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Dynamic beam steering with all-dielectric electro-
optic III–V multiple-quantum-well metasurfaces
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Tunable metasurfaces enable dynamical control of the key constitutive properties of light at a

subwavelength scale. To date, electrically tunable metasurfaces at near-infrared wavelengths

have been realized using free carrier modulation, and switching of thermo-optical, liquid

crystal and phase change media. However, the highest performance and lowest loss discrete

optoelectronic modulators exploit the electro-optic effect in multiple-quantum-well hetero-

structures. Here, we report an all-dielectric active metasurface based on electro-optically

tunable III–V multiple-quantum-wells patterned into subwavelength elements that each

supports a hybrid Mie-guided mode resonance. The quantum-confined Stark effect actively

modulates this volumetric hybrid resonance, and we observe a relative reflectance mod-

ulation of 270% and a phase shift from 0° to ~70°. Additionally, we demonstrate beam

steering by applying an electrical bias to each element to actively change the metasurface

period, an approach that can also realize tunable metalenses, active polarizers, and flat spatial

light modulators.
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Achieving versatile dynamical control of the key con-
stitutive properties of light at the nanoscale is a grand
challenge for nanophotonics. In the last several years,

metasurfaces have shown extraordinary promise to achieve such
comprehensive control over the characteristics of scattered light.
Metasurfaces can be viewed as artificially designed arrays of
subwavelength optical scatterers, where each scatterer introduces
abrupt changes to the phase, amplitude, or polarization of the
reflected or transmitted electromagnetic waves1–3. Thus, meta-
surfaces offer the ability to control the wavefront of the scattered
light, thereby creating new flat optics and ultrathin optoelectronic
components4,5. To date, metasurfaces have been used to
demonstrate a number of low-profile optical components with
important capabilities, including focusing6–9, polarization control
and detection10–12, holograms13–15, and quantum light
control16,17.

Among the large volume of experimental reports about meta-
surfaces, most demonstrated so far are passive. For passive
metasurfaces, the light-scattering characteristics are defined by
the geometry and arrangement of subwavelength scatterers, fixed
at the time of fabrication. In contrast to passive metasurfaces,
actively tunable metasurfaces can realize multiple functions18–20,
serving as low-profile nanophotonic devices capable of beam
steering, active polarization switching, and formation of reconfi-
gurable metalenses.

So far, a number of different methods have been used to realize
tunable metasurfaces, commonly by incorporating an active
material into the metasurface structure. The dielectric permit-
tivity of the active material is then dynamically controlled via
application of an external stimulus, such as an electrical bias21,22,
laser pulse23, or heat input24. Reconfigurable metasurfaces, which
are based on incorporating active materials into otherwise passive
antenna arrays, are hereafter referred to as hybrid metasurfaces.
For example, incorporation of monolayer graphene into a plas-
monic metasurface can enable active tuning of the spectral
response by electrically tuning the Fermi level of the graphene
sheet25–27. Electrical tuning of the coupling between metasurface
resonances and intersubband transitions in multiple-quantum-
wells (MQWs) has also been explored for applications, such as
tunable filters28 and optical modulators at mid-infrared
wavelengths29,30. To achieve active metasurface performance at
visible and near-infrared (NIR) wavelengths, the integration of
metasurfaces with phase-change materials or liquid crystals has
enabled the demonstration of phase modulation31 and active
beam switching32,33. Modulation of the dielectric permittivity
near the epsilon-near-zero (ENZ) transition in doped transparent
conducting materials can yield large optical modulation of the
scattered light34, and to date the ENZ transition in indium tin
oxide35–37 and titanium nitride38 has been exploited to elec-
trically tune the properties of scattered/emitted light. These
hybrid metasurfaces34–37 operate by spectrally overlapping the
geometrical antenna resonance and the ENZ permittivity regime,
and also spatially overlapping the metasurface element mode
profile with the tunable permittivity transparent conducting
material. To enable a widely tunable optical response, strong local
field confinement and enhancement in the active material is
required. Prior research has also combined tunable metasurface
optics with microelectromechanical systems (MEMS) technology
to demonstrate varifocal lenses39. Moreover, previous work has
shown that fabricating metasurfaces on elastomeric substrates
may yield adaptive metalenses40, strain-multiplexed meta-holo-
grams41, and an active control of the structural color42. However,
in MEMS-based and mechanically stretchable substrate modula-
tion approaches, control of the optical response is achieved by
changing the distance between either adjacent metasurface
elements43,44 or entire element arrays39, and requires a

mechanical transducer, which limits the frequency bandwidth.
While interesting, these approaches are not able to yield versatile
active control over the scattered light wavefront over a wide
frequency range. This condition can only be realized by electronic
tuning the optical response of each metasurface element.

Fabricating metasurface elements directly in an active material
could substantially simplify the metasurface design and facilitate
the fabrication process. For example, prior research has used
phase-change materials as metasurface building blocks to achieve
actively tunable optical responses19,45,46. The ability to rewrite
metasurface patterns incorporating phase-change materials with a
pump laser has enabled the demonstration of multiple functions
when using a single sheet of either GST or VO2

19,46. However, the
tuning speed of the phase-change-material-based tunable meta-
surfaces is usually slow, because the phase transition speed is
typically limited by the thermal response time in material heating.

Previously, a GaAs all-dielectric tunable metasurface23 has
been realized by actively refractive index tuning resulting from
free carrier generation via an optical pump23. This approach
enables a picosecond response time, but the requirement of an
ultrafast pump laser beam is not desirable for many low-power
compact nanophotonic applications. Under optical pumping, the
area for refractive-index modulation is determined by the size of
focused laser spot, and is relatively large, limiting the possibility
to achieve control of individual metasurface elements. To achieve
an independent control of each metasurface element, it is pre-
ferable to modulate the optical response of the metasurface
electrically rather than optically. Prior research has shown that a
patterned graphene layer under applied bias voltage can be used
to actively modulate the properties of the scattered light47,48. So
far, the actively tunable optical response of the patterned gra-
phene layer has only been demonstrated in the mid-infrared
wavelength regime because of the achievable carrier densities in
doped graphene. Thus it remains an outstanding research chal-
lenge to develop an active metasurface platform operating in the
visible or NIR wavelength range that would dynamically tailor the
wavefront of scattered light by modulation of individual antenna
elements.

Here, we describe an electrically tunable metasurface, which
utilizes III–V compound semiconducting MQW structures as
resonant elements. The amplitude and phase of the light reflected
from the metasurface can be continuously tuned by applying a
DC electric field across the MQW metasurface elements, with a
tunable optical response from the quantum-confined Stark effect
(QCSE)30,49. The QCSE enables electro-optic modulation of the
MQW complex refractive index, most strongly at wavelengths
near the MQW bandgap. In our metasurface design, each MQW
resonator supports a hybrid-resonant mode with a relatively high-
quality factor, enabling optical modulation under applied bias.
Using this active device concept, we experimentally demonstrate
beam steering by electrically controlling the optical response of
individual metasurface elements. The QCSE is widely used in
high-performance electro-optical components such as high-speed
modulators50. Thus, our approach combines the well-established
MQW technology with subwavelength antennas to creating an
active metasurface platform for diverse nanophotonics
applications.

Results
Characterization of MQW. We utilize an epitaxial III–V het-
erostructure consisting of a GaAs substrate, distributed Bragg
reflector (DBR) and a 1.23 -μm-thick undoped MQW layer (see
inset of Fig. 1a). The DBR is comprised 20 pairs of alternating
layers of n-doped Al0.9Ga0.1As (76.5 nm) and n-doped GaAs
(65 nm) with the n-doped Al0.9Ga0.1As as the topmost layer. A
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50- nm-thick p-doped GaAs contact layer with a carrier density of
1019 cm−3 is grown on top of the MQWs (not shown in the inset
of Fig. 1a). Figure 1a illustrates the measured reflectance spectrum
of the planar MQW/DBR/GaAs structure. As seen in Fig. 1a, for
wavelengths ranging from 915 nm to 990 nm, the reflectance is
close to 100%, indicating that the DBR acts as a high-quality
mirror in this wavelength range. We also observe a sharp
reflectance dip at a wavelength of ~915 nm. This reflectance dip
originates from near-bandgap absorption in the MQW layer. As a
next step, we investigate the tunable optical response of the
MQW layer. Due to the QCSE, the interband transition energy is
shifted by applying a DC electric field across the quantum wells
resulting in bias-induced MQW complex refractive index mod-
ulation49. For our quantum well heterostructures (Supplementary
Fig. 1a), the expected modulation of the real part of the refractive
index is on the order of Δn= 0.0151. To be able to experimentally
observe this small variation of the real part of the refractive index,
we integrated a Fabry–Pérot resonant cavity around the MQWs
whose top mirror was formed by depositing a 35-nm-thick
semitransparent Au film on top of the MQWs. To improve the
adhesion of Au to the top p-doped GaAs layer, we first deposited
a 2-nm-thick Ti film before depositing the Au film (see the inset
of Fig. 1b). Figure 1b plots the measured reflectance spectrum of
the fabricated DBR/MQW/Au Fabry–Pérot cavity. As seen in
Fig. 1b, the Fabry–Pérot cavity exhibits a narrow resonance at a
wavelength of 932.7 nm. This narrow resonance enhances the
optical modulation caused by the variation of the complex
refractive index of the MQWs under applied bias.

Once we measured the reflectance spectrum of the DBR/MQW/
Au planar heterostructure, we then measured its reflectance
modulation under applied bias. To facilitate bias application, we
deposited ohmic contacts on the topmost p-doped GaAs layer
[Ti (20 nm)/Pt (30 nm)/Au (300 nm)] and at the bottom of the
n-doped GaAs substrate [Ge (43 nm)/Ni (30 nm)/Au (87 nm)].
We then measured the reflectance from our Fabry–Pérot resonant
MQW sample, when the GaAs substrate (low potential) and the
top ohmic contact (high potential) are biased with respect to each
other (see the inset of Fig. 1b). Figure 1c shows the map of the
measured reflectance as a function of wavelength and applied
bias. When the external bias is applied, we observe a shift of the
resonant wavelength that is accompanied with a significant
reflectance modulation. This demonstrates that both the real and
imaginary part of the refractive index of the MQWs are
modulated by applied bias. To study the tunable optical response
of the MQWs at different wavelengths, the position of the
Fabry–Pérot resonance has to be shifted to the desired spectral
position. We achieved this by spin coating a thin PMMA layer
with a pre-defined thickness between the Au film and the MQW
layer so as vary the cavity length. The spectral position of the
Fabry–Pérot resonance thus varies with the thickness of the

PMMA spacer layer in the cavity (Supplementary Fig. 1b). Our
analysis shows that, as expected, larger optical modulation is
observed at shorter operation wavelengths near the semiconduc-
tor band edge (Supplementary Note 1). From these measure-
ments, we concluded that the optimal wavelength to observe a
large reflectance modulation was between 915 nm and 920 nm.

Design and characterization of all-dielectric tunable metasur-
face. Once we had identified the optimal operation wavelength
for observing the tunable optical response of MQWs, we designed
and fabricated our tunable metasurface. Since our MQWs exhibit
relatively modest refractive index change under applied bias, the
designed metasurface element has to support high-quality reso-
nant mode near the semiconductor band edge to exhibit sig-
nificant optical modulation under applied bias. The fundamental
electric or magnetic dipole modes of typically utilized dielectric
resonators do not possess sufficiently high-quality factors. Fig-
ure 2a shows the schematic of our electrically tunable all-
dielectric III–V MQW resonator-based metasurface. The reso-
nator design has a double-slit structure, where the double slits
have been partially etched into the MQW layer (inset of Fig. 2b).
We choose the structural parameters of our resonators such that
these slits support a guided mode (GM) resonance that hybridizes
with a higher-order Mie resonance, at a wavelength slightly
beyond the MQW band edge absorption wavelength. The geo-
metrical parameters of the metasurface elements are summarized
in the caption of Fig. 2. The inherently large real part of the
refractive index (n ≈ 3.62) of our MQWs enables us to design
subwavelength resonators (metasurface elements), which are only
700 -nm wide. The simulated reflectance spectrum of our meta-
surface is shown in Fig. 2b. As seen in Fig. 2b, the metasurface
supports two distinct resonant modes at wavelengths of 915.9 nm
and 936.3 nm. Figure 2c and d shows the z-component of electric-
and magnetic field intensities in our metasurface element at both
resonant wavelengths. The calculated field profiles show that at a
wavelength of 915.9 nm, the metasurface element supports a
high-order Mie resonance (left images in Fig. 2c, d). The multi-
pole decomposition analysis52–54 shows that the supported high-
order Mie resonant mode is dominated by the magnetic octupolar
mode (Supplementary Note 2). In addition, at the same wave-
length, our metasurface element supports a GM resonance pro-
pagating along x direction, resulting in an electric field that leaks
into the air gaps separating the metasurface elements (Supple-
mentary Note 3). Hence, the resonant mode supported by the
metasurface element at a wavelength of 915.9 nm can be inter-
preted as a coupling of a Mie resonance and a GM resonance,
which is referred to here as a hybrid Mie-GM resonance. Note
that the coupling of two resonant modes normally results in
mode splitting. In our case, the mode splitting can be seen when
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Fig. 1 Optical performance of MQWs. Measured reflectance spectra of (a) a bare DBR/MQW and (b) a DBR/MQW/Ti/Au Fabry–Pérot cavity under no
applied bias. The insets show the schematics of corresponding structures. The light orange area in (a) indicates the wavelength range shown in (b).
c Measured reflectance of the DBR/MQW/Ti/Au Fabry–Pérot cavity as a function of wavelength and applied voltage
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extending the simulation range to the shorter wavelengths
(Supplementary Note 4). We observe another resonance at a
wavelength of 936.3 nm, which can be interpreted as a
Fabry–Pérot resonance coupled to a GM resonance (Fig. 2c;
Supplementary Fig. 7b). The Fabry–Pérot resonance-like mode
propagates along z direction of our 1.23-μm tall resonators and
couples with a GM resonance propagating along the x direction of
our 700-nm-wide resonators. Full-wave simulations suggest that
the GM resonance at the wavelength of 915.9 nm arises mainly
from the partially etched double-slit structures, while the one at
936.3 nm is mostly attributable to the MQW slab (Supplementary
Note 3).

Next, we fabricated a tunable metasurface and experimentally
investigated its tunable optical response. We fabricated our
metasurface by electron-beam lithography and inductively
coupled plasma-reactive ion etching (ICP-RIE) etching (see the
Methods section). Figure 3a shows a scanning electron micro-
scopy (SEM) image, in which double slits are observed on the top
of a MQW slab. Figure 3b shows the measured reflectance spectra
of the fabricated metasurface under different applied biases (see
Supplementary Fig. 9 for details of optical setup). At zero bias,
two resonant dips are clearly observed, which is consistent with
our simulation results shown in Fig. 2b. When we decrease the
applied bias from 0 V to ̶10 V, we observe a significant red shift
of the shorter-wavelength resonance, which corresponds to the
hybrid Mie-GM resonance. Moreover, we observe a simultaneous
increase of reflectance intensity with decreased bias. Under an
applied bias, both the real and imaginary parts of the complex
refractive index of the quantum well are modulated. The observed
red shift of the resonance indicates an increase of the real part of
the refractive index. The modulation of the real part of the
refractive index is responsible for the bias-induced phase shift of
the reflected light. On the other hand, the change of the
reflectance at the resonance dip is caused by the modulation of
the imaginary part of the refractive index. Therefore, our hybrid
Mie-GM resonance tunable metasurface can be used as an
efficient amplitude modulator. When analyzing the behavior of
the reflectance at a wavelength of 938 nm, we observe that the

shift of the resonance dip is negligible, while the reflectance at this
wavelength is slightly decreased. At wavelengths longer than
940 nm, high-quality resonances are absent and the index change
is smaller, so we observe no significant reflectance modulation at
these wavelengths. Since our metasurface exhibits much stronger
optical modulation at wavelengths corresponding to the hybrid
Mie-GM resonance, we focused our characterization on the
tunable resonance at shorter wavelengths. To gain further insight,
we plot the relative reflectance as a function of wavelength and
applied bias (Fig. 3c). The relative reflectance is defined as [R(Va

≠ 0 V) – R(Va= 0 V)]/R(Va= 0 V)= ΔR/R0, where Va is the
applied voltage. As mentioned above, in Fig. 3c, we limit the
wavelength range between 915 nm and 925 nm. When Va

decreases from 0 V to −10 V, we observe a strong relative
reflectance modulation. In particular, at a wavelength of 917 nm,
we observe a relative reflectance modulation as high as 270%. The
relative reflectance modulation decreases to about −45% at a
wavelength of 925 nm. Thus, the proposed III–V MQW
resonator-based metasurface is a promising candidate for tunable
amplitude modulation. It is worth mentioning that we observe
about+20% and −30% absolute reflectance modulation [defined
as R(Va ≠ 0 V) – R(Va= 0 V)] at wavelengths of ~917 nm and
~924 nm, respectively (Supplementary Fig. 10). Although they are
quantitatively comparable, the phase modulation and desired
optical functionality can only be observed when a high-quality
factor resonance is present (which shows higher relative
reflectance modulation), as can be seen in the following sections.
In addition, since the amplitude modulation is achieved via the
electro-optic effect rather than charge-carrier injection (due to the
low leakage current density in our samples, see Supplementary
Note 11), the intrinsic modulation frequency of our device can be
MHz (Supplementary Fig. 12) or substantially higher30,49,50.

We also experimentally evaluated the phase shift of the
reflected beam under applied bias at wavelengths of 917 nm and
924 nm using a Michelson interferometer system31,35,37. The
incident laser spot was positioned to illuminate the edge of the
resonator-based metasurface. As a result, part of the incident
beam is reflected from the metasurface, while the other part is
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reflected from the unpatterned MQW heterostructure, and the
phase shift was determined using the unpatterned MQW
heterostructure as a built-in phase self-reference. By processing
and fitting the interference fringes captured by a camera, we are
able to calculate the relative displacement of interference fringes
between the hybrid Mie-GM resonator region and the unpat-
terned region. From this, we retrieved the phase shift acquired
due to the applied bias. Figure 3d shows the measured phase shift
as a function of applied bias at wavelengths of 917 nm (red dots)
and 924 nm (blue dots). When the applied bias is decreased from
0 V to −7 V, we observe a continuous increase in phase shift by
about 70° at a wavelength of 917 nm. The phase shift decreases to
about 50° when the applied bias is further decreased to −10 V.
The phase modulation becomes weaker for wavelengths away
from the hybrid Mie-GM resonance. For example, at a
wavelength of 924 nm, the largest phase shift reduces to 12°,
which we observed at an applied bias of −10 V. This modest
phase shift is also accompanied by a weaker relative reflectance
modulation of −45% (Fig. 3c). These results are consistent with
the Kramers–Kronig relation: a large change of the real part of the
refractive index (phase shift) is accompanied with a significant
modulation of the imaginary part of the refractive index
(reflectance modulation).

Electrical switching of beam diffraction. As experimentally
demonstrated, an extremely strong relative reflectance modula-
tion (~270%) with a phase shift of ~70° can be achieved by
electrically biasing the metasurface. As a next step, we patterned
the edges of the metasurface to selectively apply a bias to inde-
pendent groups of metasurface elements, enabling active control
of reflectance of the independent element groups. This enables us

to demonstrate an electrically switchable grating resulting in
dynamic beam diffraction, which was detected as a far-field
radiation pattern. To create the switchable diffraction grating, we
fabricated a metasurface with similar structural dimensions as the
one described in the inset of Fig. 2b, but we electrically connected
in parallel the resonant stripes in groups of three, and leave the
adjoining group of three resonant stripes isolated, as shown in
Fig. 4a. Under zero applied bias, we observe a single output beam
in the Fourier plane that is reflected normally corresponding to
the zeroth-order diffracted beam. Higher-order diffracted beams
are absent since the period of our metasurface, p=Λ= 910 nm, is
subwavelength at 0 V bias (see details in Supplementary Note 6).
When we apply a negative bias voltage, the reflectance of the
electrically connected MQW resonators increases, causing an
effective increase in the period of the metasurface array (6 × p=
Λ'= 5460 nm). This increased period creates first-order diffracted
beams which appear at an angle defined by the grating equa-

tion: θ ¼ sin�1 mλ
pg

� �
, where pg is the period of the grating andm is

the diffraction order. Figure 4b shows the SEM image of the
fabricated device. Figure 4c shows the schematic optical setup
used for measurement of the far-field radiation pattern in the
Fourier space. We utilized an uncollimated white light source
from a halogen lamp to visualize the sample surface. When
measuring the far-field radiation pattern, we use a coherent NIR
laser beam (Toptica Photonics CTL 950) as a light source. The
laser beam was focused using a long working distance objective
with ×10 magnification and 0.28 numerical aperture. The radia-
tion pattern is captured directly by the CCD camera, which is
positioned in the Fourier plane. Figure 4d and e shows experi-
mentally measured diffraction patterns for different applied bias
voltages. The dynamic diffraction pattern measurements have
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been performed at a wavelength of 917 nm, which corresponds to
the hybrid Mie-GM resonant mode supported by the unit ele-
ments of the metasurface. As seen in Fig. 4d, we observe the first-
order diffracted beam only in the cases when the contrast of the
reflectance between the resonator groups (i.e., the difference in
their refractive indices) becomes significantly large. For applied
bias voltages between 0 V and −3 V (0 V ≥ Va ≥ ̶3 V) we observe
specular reflection from the metasurface. For applied bias voltages
below −3 V (Va ≤ ̶ 3 V), the first-order diffracted beam appears
at an angle of about 9.66° in the Fourier plane. Interestingly, the
intensity of the first-order diffracted beam saturates when the
absolute value of the applied bias is lower than −6.5 V (Fig. 4d).
We do not observe the first-order diffracted beam when the
incident wavelength is switched to 924 nm (Supplementary
Note 8). This is expected because there is no significant reflec-
tance and phase modulations at this wavelength.

Dynamic beam steering with all-dielectric electro-optic MQW
metasurface. Apart from switchable beam diffraction, we
experimentally demonstrated beam steering, which requires
control over individual metasurface elements. The spatial position
of the first diffraction order can be effectively shifted when the
periodicity of metasurface is changed, enabling manipulation of
far-field radiation. To realize dynamic beam steering, we designed
and fabricated another metasurface in which each unit element is
electrically isolated by fully etching the air gap between the
quantum well slabs. Due to the high refractive index and large
thickness of the MQW slabs, the resonant mode is sensitive to
minor variations of metasurface structural parameters. This
results in different electromagnetic field profiles between the first
and the second hybrid Mie-GM metasurfaces (Fig. 2c, d; Sup-
plementary Fig. 14). Our beam steering metasurface also supports
a hybrid Mie-GM resonant mode at a wavelength near the band
edge absorption of the MQWs, yielding reflectance and phase

modulation (Supplementary Note 9). Figure 5a–d shows the
images of the fabricated sample where 64 unit MQW resonator
elements are electrically connected to a printed circuit board
(PCB) via wire bonding, and each element is independently
controlled (see the Methods section). We first examined the
spectral response as well as the active optical modulation of this
metasurface by applying an identical electrical bias to all the array
elements. This beam steering metasurface sample yielded about
80% relative reflectance modulation with a phase shift of ~42°
(Supplementary Fig. 15). Next, by individually addressing each
metasurface element, we steered the reflected beam, as seen in
Fig. 5e, where the first-order diffraction angle becomes smaller
as the metasurface periodicity is increased via electrical control.
Our numerical simulations show similar far-field radiation pat-
terns (Supplementary Fig. 16a). Note that the sidelobes appear
around the zeroth-order diffraction beam are from the finite
aperture effect, which can be seen in both measured and simu-
lated results. By characterizing the measured and simulated far-
field radiation patterns with a larger total number of unit
elements (Fig. 5e; Supplementary Fig. 16), the first-order dif-
fraction peaks can be picked out, as indicated by black arrows in
Fig. 5e. In addition, as seen from our simulations, the width of
both zero- and first-order diffracted beams is narrower when the
total number of unit elements is larger (Supplementary Fig. 16b).

Discussion
In summary, we have demonstrated an all-dielectric active
metasurface platform based on an electro-optic effect in III–V
compound semiconducting MQWs. Our metasurface consists of
an array of two-dimensional hybrid Mie-GM resonators which
exhibit an actively tunable optical response under applied bias in
the NIR wavelength range. By applying a DC electric field across
the hybrid Mie-GM resonators, we have experimentally observed
a relative reflectance modulation of ~270% at a hybrid Mie-GM-
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resonant wavelength of 917 nm. We have also measured a con-
tinuous phase shift from 0° to 70° at a wavelength of 917 nm. To
demonstrate a dynamic diffraction grating utilizing this large
reflectance modulation with modest phase shift, we have elec-
trically connected metasurface elements in groups of three and
actively changed the metasurface period by applying DC electric
field across the hybrid Mie-GM resonators. As a result, we
have been able to electrically switch on and off the first-order
diffracted beam. Finally, as a proof-of-concept, we further
experimentally demonstrate a dynamic beam steering with elec-
trical and individual control of each unit element over the MQW
metasurface array.

In our work, our starting point is a monolithically grown
III–V compound semiconducting wafer, which we pattern by
using electron-beam lithography and dry etching. This is quite
different from the case of hybrid active metasurfaces, where the
metasurface cannot be grown monolithically. Monolithically
grown MQW active metasurfaces can potentially be integrated
with existing light emitting devices, such as vertical-cavity
surface-emitting lasers (VCSELs). Such an integrated device
could serve as a base for future on-chip light detection and
ranging systems. Since the tunable optical response of MQWs is
based on an electro-optic effect, the proposed metasurface
platform also offers the benefit of high modulation speed. The
presented active metasurface platform may be useful for the
realization of dynamically tunable ultrathin optical compo-
nents, such as tunable metalenses with reconfigurable focal
lengths and numerical apertures, on-chip beam steering devi-
ces, active polarizers, and flat spatial light modulators. The
performance of the proposed all-dielectric metasurface with
hybrid Mie-GM resonance can be further improved by utilizing
alternative quantum well systems which exhibit larger mod-
ulation of the real part of the refractive index and lower optical

loss as compared to the quantum well used in the present
work55,56 (Supplementary Note 13).

Methods
Numerical simulation. All numerical simulations were carried out using finite
difference time domain (FDTD) method (Lumerical). When designing our MQW
resonators, we used the perfectly matched layer (PML) boundary condition in z
direction and the periodic boundary conditions in x direction. Hence, the calcu-
lations of the reflectance spectrum of the MQW resonators were performed in the
array configuration. The MQW resonators were assumed infinite in y direction. In
our electromagnetic calculations, we assumed that the incoming light impinged
normally on the metasurface. That is, the incoming electromagnetic wave propa-
gated along the z direction. For simplicity, the refractive indices of the n-
Al0.9Ga0.1As, n-Al0.31Ga0.69As, GaAs0.6P0.4, and InGaP were set as a constant of 3,
3.39+ 0.004i, 3.3+ 0.004i, 3.2+ 0.004i, respectively. The effective refractive index
of MQW can be found in Supplementary Fig. 18.

Sample fabrication. First, the bottom Ge/Ni/Au Ohmic contact of thickness 43
nm/30 nm/87 nm was deposited on the n-doped GaAs substrate of the MQW wafer
by electron beam evaporation. Next, a 1.5-μm-thick 950 PMMA A9 layer was spin
coated at 4000 rpm on the front side of the prepared MQW wafer for 60 s. The
MQW sample with the PMMA layer on top was then baked on a hot plate for
3 min at 180 °C. Subsequently, we defined the top Ohmic contacts and alignment
markers by using the development, metal deposition and lift-off processes where
the patterning was done via an electron beam direct write lithography system
[VISTEC electron beam pattern generator (EBPG) 5000+] at an acceleration
voltage of 100 keV with a current of 5 nA. After defining the top Ohmic contacts
and alignment markers, ZEP 520A was spin coated at 4000 rpm for 60 s, and the
sample was then baked on a hot plate for 3 min at 180 °C. The double-slit struc-
tures were defined via the electron beam writing system at an acceleration voltage
of 100 keV with a current of 0.3 nA. The sample was then baked for 2 min at 110 °C
and developed at about 10 °C for 90 s. The structured ZEP 520 A resist was used as
a mask for dry etch process, which was employed for fabrication of double slits.
The etching was performed using a III–V compound semiconductor etcher (ICP-
RIE, Oxford Instruments System) with gas flow rates of Cl2: Ar= 5 sccm: 30 sccm
under 5 mTorr chamber pressure for 80 s. The double slits were obtained after the
removal of ZEP 520A using remover PG. The resonators were finally defined by the
third electron-beam writing process, followed by the same recipe for development,
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Fig. 5 Tunable beam steering with MQW-based all-dielectric metasurface. a Photographic image of the fabricated gate-tunable metasurface for the
demonstration of dynamic beam steering. The metasurface sample is mounted on a voltage-deriving PCB, which has 64 contact pads for individually
applying bias on each metasurface unit element. b–d Scanning electron microscopy images of the gate-tunable metasurface. To electrically isolate every
unit structure, portions of the sample are fully etched. Inset in (d) shows the top view of the fabricated metasurface. e Measured results of dynamic beam
steering by electrically changing the periodicity of metasurface. Black arrows indicate the position of the first diffraction order in each case. Right column
illustrates how the spatial arrangement of electrical bias changes the periodicity of metasurface. The incident wavelength is fixed at 917 nm. Scale
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and dry etched as before with a chamber pressure of 3 mTorr for 8 min. The final
removal of ZEP 520A was performed using remover PG.

Electrical connection to printed circuit boards (PCBs). We design two printed
circuit boards (PCBs) to individually apply bias to each metasurface element across
the antenna array. The sample is mounted on the first PCB, and 63 individual
metasurface elements as well as the bottom contact are wire-bonded to 64 con-
ducting pads on the PCB. Each conducting pad of the first PCB is then connected
to an external pin on the second board. This PCB is capable of providing 64
independent voltages that can be individually controlled through the reference
voltages derived by an external power supply (Keithley 2400). The second board
has different configurations of voltage paths. By switching between different con-
figurations, one can electrically change the grating periodicity of the metasurface.

Data availability
The data that support the findings of this study are available from the authors on
reasonable request; see author contributions for specific data sets.
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