebral ischemia, consistently prov-
ing that regional brief ischemic/hypoxic episode exerts subsequent 
neuroprotection against subsequent major ischemia/hypoxia event.6 
In rats, hypoxia exposure significantly decreased the infarct volume 
induced by focal permanent ischemia.7 Clinically, transient ischemic at-
tack (TIA) can be regarded as a kind of IPC in situ. Patients with TIA his-
tory before an ischemic stroke were observed to have better prognosis 
than those without TIA history,8 confirming the protective effects of 
cerebral preconditioning. Similarly, RIPC with limb has also been found 
to protect against ischemic stroke in several clinical studies.9– 11

Hemorrhagic stroke accounts for about 20% of stroke, with very 
limited treatment options. Rupture of intracranial aneurysms is one 
of the most critical reasons for subarachnoid hemorrhage (SAH), it 
frequently resulted in subsequent vasospasm leading to delayed ce-
rebral ischemia (DCI) and focal neurological deficits. HPC can reduce 
vasospasm and DCI after SAH.12 RIPC was safe and well tolerated 
for patients with SAH,13 and decreased the incidence of stroke and 
death.14 IPC also protected against brain edema and blood hypo- 
coagulation in intra- cerebral hemorrhage (ICH) rats.15

Stem cell transplantation therapy is a hot topic in the treatment 
of stroke. IPC improved the curative effect of stem cell transplan-
tation in ischemic stroke model induced by transient middle cere-
bral artery occlusion (tMCAO).16 HPC in neural stem cells and bone 
marrow mesenchymal stem cells (BMSCs) enhanced efficacy of 
stem cell therapy by promoting grafted- cell survival in the ICH mod-
els.17,18 Mechanistically, HPC- treated BMSC significantly increased 
the expression of some key survival and regeneration factors, such 

as B- cell lymphoma- 2 (Bcl- 2), brain- derived neurotrophic factor 
(BDNF), and VEGF, to promote functional recovery.18 Taken to-
gether, these studies indicate that I/HPC is a promising strategy for 
therapy or combination therapy of cerebrovascular diseases, while 
their exact mechanism remains to be explored.

2.2  |  Neurodegenerative diseases

Neurodegenerative diseases refer to progressive dysfunction and 
death of selective neuronal subsets. Alzheimer's disease (AD) and 
Parkinson's disease (PD) are the most common neurodegenerative 
diseases, hypoxia also participates in their development. I/HPC is a 
potential approach to prevent neurodegeneration.19 In experimental 
AD animals, intermittent hypoxic training (IHT) could alleviate AD 
pathology and improve cognitive function by preventing neuronal 
loss.20,21 This was associated with preserved cerebrovascular 
function through reduced oxidative stress.20 The idea of I/HPC was 
tested clinically in elderly patients with mild cognitive impairment, a 
precursor of AD. IHT was proved to improve cognitive function and 
delay the development of AD.22 Currently there is little evidence on 
the effects of I/HPC in PD, although other sorts of preconditioning 
such as cross- hemispheric preconditioning seems to confer a 
favorable outcome in PD.23 Since hypoxia is closely associated 
with various pathogenic mechanisms of PD, we believe it is worth 
investigating, and is a potential direction for PD management.

2.3  |  Multiple sclerosis

Multiple sclerosis (MS) is an autoimmune disease characterized by 
white matter inflammatory demyelination, it is common in young and 
middle- aged people.24 Experimental allergic encephalomyelitis (EAE) 
is a wildly used preclinical MS model, with similar immune pathogen-
esis and lesions to MS.25 HPC can prevent the development of EAE by 
decreasing leukocyte infiltration to the CNS,26 and microglia may play 
a critical role on its protective mechanisms.27 Furthermore, increased 
levels of regulatory T cells (Tregs) and anti- inflammatory cytokine 
interleukin (IL)- 10 may also involve in the neuroprotective effects of 
HPC on EAE models.28 In addition to its anti- inflammatory effects, 
HPC also promotes EAE recovery by promoting vascular remodeling 
response and enhancing blood brain barrier (BBB) integrity.29

2.4  |  Spinal cord injury

Spinal cord injury lead to serious dysfunction of the limbs and trunk 
below the injured segment. Previous studies on its treatment mainly 
focused on treatment timing, drug treatment, and complication treat-
ment. In recent years, the application of physical intervention of I/HPC 
has attracted much.30 IPC reduced paraplegia incidence and neuronal 
damage induced by spinal cord ischemia reperfusion injury in various 
models by attenuating blood spinal cord barrier (BSCB) disruption,31 
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triggering spinal cord autoregulation,32 and upregulating endog-
enous antioxidant enzymes.33 The combination of HPC and stem cell 
therapy has a high translational value. HPC- treated BMSC showed 
better cell survival rate and migration, along with increased neuron 
differentiation, enhanced paracrine effect, increased nutritional sup-
port, and improved functional recovery.34,35 Mechanistically, HPC- 
treated stem cells help shift microglial M1 to M2 polarization.36 A 

recent study also suggests that activation of hypoxia inducible factor 
(HIF)- 1α played a critical for the survival of BMSCs after transplan-
tation.37 RIPC also attenuated motor deficits and histologic damage 
induced by ischemia reperfusion injury through various protective 
mechanisms, including suppressing BSCB disruption,38 upregulating 
antioxidant enzyme activity39 and preventing the increase of extra-
cellular glutamate and subsequent excitotoxicity.40

TA B L E  1  Basic research cases of neuroprotection of IPC/HPC/RIPC

Method Subjects Hypoxia dosage Outcome References

IPC tMCAO rats 10 min of tMCAO, followed by 24 h of recovery and 
reperfusion

Neurological outcomes ↑
Lesion volume ↓
Apoptosis ↓

132

30 min of tMCAO, followed by 72 h of recovery and 
reperfusion

Neurological outcomes ↑
Lesion volume ↓
ER stress ↓

51,117

5 cycles of 3 min transient occlusion of the bilateral 
common carotid arteries with each followed by 5 min 
of reperfusion

Neurological outcomes ↑
Lesion volume ↓

133

pMCAO rats 10 min of tMCAO, followed by 24 h of recovery and 
reperfusion

Neurological outcomes ↑
Lesion volume ↓
Brain edema ↓
Autophagy ↑

113,114,134

tMCAO mice 5 min of tMCAO, followed by 24 h of recovery and 
reperfusion

Lesion volume ↓ 135

12 min of tMCAO, followed by 72 h of recovery and 
reperfusion

Lesion volume ↓
BBB integrity ↑
Oxidative stress ↓

60,61

15 min of tMCAO, followed by 72 h of recovery and 
reperfusion

Lesion volume ↓
HIF−1α level ↑

53,79

pMCAO mice 7 min of tMCAO, followed by 96 h of recovery and 
reperfusion

Lesion volume ↓
BBB integrity ↑

124

ICH rats 15 min of tMCAO, followed by 72 h of recovery and 
reperfusion

Brain edema ↓
Blood coagulation ↓

15

forebrain ischemia 
gerbils

5 min forebrain ischemia, followed by 72 h of recovery 
and reperfusion

Neuronal apoptosis↓
Dendritic integrity ↑

136

HPC tMCAO rats altitude 5000 m for 3 h daily for 14 days Lesion volume↓
Cognitive function↑
Inflammation↓

77

tMCAO mice 8% or 11% O2 for 2 h or 4 h daily for 14 days Lesion volume↓
Inflammation↓

92,93

tMCAO mice 8% O2 for 4 h, followed by 48 or 72 h of recovery Lesion volume↓
Integrity of BBB ↑

121,137

Propofol- treated 
rat pups

8% O2 for 10 min, followed by room air for a 10 min, five 
cycles

Apoptosis ↓ 138,139

H- I injury piglet 8% O2 for 3 h or 24 h Brain damage ↓
HIF−1α level ↑
VEGF ↑

46

tGCI rats 8% O2 for 30 min, followed by 24 h of recovery Neurological outcomes ↑
Autophagy ↑
Apoptosis↓
Mitochondrial function↑

109,140

EAE mice 8% or 10% O2 for 14d Integrity of BBB ↑
Inflammation↓

26,27,29

(Continues)
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2.5  |  Others

In addition to the above diseases, the protective effects of I/HPC 
have also been studied in various other CNS diseases. Hypobaric 
HPC protected animals from stress- related depression and 
anxiety.41 HPC- mediated molecular adaptation improved brain 

resistance to glutamate excitotoxicity in ethanol withdrawal.42 
HPC can also reduce brain edema induced by alginic acid- induced 
status epilepticus in rats, which may be due to stress- related 
transcription factors and effector proteins.43 In addition, serial 
HPC can improve the cognitive functions in mice exposed to 
hypoxia.44

Method Subjects Hypoxia dosage Outcome References

RIPC tMCAO rats Both hind limbs 4 cycles of 5 min ischemia followed by 
5 min of reperfusion

Neurological outcomes ↑
Lesion volume ↓
Splenic immune response↑

9

Left hind limb 4 cycles of 5 min ischemia followed by 5 min 
of reperfusion daily for 3 days

Neurological outcomes ↑
Lesion volume ↓
Apoptosis ↓

84

Both hind limbs 3 cycles of 10 min ischemia followed by 
10 min of reperfusion

Lesion volume ↓
Neurological outcomes ↑
Inflammation↓
HIF−1α and HIF−2α↓

80,141

tMCAO diabetic 
mice

Both hind limbs 3 cycles of 10 min ischemia followed by 
10 min of reperfusion

Lesion volume ↓
Neurological outcomes ↑
Inflammation↓
Apoptosis↓

94,142

tGCI mice left hind limb 4 cycles of 5 min ischemia followed by 5 min 
of reperfusion

Lesion volume ↓
Neurological outcomes ↑
Vascular dementia↓
Apoptosis↓
Oxidative stress↓

62

TA B L E  1  (Continued)

TA B L E  2  Clinical study cases of neuroprotection of RIPC

Method Subjects Hypoxia dosage Outcome References

RIPC Carotid artery stenting 
patients

Bilateral upper limb 5 cycles consisting of 5 min 
ischemia and 5 min reperfusion, twice daily for 
14 days

Secondary ischemic brain injury ↓ 143

Intracranial arterial 
stenosis patients

Bilateral upper limb 5 cycles consisting of 5 min 
ischemia and 5 min reperfusion, twice daily for 
300 days

Cerebral perfusion ↑
Incidence of recurrent stroke ↓
Fazekas and Scheltens scores ↓

144- 146

Subarachnoid 
hemorrhage 
patients

The upper arm 3 cycles consisting of 5 min ischemia 
and 5 min reperfusion for 14 days

Safe and well tolerated 13

Lower limb 4 cycles consisting of 5 min ischemia and 
reperfusion for 4 times

Incidence of stroke ↓
Mortality ↓

14

Acute ischemic stroke 
patients

The upper arm 5 cycles consisting of 3 min ischemia 
and 5 min reperfusion, twice daily for 5 days

Lesion volume ↓
Functional recovery↑

147

Subcortical ischemic 
vascular dementia 
patients

Bilateral upper limb 5 cycles consisting of 5 min 
ischemia and 5 min reperfusion, twice daily for 
180 days

Cognitive function↑ 148

Ischemic moyamoya 
disease patients

Bilateral upper limb 5 cycles consisting of 5 min 
ischemia and 5 min reperfusion, three times daily 
for 720 days

Ischemic events ↓
Cerebral perfusion ↑

149

Small vessel disease 
patients

Bilateral upper limb 5 cycles consisting of 5 min 
ischemia and 5 min reperfusion, twice daily for 
360 days

Mean flow velocity of the middle 
cerebral artery ↑

White matter lesion volume↓

150

Brain tumor patients The upper arm 3 cycles consisting of 5 min ischemia 
and 5 min reperfusion

Incidence of postoperative Ischemic 
Damage ↓

Lesion volume↓

151

Healthy young men 
and women

The upper arm 4 cycles consisting of 5 min ischemia 
and 5 min reperfusion

Plasmic BDNF and VEGF↑
Microvascular endothelial function↑

152
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3  |  NEUROPROTEC TIVE MECHANISMS OF 
I/HPC

Conditional stimulations trigger protective responses through 
different sensors and signaling molecules, resulting in protective 
phenotypes in the brain. The mechanisms include interrelated 
biological pathways that minimize neuronal damage and promote 
the recovery through cascade of reaction. In this section, we will 
discuss the possible neuroprotective mechanisms related to I/HPC 
from the multiple aspects (Figure 2).

3.1  |  Activating hypoxic signaling pathway

Hypoxia inducible factor- 1 is the major molecular of hypoxic re-
sponse in the brain, it composed of oxygen sensitive α subunit and 
structurally stable β subunit. Under physiological conditions, HIF- 1α 
subunit is hydroxylated by proline hydroxylase (PHDs), which fur-
ther promotes its binding with Von Hippel- Lindau (VHL) complex, 
resulting in its ubiquitination and proteasomal degradation. Under 
hypoxic conditions, HIF- 1α combines with HIF- 1β to form a com-
plex, which translocates to the nucleus and binds to the hypoxia 

F I G U R E  1  Neuroprotective mechanisms of IPC/HPC/RIPC treatment in neurological diseases. IPC/HPC/RIPC could prevent from 
several neurological diseases, such as cerebrovascular diseases, neurodegenerative diseases, multiple sclerosis, and spinal cord injury. 
There protective machenisms including activating hypoxic signaling pathway, antioxidant stress, anti- inflammation, anti- apoptosis, 
reducing excitotoxicity, and activating autophagy. HPC, hypoxic preconditioning; IPC, ischemic preconditioning; RIPC, remote ischemic 
preconditioning

F I G U R E  2  Molecular mechanisms of IPC/HPC/RIPC treatment. Various critical molecules and mechanisms are involved in 
neuroprotective effects of IPC/HPC/RIPC treatment. AKT, protein kinase B; BAX, Bcl- 2- associated X; BBB, blood brain barrier; Bcl- 2, B- cell 
lymphoma- 2; CAT, catalase; EPO, erythropoietin; GLT, glutamate transporter; GPx, glutathione peroxidase; HIF, hypoxia inducible factor; 
HPC, hypoxic preconditioning; HSP70, heat- shock protein 70; IFN, interferon; IL, interleukin; IPC, ischemic preconditioning; NCX, Na+– Ca2+ 
exchanger; NF- κB, nuclear factor- kappa B; Nrf2, erythroid 2- related factor 2; NO, nitric oxide; PI3K, phosphatidylinositol 3- kinase; PKC, 
protein kinase C; S1P, sphingosine- 1- phosphate; SOD, superoxide dismutase; Sphk1, sphingosine kinase; Rab, ras- related in brain; RIPC, 
remote ischemic preconditioning; TLR, toll- like receptor; TNF, tumor necrosis factor; TRAIL, TNF- related apoptosis inducing ligand; VEGF, 
vascular endothelial growth factor
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response element on the target gene, resulting in the transcriptional 
activation of multiple genes, such as erythropoietin (EPO) and VEGF 
(Figure 3).45

HPC could significantly increase HIF- 1α level and its nuclear 
translocation, and whereby increase the expression of its target gene 
VEGF in neurons, endothelial cells, and astrocytes.46 Some other 
HIF- 1 target genes were also required for HPC- induced tolerance, 
such as cyclin- dependent kinase inhibitor p21, whose deficiency 
abolished the neuroprotection of HPC.47 Maintaining intracellular 
Ca2+ homeostasis is crucial to prevents Ca2+- associated cell damage, 
IPC increases the expression of Na+- Ca2+ exchanger (NCX) 1, which 
helps in this regard through HIF- 1 signaling.48 Another mechanism 
via which IPC modulates Ca2+ homeostasis is through NCX1 and 
NCX3 upregulation mediated by nitric oxide (NO)/phosphatidylinosi-
tol 3- kinase (PI3K)/protein kinase B (Akt) signaling.49,50 Sumoylation 
of NCX3 stabilizes NCX3, and is regarded as a potential target in 
IPC- induced neuroprotection.51 Implantation of HPC- treated hema-
topoietic stem cells improved stroke outcomes through promoting 
neuroplasticity mediated by HIF- 1α induction.52 Interestingly, un-
like hypoxia- dependent mechanism in neurons, astrocytes enhance 
HIF- 1α expression through P2X7- receptor- dependent mechanism.53

3.2  |  Antioxidant stress

Under normal circumstances, the body has an effective endogenous 
antioxidant defense system. Oxidative stress is a state of imbalance 
between oxidation and antioxidation in the body, it can be induced 
by excessive production of reactive oxygen species (ROS) or de-
creased ability of scavenging ROS. I/HPC and RIPC could decreases 
the levels of ROS and increases the levels of antioxidant enzymes 
to prevent from neuronal injury. IPC could increase catalase (CAT), 

glutathione peroxidase (GPx) and thioredoxin 2 activities to elimi-
nate the excessive ROS in the hippocampal cornu ammonis (CA) 1 
region.54 Similarly, HPC increases activities of superoxide dismutase 
(SOD) and GPx in ischemic brain injury model.55 RIPC reduces cer-
ebral oxidative damage by increasing activity of CAT and reducing 
methane dicarboxylic aldehyde levels.56,57 RIPC improve memory 
and cognitive function by enhancing SOD activity after hippocampal 
ischemia.58

Despite regulating the above antioxidant enzymes, I/HPC and 
RIPC also reduced cerebral injury through antioxidant stress via 
various critical signaling pathways. Transcription factor erythroid 
2- related factor 2 (Nrf2) is a master redox regulator. HPC protects 
the brain against traumatic damage by upregulating Nrf2 level and 
suppressing oxidative stress damage.59 In MCAO model, IPC alle-
viated motor deficits and cognitive impairment, accompanied by 
Nrf2 pathway activation, while these protective effects of IPC were 
abolished in Nrf2 knockout mice.60 Nrf2 also played a critical role 
in IPC- mediated blood- brain barrier (BBB) preservation and neuro-
protection.61 Similarly, RIPC prevented mice from vascular dementia 
by increasing Nrf2 level to decrease oxidative stress.62 Heat- shock 
protein 70 (HSP70) is a cellular defense factor under stress, which 
can be upregulated by IHPC stimulus.63,64 RIPC could mediate brain 
ischemic tolerance through activation of p38 mitogen- activated pro-
tein kinase by upregulating HSP70 expression 65 and HIF- 1α/AMPK/
HSP70 pathway.66

In addition to the above critical molecules, I/HPC also played 
an antioxidant role through other ways. Mitochondrial respiratory 
chain is the main source of cellular ROS. In astrocytes, IPC promotes 
localization of Nrf2 on the mitochondrial outer membrane, thus pre-
venting abnormal supercomplex formation and maintaining mito-
chondrial function.67 IPC also regulate mitochondrial NAD+/NADH 
ratio through regulating nicotinamide phosphoribosyltransferase 

F I G U R E  3  Molecular mechanisms 
of HIF- 1α mediated hypoxia response. 
Under normoxic conditions, HIF- 1α 
subunit is hydroxylated by PHD, which 
further promotes its binding with VHL 
complex, resulting in its ubiquitin and 
proteasomal degradation. Under hypoxic 
conditions, HIF- 1α combines with HIF- 1β 
to form a complex, which translocates to 
the nucleus and binds to HRE resulting 
in the transcription of multiple genes, 
such as EPO, VEGF, and Glut. EPO, 
erythropoietin; HIF, hypoxia inducible 
factor; HRE, hypoxia response element; 
PHD, proline hydroxylase; VEGF, vascular 
endothelial growth factor



    |  875LIU et aL.

activity via protein kinase C (PKC) ɛ activation.68 IPC facilitates the 
repair of oxidative DNA damage induced by ischemic injury through 
inducible DNA base- excision repair.69 RIPC protected neurons 
and mitochondria from oxidative damage in the porcine model of 
hypothermic ischemic insult.70 It also reduced systemic oxidative 
stress by about 80% represented by lymphocytic DNA damage, 
and reduced circulating glutamate levels in rodents.71 Furthermore, 
plasma from RIPC donor rabbits could also protect neural stem cells 
from oxidative stress and apoptosis through induction of thiore-
doxin,72 and the involvement of adenosine A1 receptors also play 
a role.73

3.3  |  Anti- inflammation

Neuroinflammation is a double- edged sword, appropriate duration 
and extent facilitate clearance of dead tissue and restoration of 
homeostasis, but excessive inflammatory response aggravates brain 
damage and affect long- term neurological outcome. I/HPC and RIPC 
modulated immune response at various layers, including molecular, 
cellular, and systemic mechanisms to prevent from secondary neural 
injury (Figure 4).74

As the brain resident immune cells, microglia are among the most 
important cells which orchestrate neuroinflammatory response.75,76 
HPC could suppress microglia abnormal activation and subsequent 
inflammatory responses after hypoxia- ischemia insults.77 In addition, 
conditioned medium from HPC- treated BMSCs could switch microglia 

toward anti- inflammatory polarization and alleviate microglia- induced 
injury by inhibiting the levels of pro- inflammatory cytokines, such 
tumor necrosis factor (TNF)- α, and upregulating anti- inflammatory cy-
tokines, such as IL- 10.78 Interestingly, IPC could induce cortical microg-
lial proliferation dependent on fractalkine signaling.79 RIPC inhibited 
inflammation by decreasing the levels of IL- 1β, IL- 6, and interferon- γ in 
the ischemic brain.80 Astrocytes are another type of glial cells which 
also exert immune regulation,81 it mediate inflammatory effects by 
releasing neurotransmitters such as glutamate, and cytokines such as 
TNF- α. IPC could reduce the damage of ischemia reperfusion effec-
tively by reducing the release of astrocytic glutamate, which was fur-
ther enhanced with astrocytic gap junction blockade.82

Aside from cellular mediators, several signaling pathways also par-
ticipate in the anti- inflammatory effects of preconditioning treatment. 
Nuclear factor- kappa B (NF- κB) is a key player in mediating inflamma-
tion, exhibits a significant role in cerebral ischemic tolerance induced 
by I/HPC and RIPC. IPC could activate PKCε and ERK1/2 to promoted 
NF- κB translocation to nucleus,83 and RIPC- mediated ischemic toler-
ance by activating NF- κB pathway through interaction with Notch1 
pathway.84 On the contrary, there were also lots of studies suggested 
IPC suppressed NF- κB activation.85,86 IPC downregulated NF- κB ex-
pression through inhibiting PI3K/Akt and ERK1/2 signaling pathways. 
As master regulators of innate immunity, toll- like receptors (TLRs) play 
a critical role in CNS inflammatory response.87 IPC reduces cerebral 
ischemic injury by inhibiting of the TLR4/NF- κB signaling pathway.88 
Astrocytic TLR3 reprogramming also participates in IPC- induced anti- 
inflammation and ischemic tolerance.89

F I G U R E  4  IPC/HPC/RIPC relieve neuroinflammation induced through central and peripheral immune cells. Neuroinflammation is 
involved in the pathogenesis of many neurological diseases. In the CNS, microglia or astrocytes activation could result in the release of 
inflammatory factors, such as TNF- α, IL- 1β, and IL- 6. In addition, peripheral immune cells such as T lymphocytes and monocytes also 
infiltrate into CNS through BBB, which is usually destructive in most neurological diseases. The above process could be relieved by 
IPC/HPC/RIPC. BBB, blood brain barrier; CNS, central nervous system; HPC, hypoxic preconditioning; IL, interleukin; IPC, ischemic 
preconditioning; RIPC, remote ischemic preconditioning; TNF, tumor necrosis factor
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I/HPC and RIPC also creates anti- inflammatory effects through 
affecting chemotaxis of the peripheral immune cells.90 HPC- induced 
ischemic tolerance by decreasing early leukocyte infiltration depen-
dent on a delay in C- C motif chemokine ligand (CCL) 2 expression.91 
In addition, HPC- induced chemokine (C- X- C motif) ligand 12 upregu-
lation which suppressed leukocyte infiltration in tMCAO mice.92 HPC 
also activated a novel immunosuppressed B- cell phenotype to exert 
anti- inflammatory effects in tMCAO mice model.93 RIPC increased B 
cell in peripheral blood90 and reduced T- cell infiltration into the isch-
emic brain, accompanied by increased p- ERK expression.94 Another 
study also suggested RIPC exerted neuroprotection against cerebral 
ischemia mainly by modulating the spleen- derived lymphocytes.9

3.4  |  Anti- apoptosis

Apoptosis is an active and orderly cell death process,95 I/HPC and RIPC 
could protect against brain injury by inhibiting apoptosis. The expression 
of anti- apoptotic genes increased after HPC treatment in hippocampal 
slice cultures.96 IPC could downregulate pro- apoptosis protein BCL- 2- 
associated X (Bax) level, but upregulate anti- apoptosis protein Bcl- 2 
level, and further decrease cleaved caspase- 9 and caspase- 3.85,97 It 
also blocked the ischemia- induced mitochondrial translocation of Bad, 
a Bcl- 2 family member, via PI3K/Akt signaling, inhibiting apoptosis of 
CA1 pyramidal cells.98 IPC prevented the opening of mitochondrial 
permeability transition pore (mPTP) and the releasing of cytochrome 
c mediated by nitrite.99 Similarly, RIPC also decreased apoptosis of 
hippocampal neurons by improving the integrity of the mitochondrial 
membrane and inhibiting mPTP opening.100 Endoplasmic reticulum (ER) 
stress is a strong inducer of apoptosis. IPC inhibited ER stress- induced 
apoptosis through protein kinase RNA (PKR) like ER kinase pathway.101 
IPC could also downregulate TNF- related apoptosis inducing ligand, a 
critical death receptor.102

3.5  |  Reducing excitotoxicity

Excitotoxicity is a toxic process mainly caused by excessive 
excitatory neurotransmitter glutamate.103 Thorase is important to 
maintain mitochondrial function and regulate surface glutamate 
receptor activity. IPC- induced thorase expression to provide 
neuroprotection against N- methyl- D- aspartic acid (NMDA) 
receptor- mediated excitotoxicity.104 IPC- treated astrocytes could 
also confer ischemic tolerance to neurons associated with increased 
neuronal tolerance to NMDA.105 Glutamate homeostasis in the CNS 
is maintained through uptake of excessive glutamate by excitatory 
amino acid transporter known as glial glutamate transporter (GLT)- 1. 
GLT- 1 is mainly located on astrocytes, and has been regarded as a 
potential therapeutic target in the treatment of brain ischemic injury, 
IPC can reduce glutamate excitotoxicity by upregulation of GLT- 1 
activity in glial cells, thus inducing cerebral ischemic tolerance.106 
HPC also reversed the downregulation of GLT- 1 protein caused by 
global cerebral ischemia.107

3.6  |  Activating autophagy

Autophagy is an evolutionarily conservative process crucial for 
cell survival, in the circumstances of hunger, infection and stress, 
autophagy contributes to homeostasis by removing aggregated 
proteins and damaged organelles, rapidly providing fuel supply for 
energy, and delaying cell death. In ischemia model, HPC increased 
the production and degradation of autophagosomes and resisted 
to subsequent fatal injury.108 HPC also promoted autophagosome 
maturation by activating ras- related in brain 7, a lysosome- related 
protein, to protect against global cerebral ischemia- induced injury.109 
HIF- 1α/Beclin1 signaling pathway activation was also involved in 
autophagy induction during HPC treatment.110 Conventional PKCγ 
signaling molecules especially PKCγ- synapsin pathway were proved 
to facilitate HPC- mediated protection,111 and PKCγ could modulate 
neuron- specific autophagy through the Akt- mTOR pathway MCAO 
mice model.112 Similarly, IPC increased the levels of autophagy related 
proteins, including microtubule- associated protein 1 light chain (LC) 
3 II and beclin1, which were suppressed by autophagy inhibitors 
3- methyladenine and bafilomycin A1, and enhanced by autophagy 
agonist rapamycin, confirming the critical role of autophagy in IPC.113 
IPC also protected against neuronal injury via ER stress- induced 
autophagy, proved by abolished neuroprotection with ER stress 
inhibitor salubrinal.114

3.7  |  Others

Besides the above protective mechanisms, other mechanisms as-
sociated with I/HPC include but not limited to improving synaptic 
plasticity, modulating Ca2+ homeostasis, and preserving BBB func-
tion. IPC improved synaptic plasticity by increasing BDNF mRNA ex-
pression dependent on PKCɛ activation.115 Meanwhile, IPC- induced 
PKCɛ activation enhances GABA release, contribute to monoamine 
balance of the brain.116 Ca2+ homeostasis was maintained by IPC 
through modulating the interaction of the ER- located Ca2+ sensor 
stromal interacting molecule 1 with the plasma membrane chan-
nel ORAI1,117 as well as activation of the NO/PI3K/Akt pathway.49 
Impairment of BBB integrity is a critical event in the pathogenesis 
of ischemic/hypoxic injury.118 HPC could induce de novo formation 
of cerebral collaterals, which lessens the severity of a subsequent 
stroke event.119 HPC also upregulates the expression of vascu-
lar genes, whereby increasing vascular density and cerebral blood 
flow.120 HPC could also active sphingosine kinase 2 in a region- 
specific manner, whose products sphingosine- 1- phosphate is critical 
for vascular functioning.121– 123 Astrocytes are proved to be major 
mediators in IPC- mediated BBB preservation in vitro.124 HPC could 
also help restore the maturation capacity in oligodendrocyte precur-
sor cells in neonatal rats subjected to hypoxia/ischemia insults.125

In addition to the proteins involved in the above mechanisms, some 
other molecules have also been proposed as potential targets of I/HPC. 
Heme oxygenase 1 (HO1), an anti- oxidant enzyme, is significantly in-
creased by IPC, and HO1 knockout could abolish IPC- induced protective 
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effects on ischemic brain injury, indicating its critical role in IPC.126 
Considerably, IPC protects hippocampal pyramidal neurons from isch-
emic injury by HO1- mediated suppression of oxidative damage.127 An 
apoptotic inhibitory molecule, cellular inhibitor of apoptosis 1, was also 
implicated in IPC in neurons and endothelial cells.128 Epigenetic studies 
by microarray analysis suggested that methyl- CpG binding protein 2 
was also a prominent target in IPC- induced tolerance.129

4  |  LIMITATIONS AND CHALLENGES

Although both of I/HPC and RIPC have shown considerable protec-
tive effects in lots of CNS diseases, there are still many limitations 
and challenges to translate their clinical applications from basic re-
search. Firstly, heterogeneity of population subgroups needs to be 
considered. Different individual factors, such as age, gender, race, 
and comorbid medical conditions require different degrees of con-
ditioning treatment to induce optimal stimulate. In addition to these 
individual factors, different diseases should also be treated in differ-
ent ways. In other words, the optimal duration and frequency of pre-
treatment stimuli vary from disease to disease, and different hypoxic 
levels, duration, and onset cycle may have very different effects. 
Secondly, timeliness is also a main limitation of I/HPC and RIPC, be-
cause their benefits usually last only a few days, while the onset of 
diseases is unpredictable. Therefore, patients should be stratified 
based on their risk for each individual disease, and different thera-
peutic strategy should depend on the pathogenesis individually. The 
combination therapy with preconditioning and postconditioning 
may be a promising direction.130 In addition, specific biomarkers that 
respond to preconditioning treatment may be useful to guide opti-
mal therapeutic strategy and further assess efficacy. Furthermore, 
cross adaptation or cross tolerance is also a growing field of inter-
est, it refers to the phenomenon that one type of conditioning could 
establish tolerance toward another type of injury.131 It suggests that 
I/HPC may play a role in more fields, which need to be further ex-
plored. Finally, although application of RIPC is practical in high- risk 
population, while it maybe not practical to induce ischemia/hypoxia 
in healthy humans, so more mechanistic studies can help us achieve 
the protective effect through other methods, such as pharmacologi-
cal treatment.

5  |  SUMMARY

Due to the complicated etiology of neurological diseases, the cur-
rent treatment strategies are still limited. In addition, many neu-
rological diseases come on gradually, so once diagnosed, the best 
treatment window is missed. Therefore, preconditioning therapy 
is a promising direction in the treatment of neurological diseases. 
Specific molecular mechanisms of I/HPC or RIPC need to be fur-
ther explored, and their limitations and challenges need to be ad-
dressed as well.
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