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ABSTRACT

Arctic weather in spring is unpredictable and can also be extreme, so Arctic-breeding birds must be
flexible in their breeding to deal with such variability. Unpredictability in weather conditions will
only intensify with climate change and this in turn could affect reproductive capability of migratory
birds. Adjustments to coping strategies are therefore crucial, so here we examined the plasticity of
the adrenocorticotropic stress response in two Arctic songbird species—the snow bunting
(Plectrophenax nivalis) and Lapland longspur (Calcarius lapponicus)—breeding in northwest
Greenland. Across the breeding season, the stress response was strongest at arrival and least robust
during molt in male snow buntings. Snow bunting females had higher baseline but similar stress-
induced corticosterone levels compared to males. Modification of the stress response was not due
to adrenal insensitivity, but likely regulated at the anterior pituitary gland. Compared to
independent nestlings and adult snow buntings, parental-dependent chicks had a more robust
stress response. For Lapland longspurs, baseline corticosterone was highest at arrival in both male
and females, and arriving males displayed a higher stress response compared to arriving females.
Comparison of male corticosterone profiles collected at arrival in Greenland (76°N) and Alaska (67-
71°N;) reveal that both species have higher stress responses at the more northern location.
Flexibility in the stress response may be typical for birds nesting at the leading edges of their range
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and this ability will become more relevant as global climate change results in major shifts of
breeding habitat and phenology for migratory birds. J. Exp. Zool. 323A:266-275, 2015. © 2015 The
Authors. J. Exp. Zool. published by Wiley Periodicals, Inc.
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Weather conditions in the Arctic environment can be extreme and
unpredictable (Walsh et al., 2005; Weatherhead et al., 2010) and it
is likely that this variablity and unpredictablity will only increase
in the future because of global climate change (Serreze et al., 2000;
Post et al., 2001; Sturm et al., 2001 Gaston et al., 2005; Hoye et al.,
2007). Indeed, Arctic sea ice is melting earlier in the spring and
tundra permafrost is melting to greater depths. The Arctic summer
is also getting longer as the tundra and water surfaces take longer
to freeze in autumn (Olsson et al., 2003). When migrant songbirds
arrive at their northern breeding grounds, they may, in some years,
have to cope with inclement weather that can negatively affect
breeding. In other years they may be met by weather conditions
that are conducive to breeding (Wingfield and Hunt, 2002; Martin
and Wiebe, 2004; Wingfield et al., 2004). Determining the
mechanisms that migrant birds use to cope with environmental
stochasticity and reproduce successfully in the variable Arctic
environment, particularly at the very edge of their breeding
ranges, remains of great interest.

The songbirds that arrive in spring must be highly flexible to
adjust breeding activities in case of inclement weather. They must
also be able to take advantage of multiple food resources that are
sometimes patchy in their distribution (Martin and Wiebe, 2004;
Wingfield et al,, 2004). Northern weather conditions on the
breeding grounds are typically more severe than those on the
wintering grounds and this can result in stimulation of the
hypothalamus-pituitary-adrenal (HPA) axis causing an increase
in glucocorticoid secretion (Romero et al., 2000; Reneerkens et al.,
2002; Meddle et al., 2003). Glucocorticoids (e.g., corticosterone in
birds) enable individuals to cope with environmental stressors by
enhancing mobilization of energy stores, triggering movements
away from the source of stress, and facilitating other facultative
behavioral changes (Sapolsky et al., 2000; Romero, 2002;
Wingfield and Sapolsky, 2003). However, elevated corticosterone
may inhibit reproductive development and delay the onset of
breeding despite the need to begin nesting as early as possible in
an environment where the window for successful reproduction
is only 4-5 weeks (Wingfield and Hunt, 2002; Wingfield
and Sapolsky, 2003). Thus, strategies with which to cope with
unpredictable environments are critical to ensure appropriate
timing of nesting (Martin and Wiebe, 2004). Such mechanisms
include modulation of the stress response driven by changes in
stress hormone titers and mineralocorticoid and glucocorticoid
receptor expression (Krause et al., 2015).

Studies of northern latitude migratory songbirds suggest that
many species have a robust adrenocortical response to acute
stress upon arrival onto their breeding grounds (Reneerkens
et al., 2002; Holberton and Wingfield, 2003; Meddle et al., 2003;
Wingfield and Ramenofsky, 2011; Krause et al., 2015). These
hormonal patterns are particularly evident in species in which
males arrive first (Wingfield and Hunt, 2002). During severe
weather the robust increase in corticosterone may facilitate the
movement of birds away from their breeding areas to refuges
further south where they will remain until the situation improves.
Once weather conditions improve the birds may then return to
reattempt breeding (Wingfield et al., 2004). It remains unclear
how, or if, the robust stress response varies according to the
latitude or location of the northern extremes of breeding grounds.
Indeed, how robust the adrenocortical response to acute stress
is on arrival at the breeding grounds appears to be highly
variable among avian species and even among populations. For
example, snow buntings (Plectrophenax nivalis) and Lapland
longspurs (Calcarius lapponicus) breeding early in the season in
Alaska, appear to maintain a lower adrenocortical response to
stress when compared to other Arctic breeding species such as
white-crowned sparrows (Zonotrichia leucophrys) and American
tree sparrows (Spizella arborea) that breed at lower latitudes in
Alaska (Wingfield et al., '95; Romero et al., '97; Meddle et al.,
2002; Holberton and Wingfield, 2003; Krause et al., 2015).
However, in spite of this lower stress response, incubating
Lapland longspurs on the North Slope of Alaska abandoned their
nests following a 3-day snowstorm with sub-freezing temper-
atures and resumed flocking behavior typical of the non-breeding
season. This nest abandonment was accompanied by a dramatic
increase in corticosterone (Astheimer et al., '95). So clearly, if
environmental conditions deteriorate for prolonged periods,
there is the potential for a robust adrenocortical response to
stress (Astheimer et al., '95).

The lowest observed adrenocortical stress response in Arctic
birds occurs once breeding is over and the pre-basic feather molt
begins. This is thought to be a mechanism by which detrimental
effects of corticosteroids on protein synthesis and turnover are
avoided during feather formation when large amounts of keratin
are being produced (Romero et al., 2005). In support of this
argument, experimental elevation of circulating corticosterone
during molt can result in the malformation of feathers (Romero
et al., 2005; DesRochers et al., 2009).
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The magnitude of the adrenocortical stress response also varies
with age. A “hypo-responsive period”—where the HPA stress
response is underdeveloped in young that are unable to
thermoregulate and obtain their own food (i.e., altricial young)
—has been well described in a number of species (Walker et al.,
2005; Wada et al., 2007; Wada and Breuner, 2008; Rensel et al.,
2010). A robust stress response gradually develops as chicks grow
so that when chicks are ready to fledge from the nest an adult-like
stress response is typically observed.

We conducted field investigations to investigate patterns of
glucocorticoid hormone release during the breeding season in
both snow buntings and Lapland longspurs at the northern edge of
their range in northwest Greenland. To date, our knowledge of
whether Arctic breeding specialists are able to modulate their
adrenocortical responses to extreme conditions upon arrival on
their breeding grounds is limited. We hypothesized that these
species would show a higher adrenocortical response to stress
upon arrival at the northern edge of their breeding range, and,
once breeding had commenced, show a decline that continues into
molt. Such regional variation in the adrenocortical response to
stress could be an important physiological mechanism allowing
animals to breed in a range of geographical locations where the
weather is extreme and unpredictable.

The modulation of the adrenocortical response to stress during
the breeding season is achieved to varying degrees by changes in
secretion and/or responses to adrenocorticotropic hormone
(ACTH), corticotropin releasing-factor (CRF), and arginine
vasotocin (AVT) (Romero and Wingfield, '98; Romero et al.,
’98b,c,d). Such investigations are important to determine whether
the modulation of the stress response involves changes in: (i)
sensitivity of adrenocortical cells to ACTH; (ii) sensitivity of
pituitary corticotrophs to CRF and AVT; (iii) release of CRF and
AVT from the hypothalamus, or (iv) modification in the central
nervous system prior to integration in the hypothalamus. In the
present study we determined whether corticosterone levels can
increase beyond those generated by the capture-stress-protocol
and at what level of the HPA axis stress response modulation may
occur. To do this we gave intravenous injections of ACTH, CRF,
and AVT and quantified corticosterone release.

In addition, we compared the stress response in fledglings that
were outside the nest, but still dependent on parents for food, with
those fledglings that had recently become completely independent
from their parents. We predicted that dependent fledglings would
still have a lower stress response compared to adults as food was
being provided for them. For recently independent fledglings,
however, we predicted a higher stress response than adults (and
dependent fledglings as well), due to their need to be obtaining
food independently.

Snow buntings and Lapland longspurs are species of particular
interest because both are Holarctic in distribution and breed
across a wide latitudinal range throughout the Arctic. Thus,
comparisons across a latitudinal gradient are possible. In the
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High Arctic, these birds are generally migratory. Very few spend
the entire year in the north, and those that do remain are only
found in lower Arctic regions. These species are also interesting
because of the differences in their timing of arrival onto High
Arctic breeding grounds. The snow bunting is one of the earliest
songbirds to arrive in spring (Tinbergen, '39; Irving, '60) and
because winter conditions may still be prevalent, breeding may
not begin until some weeks later. In contrast, Lapland longspurs
arrive later and are generally more synchronous with arrival of
other migratory Arctic songbirds (SLM, BGW, and JCW,
unpublished data).

MATERIALS AND METHODS

Data collection and experimental observations were performed in
and around Thule Air Force Base, Thule, Greenland (76°32'N; 68°
50'W) during June and July 2001. The elevation of location of
captures and observations ranged from sea level to a maximum of
300m. All animal handling procedures were approved by the
University of Washington Institutional Animal Care and Use
Committee. Permits and permission for work in Greenland were
obtained in association with the High Arctic Institute, Peregrine
Fund, USA.

Capture and Sampling

We captured male and female snow buntings and Lapland
longspurs on their breeding grounds with mist nets, Potter traps
baited with seeds, or clap nets at the nest, the latter triggered by a
5m rope pulled by a hidden observer. Following capture, the
adrenocortical response to acute capture and handling stress was
assessed (Wingfield, '94). We collected a blood sample within
3min of capture, via puncture of the alar vein in the wing, to
evaluate pre-disturbance hormone titers, as glucocorticoid
hormones levels have been shown to not significantly increase
if obtained within 3 min of capture (Romero and Reed, 2005).
Following baseline sampling, we placed birds into opaque cloth
bags and collected subsequent blood samples at 10, 30, and
60 min. We stanched blood flood with cotton after each sampling.
At each sampling time we collected approximately 30-40 p.L of
blood into heparinized microcapillary tubes, which were held on
ice until return to the laboratory later in the day. Samples were
then centrifuged at about 500¢g for 5-10 min. Resultant plasma
was collected and frozen at —20°C and was kept frozen until
processed for radioimmunoassay (see below).

We assigned the sex of each bird via dimorphic plumage, and
determined breeding status by presence of a brood patch in
females and the size of the cloacal protuberance in males. For
example, a developing brood patch is indicative of nest
initiation whereas a full edematous brood patch is typical of
late incubation and nestling brooding (Wingfield and Farner,
'76, '78). We assigned a fat score from the furculum and
abdomen using an arbitrary scale from 0 (no visible fat) to 5
(gross bulging fat bodies; see Wingfield and Farner, '78). Any
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indication of molt was recorded by the absence of primary
flight feathers (remiges) and the development of replacement
feathers. We fitted birds with a unique metal numbered leg
band and a combination of plastic color leg bands to aid in field
identification.

We assessed snow buntings for the corticosterone stress
response during four stages: arrival onto breeding grounds (prior
to the appearance of eggs in the nest), incubation, the feeding of
nestlings, and molt. In addition, late in the season, we compared
corticosterone stress responses in birds of three age classes: adults,
young-of-the-year receiving food from parents, or young-of-the-
year that were feeding independently. We assessed adult Lapland
longspur males and females for their corticosterone response to
stress during two stages: arrival onto breeding grounds (pre-
nesting) and post-arrival—once birds had established a nesting site
and initiated breeding activities. Finally, we compared the
glucocorticoid stress responses of male snow buntings and
Lapland longspurs arriving in Greenland to stress response data
for arriving snow buntings and Lapland longspurs in Alaska, USA
(Toolik Field Station, 67°N and Barrow, 71°N). We obtained the
Alaska data from previously published work (Wingfield et al.,
’94b; Astheimer et al., '95) or data maintained in the Wingfield
laboratory database.

Function of the HPA Axis

We challenged a subset of snow bunting adults with peptide
injections to assess the functionality of the HPA axis during
incubation and when nestlings were being fed. To examine
adrenal function, immediately after capture and initial blood
sampling we injected birds (into the jugular vein) with 14 pL
lactated Ringer’s solution (Baxter) containing 100 [U-kg porcine
adrenocorticotropic hormone (ACTH, Sigma-Aldrich, St. Louis,
MO, USA). To examine pituitary function, we injected birds with
one of three treatments including: (i) 3 pg/kg corticotropin-
releasing factor (CRF, Sigma-Aldrich), (ii) 3 pg/kg arginine
vasotocin (AVT, Sigma-Aldrich), or (iii) 3 wg/kg each of CRF
and AVT combined, all dissolved in Ringer’s solution. Following
all injections, we placed each bird in an opaque cloth bag for
30 min after which we collected approximately 60 L of blood for
corticosterone quantification. Due to the limited number of birds
available, we chose to use as our controls in the injection study the
birds caught for regular stress series, rather than injecting a suite
of birds with saline. Previous studies in snow buntings have shown
that hormone levels from ringer-injected controls (Romero et al.,
'98b) are essentially equivalent to non-injected birds (Romero
et al., '98a).

Corticosterone Radioimmunoassay

We measured corticosterone titers by radioimmunoassay after
extraction from plasma with freshly re-distilled dichloromethane.
We equilibrated all samples with approximately 2,000 cpm of
tritiated corticosterone as an internal standard for determination
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of recovery following extraction, then added corticosterone
antiserum (Endocrine Sciences, Calabasas Hills, CA) to all samples.
We separated bound and free hormone by addition of dextran-
coated charcoal. For details of the corticosterone assay, see
Wingfield et al. ("91). Recoveries typically ranged from 50-90%.
Intra-assay variation (for a total of three assays) was 5.4%, while
inter-assay variation was 16.6%. Sensitivity of the assay was
approximately 0.1 ng/ml.

Statistical Analysis

We used SPSS for all statistical analyses, and log-transformed all
hormone data prior to calculations. We used General Linear Models
(GLM) to compare baseline and integrated corticosterone (depen-
dent variables) between sex and breeding stage (fixed effects) for
snow buntings and Lapland longspurs. We also used GLM to
compare differences in baseline and integrated corticosterone
(dependent variables) by age of snow buntings and for the various
injection treatments in snow buntings (fixed effects) as well as to
compare our Greenland data with data previously collected and
published in the Wingfield laboratory on birds in Alaska. We
calculated integrated corticosterone (i.e., a measure of the complete
corticosterone response during the capture protocol) by calculating
the area under the curve using the arithmetic trapezoid rule. We
used Tukey’s HSD as our post-hoc test, when required.

RESULTS

For snow buntings, females (n=28) had higher baseline
corticosterone than males (n=29; F(49=493; P=0.03;
Fig. 1) but integrated corticosterone was the same between sexes
(F(1,49)=0.01; P =0.92). When both sexes were combined, there
were no significant differences in baseline corticosterone across
stages (F(3,49)=2.09; P=0.11; all stages combined; Fig. 1) but
integrated corticosterone was different (F(3 49)=7.67; P < 0.001),
with molt being lower than the three other stages (arrival: Tukey’s
HSD—P < 0.001; incubation: Tukey’s HSD—P = 0.01; nestlings:
Tukey’s HSD—P = 0.02; Fig. 1).

Within snow bunting females, neither baseline (F 4= 1.73;
P =0.19) nor integrated corticosterone (F(349)=1.19; P =0.34)
was different across stages (Fig. 1). For males, baseline
corticosterone was the same across stages (one-way ANOVA
F(3.25 = 2.28; P =0.10). However, integrated corticosterone was
different across stages (F(3,sy=13.85; P <0.001) with arrival
being higher than nestlings (Tukey’s HSD—P < 0.05) and molt
(Tukey’s HSD—P < 0.05; Fig. 1).

When comparing snow buntings of different ages, we found
that baseline corticosterone was not significantly different
between adults (n=12), just-fledged chicks still dependent on
parents (n =4), and independent fledglings (n = 10; F(; »3) = 0.46;
P =0.64 (Fig. 2). However, integrated corticosterone was different
among ages (F(,,3=3.82; P=0.04) with just-fledged chicks
showing higher integrated corticosterone than either adults
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Figure 1. The corticosterone stress response in female and male
snow buntings at Thule, Greenland. Birds were sampled during
arrival onto breeding grounds, incubation, the nestling stage, and
during molt. Females had higher baseline corticosterone than
males (P =0.03), but were not different in integrated corticoste-
rone (area under the curve; P =0.92). Across stages, baselines were
again similar (P =0.11), but integrated corticosterone during molt
was lower than the three other life history stages (arrival:
P <0.001; incubation: P=0.01; nestlings: P=0.02). Within
females, baseline and integrated corticosterone were similar
across stages (P=0.01 and P=0.34, respectively). Baseline
corticosterone was similar across stages for males (P=0.10),
but integrated corticosterone was higher at arrival as compared to
nestling and molt stages (P <0.05 and P < 0.05, respectively).
Sample sizes are included in parentheses.

(Tukey’s HSD—P = 0.04); or independent fledglings (Tukey’s HSD
—P =0.05, Fig. 2).

For Lapland Longspurs, there were no significant differences
overall between females (n= 11) and males (n = 12) in baseline
corticosterone (F(;,19)=0.83; P =0.37), but baseline corticoste-
rone was higher during arrival compared to post-arrival for both
sexes (F(; 19y=17.21; P = 0.001; Fig. 3). Integrated corticosterone

h
=

[ —@—— Dependent Fledgling
= L 7= Independent Fledgling
=== Adult

4
=
T

4)

30 p
- (10)
20 F ’-"f
__;.."——.-————— (12)
10 b =z~
0k

0 10 20 30

Plasma Corticosterone (ng/ml)

Time after capture (min)

Figure 2. Plasma corticosterone in snow buntings of three
different ages at Thule, Greenland: just-fledged chicks still
dependent on parents, independent fledglings, and adults during
their molt period. Baseline corticosterone was similar across ages
(P=0.64), but integrated corticosterone was higher in dependent
fledglings as compared to both independent fledglings (P =0.04)
or adults (P=0.05). Sample sizes are included in parentheses.

was not different between sexes overall (F(; ,9y=0.08; P =0.79;
Fig. 3), but both stage (F; o)=24.75; P <0.001) and the
interaction between sex and stage (F(; ;o =11.82; P =0.003)
were significantly different for integrated corticosterone. Post hoc
analyses showed that for males, corticosterone was higher during
arrival as compared to post-arrival (F(;, ;0= 28.13; P <0.001),
while females showed no differences in integrated corticosterone
between stages (F(; o) = 1.70; P =0.23; Fig. 3).

There was no difference in baseline corticosterone between
controls (n=46) and the ACTH treatment group (n=11;
Fu39=1.46; P=0.24; Fig. 4). At 30-min post-injection,
corticosterone was significantly higher in ACTH-injected birds
than in controls (F(,40)="7.07; P =0.01; Fig. 4).

There was no significant difference in baseline corticosterone
among controls (n =46) and any of the other injection groups
(CRF (n=8); AVT (n=7), AVT+CRF (n=8); F;.46=0.19;
p=0.90; Fig. 4). Similarly, corticosterone levels at 30 min were
not different among treatment and control birds (F(; 49)= 2.35;
P =0.08; Fig. 4).

Arriving male snow buntings in Greenland had significantly
higher integrated corticosterone than snow buntings that arrived
on breeding grounds in Alaska (t=—2.12; P=0.05; Fig. 5). As
well, arriving Lapland longspurs in Greenland had significantly
higher integrated corticosterone (F(, )= 15.08; P < 0.001) com-
pared to birds arriving in Toolik Field station, Alaska (Tukey’s HSD
—P < 0.001) and Barrow, Alaska (Tukey’s HSD—P < 0.004; Fig. 5).
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Figure 3. The corticosterone stress response in female and male
Lapland longspurs at Thule, Greenland following capture. Baseline
corticosterone was similar between the sexes (P = 0.37), but higher
in arrival compared to post arrival for both sexes (P < 0.001). While
integrated corticosterone (area under the curve) was not different
between sexes (P=0.77), integrated corticosterone was higher
during arrival for males (P<0.001) but females showed no
differences between stages (P=0.29). Sample sizes are given in
parentheses.

DISCUSSION

Over a decade ago Wingfield and Sapolsky (2003) suggested that
animals breeding at high latitudes, where the breeding season is
extremely short, might decrease sensitivity to acute stressors to
increase reproductive success, even though this may potentially
reduce survival in the face of local perturbations. Evidence to date
indicates that several species nesting at the northern limit of their
range do indeed suppress the adrenocortical responses to a
standardized stressor, but only during the later stages of breeding
(Wingfield, '94; Wingfield et al., '95, 2004). This attenuation is
thought to be regulated by a decrease in mineralocorticoid
receptor expression in the hippocampus (Krause et al., 2015).

70 r mmmm Control (46)

— ACTH (11)
60

%
50 p
40
30F
20 p
10 T
0
Pre-injection Post-injection

70 [ mmmm Control (46)
=3 CRF (8)

60 I mmmm AVT (7)

ES] CRF +AVT (8)

40 F

Plasma Corticosterone (ng/ml)

30 F

Pre-injection Post-injection

Figure 4. Effect of injections of adrenocorticotropin (ACTH),
corticotropin releasing factor (CRF), arginine vasotocin (AVT),
and combination (CRF+ AVT) on plasma corticosterone in snow
bunting adults in Thule, Greenland. There was no difference in
pre-injection corticosterone for ACTH-injected and control birds
(P =0.24; top panel), but corticosterone was significantly higher in
ACTH birds 30-min post-injection (*P=0.01; top panel). There
were no differences in corticosterone at either pre-injection
(P=0.90) or 30-min post-injection between control and any of the
other injection groups (CRF, AVT, CRF + AVT; P = 008; lower panel).
Samples sizes are given in parentheses.

On arrival, male snow buntings and Lapland longspurs
exhibited a higher glucocorticoid stress response (Figs. 1 and 3)
as compared to later in the breeding season. Furthermore, this
stress response is decreased in males and females of both species as
nesting ensues, and in particular for Lapland longspurs, at the
onset of molt (Figs. 1 and 3). This decrease as breeding season
progresses has been demonstrated in populations breeding at
lower latitudes in the Arctic (Wingfield et al., '94a,b). More
importantly, male snow buntings and Lapland longspurs breeding
in Northwest Greenland show greater adrenocortical responses to
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Figure 5. Comparison of adrenocortical responses to stress in male
snow buntings and Lapland longspurs in Alaska, USA (Toolik Field
Station, 67°N and Barrow, 71°N), and Thule, Greenland (76°N). For
both species, the corticosterone stress response was greater in the
more northerly study site—Greenland (snow buntings P =0.05;
Lapland longspurs P < 0.005). Females showed no differences in
corticosterone profiles according to latitude (data not shown).
(Alaska data from Wingfield et al., '94b; Astheimer et al., '95).

stress on arrival from migration and prior to onset of nesting
compared with populations in Barrow Alaska (Fig. 5). These data
are consistent with the hypothesis posited by Wingfield et al.
(2004) which states that a greater adrenocortical response to stress
at arrival to the breeding grounds in spring could be adaptive in
allowing birds to be more reactive to variable conditions and to
respond quickly and effectively if conditions are not ideal.
However, once committed to nesting, these birds should then
become more resistant to perturbations so as to enhance
reproductive success. Additionally, the down regulation of the
stress response later on in the breeding season may be a pattern in
support of the brood-value hypothesis (i.e., Heidinger et al., 2006;
Lendvai et al., 2007). Specifically, as postulated by Wingfield and
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Sapolsky (2003), if the value in current reproduction is high, as
compared to reproductive attempts in the future, then suppression
of the stress response should occur, decreasing the probability of
immediate nest abandonment and concomitant increased chick
mortality.

Interestingly, in Lapland longspurs (Fig. 3), and in contrast to
snow buntings (Fig. 1), the baseline corticosterone upon arrival
was higher than at any other time in the breeding season for both
males and females. Perhaps elevated corticosterone in the
synchronously arriving Lapland longspurs relates to their later
arrival and their need for elevated energy in order to immediately
commence breeding activities. High baseline corticosterone levels
have previously been reported in the red knot (Calidris canutus
islandica), a long-distance High Arctic migrant (Reneerkens et al.,
2002).

Female birds show patterns in corticosterone secretion that are
much less affected by limits to northern range, as seen in the
white-crowned sparrow, American tree sparrow, and Smith’s
longspur (Calcarius pictus) breeding at the northern edge of their
ranges on the North Slope of Alaska (Holberton and Wingfield,
2003; Meddle et al., 2003; Krause et al., 2015). It is not clear why
females, unlike males, do not show a higher acute stress response
after arrival from migration as compared to the rest of the breeding
season. In the High Arctic, females arrive within a few days of
males and, thus, are exposed to the same environmental
conditions, but males do establish territories on arrival and
generally accompany females closely. By playing a sentry role (i.e.,
looking out for predators) and defending a territory, males may
allow females to feed more efficiently so they accumulate greater
reserves for egg laying and can spend greater time incubating
(JCW, unpublished observations).

In contrast to our prediction, it was surprising to discover that
snow bunting fledglings still dependent on parents for food had a
high adrenocortical response to stress (Fig. 2). Moreover,
independent fledglings—with no evidence of parental care or
begging—had stress responses similar to adults. Previous studies in
lower latitudes have shown that chicks at or near fledging have a
normal, adult like stress response (Walker et al., 2005; Wada et al.,
2007; Wada and Breuner, 2008; Rensel et al., 2010). Perhaps the
new experience of being out of the nest, begging for food from
their parents and competing for food with their siblings, greatly
affected the HPA axis of these fledglings. Indeed, studies have
shown that corticosterone and begging behavior can be correlated
in birds (Kitaysky et al., 2001; Quillfeldt et al., 2006). We had
predicted that the independent fledglings, completely independent
from their parents, might have been more susceptible to the stress
of having to find their own food. In reality, these independent
young had a plethora of food available to them (Wingfield,
unpublished data), so having learned how to obtain their own food
relieved some of the need for a higher stress response elicited by
the still dependent and slightly younger fledglings that are
begging and competing for food with their nest-mates.
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At 30min post-injection, ACTH-injected snow buntings
showed significantly higher corticosterone levels than controls
(Fig. 4). This indicates that the modulation of corticosterone
release is occurring above the level of the adrenocortical tissue. We
further tested regulatory mechanisms above the adrenal tissue by
injecting snow buntings with CRF, AVT, or CRF + AVT. None of the
injection treatments resulted in increased corticosterone titers as
compared to controls. Thus, modulation of the adrenocortical
response is most likely occurring at the level of the pituitary gland
in snow buntings. This is different from results from Alaskan snow
buntings where AVT successfully augmented corticosterone
release (Romero et al., '98b), presumably via increased endogenous
ACTH release.

Latitudinal Differences

A comparison of the corticosterone profiles collected here
(Northwest Greenland; 76°N) with those from studies in Alaska
(67-71°N) (Wingfield et al., '94b; Astheimer et al., '95) reveal that
male snow buntings and Lapland longspurs have a markedly
higher corticosterone stress response upon arrival in Greenland
(Fig. 5). Hormone analyses from previous studies compared here
were conducted in the Wingfield laboratory under similar
protocols and conditions. Thus, we feel confident in our ability
to include data from previous studies as our long-term data set on
Arctic breeding passerines makes such comparisons possible.

These findings extend our knowledge of when and how the
adrenocortical response to acute stress is modulated and confirms
that males of some species at the northern extremes of their
breeding range enhance their stress responses at arrival. It is also
likely that such flexibility in modulation of stress responses may
be typical of nesting birds at their upper altitudinal range and at
the leading edge of range expansion into urban areas (Bonier et al.,
2007; Addis et al., 2011; Liebl and Martin, 2012). These latitudinal
correlations are similar to those reported in a recent across-avian-
species analysis of stress response vs. latitude (Jessop et al., 2013).
The relationship, however, does not appear universal, as Quirici
et al. (2014) found no association between latitude and the stress
response in another bird species, the thorn-tailed rayadito
(Aphrastura spinicauda).

How an individual’s stress response relates to an individual’s
fitness is a topic of intense interest and discussion among stress
physiologists (e.g., Breuner et al., 2008; Bonier et al., 2009; Crespi
et al., 2013). How large scale and abiotic environmental factors
affect stress expression are also significant considerations,
especially as concern over global climate change increases (Jessop
et al., 2013; Wingfield, 2013). In the present studies, we were
unable to measure direct fitness outcomes because the patterns of
stress response expression seem to show high variability in some
instances (i.e., the pattern of stress expression during the breeding
chronology varies among species), while in others, there appears
to be a more consistent pattern (i.e., latitudinal expression
patterns). As such, further studies are required. In particular, the
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question of how global climate change and other anthropogenic
impacts on the environment will affect the overall fitness in many
different bird species is a particularly compelling question.
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