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Probing spin hydrodynamics on a
superconducting quantum simulator

Yun-Hao Shi 1,2,3,9, Zheng-Hang Sun1,2,9, Yong-Yi Wang 1,2,9,
Zheng-An Wang3,4, Yu-Ran Zhang5, Wei-Guo Ma 1,2, Hao-Tian Liu1,2, Kui Zhao3,
Jia-Cheng Song1,2, Gui-Han Liang1,2, Zheng-Yang Mei1,2, Jia-Chi Zhang1,2,
Hao Li 3, Chi-Tong Chen1,2, Xiaohui Song1, Jieci Wang 6, Guangming Xue3,
Haifeng Yu 3, Kaixuan Huang 3 , Zhongcheng Xiang 1,2,4 ,
Kai Xu 1,2,3,4,7,8 , Dongning Zheng 1,2,4,7,8 & Heng Fan 1,2,3,4,7,8

Characterizing the nature of hydrodynamical transport properties in quantum
dynamics provides valuable insights into the fundamental understanding of
exotic non-equilibrium phases of matter. Experimentally simulating infinite-
temperature transport on large-scale complex quantum systems is of con-
siderable interest. Here, using a controllable and coherent superconducting
quantum simulator, we experimentally realize the analog quantum circuit,
which can efficiently prepare the Haar-random states, and probe spin trans-
port at infinite temperature. We observe diffusive spin transport during the
unitary evolution of the ladder-type quantum simulator with ergodic dynam-
ics. Moreover, we explore the transport properties of the systems subjected to
strong disorder or a tilted potential, revealing signatures of anomalous sub-
diffusion in accompany with the breakdown of thermalization. Our work
demonstrates a scalable method of probing infinite-temperature spin trans-
port on analog quantum simulators, which paves the way to study other
intriguing out-of-equilibrium phenomena from the perspective of transport.

Transport properties of quantum many-body systems driven out of
equilibrium are of significant interest in several active areas of modern
physics, including the ergodicity of quantum systems1–4 and quantum
magnetism5–7. Understanding these properties is crucial to unveil the
non-equilibrium dynamics of isolated quantum systems8,9. One
essential property of transport is the emergence of classical hydro-
dynamics in microscopic quantum dynamics, which shows the power-
law tail of autocorrelation functions8. The rate of the power-law decay,
referred as to the transport exponent, characterizes the universal
classes of hydrodynamics. In d-dimensional quantum systems, in
addition to generally expected diffusive transport with the exponent

d/2 in non-integrable systems10–12, more attention has been attracted
by the anomalous superdiffusive5,13–16 or subdiffusive transport2,3,17–19,
with the exponent larger or smaller than d/2, respectively.

Over the last few decades, considerable strides have beenmade in
enhancing the scalability, controllability, and coherence of noisy
intermediate-scale quantum (NISQ) devices basedonsuperconducting
qubits20–23. With these advancements, several novel phenomena in
non-equilibrium dynamics of quantummany-body systems have been
observed, such as quantum thermalization24,25, ergodicity
breaking26–29, time crystal30–32, and information scrambling33,34. More
importantly, in this platform, the beyond-classical computation has
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been demonstrated by sampling the final Haar-random states of ran-
domized sequences of gate operations35–39. Recently, a method of
measuring autocorrelation functions at infinite temperature based on
theHaar-randomstates has been proposed, which opens up a practical
application of pseudo-random quantum circuits for simulating
hydrodynamics on NISQ devices40,41.

In this work, using a ladder-type superconducting quantum
simulator with up to 24 qubits, we first demonstrate that in addition to
the digital pseudo-random circuits35–41, a unitary evolution governed
by a time-independent Hamiltonian, i.e., an analog quantum circuit,
can also generate quantum states randomly chosen from the Haar
measure, i.e., the Haar-random states, for measuring the infinite-
temperature autocorrelation functions42–44. Subsequently, we study
the properties of spin transport on the superconducting quantum
simulator via the measurement of autocorrelation functions by using
the Haar-random states. Notably, we observe a clear signature of the
diffusive transport on the qubit ladder, which is a non-integrable
system11,12,25.

Upon subjecting the qubit ladder to disorder, a transition from
delocalized phases to many-body localization (MBL) occurs as the
strength of the disorder increases45. By measuring the autocorrelation
functions, we experimentally probe an anomalous subdiffusive trans-
port with intermediate values of the disorder strength. The observed
signs of subdiffusion are consistent with recent numerical results and
can be explained as a consequence of a Griffth-like region on the
delocalized side of the MBL transition2,3,46–49.

Finally, we explore spin transport on the qubit ladder with a linear
potential, and it is expected that Stark MBL occurs when the potential
gradients are sufficiently large28,50–54. With a large gradient, the con-
servation of the dipole moment emerges28,54, associated with the
phenomena known as the Hilbert space fragmentation55–57. Recent
theoretical works reveal a subdiffusion in the dipole-moment conser-
ving systems17,19. In this experiment, we present evidence of a sub-
diffusive regime of spin transport in the tilted qubit ladder.

Results
Experimental setup and protocol
Our experiments are performed on a programmable superconducting
quantum simulator consisting of 30 transmon qubits with the geo-
metry of a two-legged ladder, see Fig. 1a, b. The nearest-neighbor
qubits are coupled by a fixed capacitor, and the effective Hamiltonian
of capacitive interactions can bewritten as22,23 (also see Supplementary
Note 1)

ĤI=_ =
X

m2f",#g

XL�1

j = 1

Jkj,mðσ̂
+
j,mσ̂

�
j + 1,m + H.c.Þ

+
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j = 1

J?j
�
σ̂ +
j,"σ̂

�
j,# + H.c.

�
,

ð1Þ

where ℏ = h/2π, with h being the Planck constant (in the following, we
set ℏ = 1), L is the length of the ladder, σ̂ +

j,m (σ̂�
j,m) is the raising (low-

ering) operator for the qubit Qj,m, and Jkj,m (J?j ) refers to the rung
(intrachain) hopping strength. For this device, the averaged rung and
intrachain hopping strength are Jk=2π ’ 7:3MHz and
J?=2π ’ 6:6MHz, respectively. The XY and Z control lines on the
device enable us to realize the drive Hamiltonian
Ĥd =

P
m2f",#g

PL
j = 1 Ωj,mðe�iϕj,m σ̂ +

j,m + eiϕj,m σ̂�
j,mÞ=2, and the on-site poten-

tial Hamiltonian ĤZ =
P

m2f",#g
PL

j = 1 wj,mσ̂
+
j,mσ̂

�
j,m, respectively. Here,

Ωj,m and ϕj,m denote the driving amplitude and the phase of the
microwave pulse applied on the qubitQj,m, andwj,m is the effective on-
site potential.

To study spin transport and hydrodynamics, we focus on the
equal-site autocorrelation function at infinite temperature, which is

defined as

Cr,r =
1
D

Tr ½ρ̂rðtÞρ̂r�, ð2Þ

where ρ̂r is a local observable at site r, ρ̂rðtÞ= eiĤt ρ̂re
�iĤt , and D is the

Hilbert dimension of the Hamiltonian Ĥ. Here, for the ladder-type
superconducting simulator, we choose ρ̂r = ðσ̂z

1," + σ̂
z
1,#Þ=2 (r = 1)12, and

the autocorrelation function can be rewritten as

C1,1 =
1
4
ðc1,";1," + c1,";1,# + c1,#;1," + c1,#;1,#Þ, ð3Þ

with cμ;ν = Tr ½σ̂z
μðtÞσ̂z

ν �=D (subscripts μ and ν denote the qubit index 1↑
or 1, ↓).

The autocorrelation functions (2) at infinite temperature can be
expanded as the average of Cr,rð∣ψ0

�Þ= hψ0jρ̂rðtÞρ̂rjψ0i over different
∣ψ0

�
in z-basis. In fact, the dynamical behavior of an individual Cr,rð∣ψ0

�Þ
is sensitive to the choice of ∣ψ0

�
under some circumstances (see Sup-

plementary Note 7 for the dependence of Cr,rð∣ψ0

�Þ on ∣ψ0

�
in the qubit

ladder with a linear potential as an example). To experimentally probe
the generic properties of spin transport at infinite temperature, one can
obtain (2) by measuring and averaging Cr,rð∣ψ0

�Þ with different ∣ψ0

�
15.

Alternatively,weemploy amoreefficientmethod tomeasure (2)without
the need of sampling different ∣ψ0

�
. Based on the results in ref. 40 (also

see “Methods”), the autocorrelation function cμ;ν can be indirectly
measured by using the quantum circuit as shown in Fig. 1c, i.e.,

cμ;ν ’ ψR
ν ðtÞjσ̂z

μjψR
ν ðtÞ

D E
, ð4Þ

where ∣ψR
ν ðtÞ

�
= ÛHðtÞ½∣0iν � ∣ψR�� with ∣ψR�= ÛR

N
i2QR

∣0ii, and ÛR

being a unitary evolution generatingHaar-randomstates. For example,
to experimentally obtain c1,↓;1,↑, we choose Q1,↑ as QA, and the
remainder qubits as the QR. After performing the pulse sequences as
shown in Fig. 1d, we measure the qubit Q1,↓ at z-basis to obtain the
expectation value of the observable σ̂z

1,#.

Observation of diffusive transport
In this experiment, we first study spin transport on the 24-qubit ladder
consisting of Q1,↑, …, Q12,↑ and Q1,↓, …, Q12,↓, described by the
Hamiltonian (1). For a non-integrablemodel, one expects that diffusive
transport C1,1 ∝ t−1/2 occurs12. To measure the autocorrelation function
C1,1 defined in Eq. (3), we should first perform a quantum circuit gen-
erating the required Haar-random states ∣ψR�. Instead of using the
digital pseudo-random circuits in refs. 35–41, here we experimentally
realize the time evolution under the Hamiltonian ĤR = ĤI + Ĥd , where
the parametersΩj,m andϕj,m in Ĥd have site-dependent values with the
average Ω=2π ’ 10:4MHz (Ω=Jk ’ 1:4) and ϕ=0 (see “Methods” and
Supplementary Note 3 for more details), i.e., ÛRðtRÞ= expð�iĤRtRÞ,
which is more suitable for our analog quantum simulator. To bench-
mark that the final state ∣ψR�= ÛRðtRÞ∣0i can approximate the Haar-
random states, we measure the participation entropy
SPE = �PD

k = 1 pk lnpk , with D being the dimension of Hilbert space,
pk = ∣〈k∣ψR〉∣2, and f∣k�g being a computational basis. Figure 2a shows
the results of SPE with different evolution times tR. For the 23-qubit
system, the probabilities pk are estimated from the single-shot readout
with a number of samplesNs = 3 × 107. It is seen that the SPE tends to the
value for Haar-random states, i.e., STPE =N ln 2� 1 + γ with N = 23 being
the number of qubits and γ≃0.577 as the Euler’s constant36. Moreover,
for the final state ∣ψR�with tR = 200ns, the distribution of probabilities
pk satisfies the Porter-Thomas distribution (see Supplemen-
tary Note 4).

In Fig. 2b, we show the dynamics of the autocorrelation function
C1,1 measured via the quantum circuit in Fig. 1c with tR = 200 ns. The
experimental data satisfies C1,1 ∝ t−α, with a transport exponent
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α≃0.5067, estimated by fitting the data in the time window t ∈ [50
ns, 200ns]. Our experiments clearly show that spin diffusively trans-
ports on the qubit ladder ĤI(1), and demonstrate that the analog
quantum circuit ÛRðtRÞ with tR = 200ns can provide sufficient ran-
domness to measure the autocorrelation function defined in Eq. (2)
and probe infinite-temperature spin transport. We also discuss the
influence of tR in Supplementary Note 4, numerically showing that the
results of C1,1 do not substantially change for longer tR > 200ns.
Moreover, in SupplementaryNote 4,we show that for a shortly evolved
time tR≃ 15 ns, the values of the observable defined in Eq. (4) are
incompatible with the infinite-temperature autocorrelation functions.
Given that the chosen initial state for generating the Haar-random
state exhibits a high effective temperature associated with the
Hamiltonian ĤR, the state would asymptotically converge to the Haar-
random state with a sufficiently extended tR. However, with tR≃ 15 ns,

the time scale is too small to get rid of the coherence, and the value of
SPE for the state ∣ψR� is much smaller than the STPE (see Fig. 2a), sug-
gesting that ∣ψR�with tR≃ 15 ns is far away from theHaar-randomstate,
and cannot be employed to measure the infinite-temperature auto-
correlation function (2). In the following, we fix tR = 200 ns, and study
spin transport in other systems with ergodicity breaking.

Subdiffusive transport with ergodicity breaking
After demonstrating that the quantum circuit shown in Fig. 1c can be
employed to measure the infinite-temperature autocorrelation function
C1,1, we study spin transport on the superconducting qubit ladder with
the disorder, whose effective Hamiltonian can be written as
ĤD = ĤI +

P
m2f",#g

PL
j = 1 wj,mσ̂

+
j,mσ̂

�
j,m, with wj,m drawn from a uniform

distribution [ −W, W], and W is the strength of disorder. For each dis-
order strength, we consider 10 disorder realizations and plot the

Fig. 1 | Superconducting quantum simulator and experimental pulse sequen-
ces. a The schematic showing the ladder-type superconducting quantum simu-
lator, consisting of 30 qubits (the blue region), labeled Q1,↑ to Q15,↑, and Q1,↓ to
Q15,↓. Each qubit is coupled to a separate readout resonator (the green region), and
has an individual control line (the red region) for both the XY and Z controls.
b Schematic diagram of the simulated 24 spins coupled in a ladder. The blue and
yellow double arrows represent the infinite-temperature spin hydrodynamics
without preference for spin orientations. c Schematic diagram of the quantum
circuit for measuring the autocorrelation functions at infinite temperature. All
qubits are initialized at the state ∣0i. Subsequently, an analog quantum circuit
ÛRðtRÞ acts on the set of qubitsQR to generate Haar-random states. This is followed

by a time evolution of all qubits, i.e., ÛH ðtÞ= expð�iĤtÞ with Ĥ being the Hamil-
tonian of the system, in which the properties of spin transport are of our interest.
d Experimental pulse sequences corresponding to the quantum circuit in (c) dis-
played in the frequency (ω) versus time (T) domain. To realize ÛRðtRÞ, qubits in the
set QR are tuned to the working point (dashed horizontal line) via Z pulses, and
simultaneously, the resonant microwave pulses represented as the sinusoidal line
are applied toQR through the XY control lines. Meanwhile, the qubitQA is detuned
from the working point with a large value of the frequency gap Δ. To realize the
subsequent evolution ÛH ðtÞ with the Hamiltonian (1), all qubits are tuned to the
working point.
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Fig. 2 | Observation of diffusive transport. a Experimental verification of pre-
paring the states via the time evolution of participation entropy. Here, we chose
QR = {Q1,↑, Q2,↑, …, Q12,↑, Q2,↓, Q3,↓, …, Q12,↓} with total 23 qubits. The inset of (a)
shows the corresponding quantum circuit. The dotted horizontal line represents
the participation entropy for Haar-random states, i.e., STPE ’ 15:519. b Experimental
results of the autocorrelation function C1,1(t) for the qubit ladder with L = 12, which

are measured by performing the quantum circuit shown in Fig. 1c, d. Here, we
consider the state generated from ÛRðtRÞ with tR = 200ns, which is approximate to
a Haar-random state. Markers are experimental data. The solid line is the numerical
simulation of the correlation function C1,1 at infinite temperature. The dashed line
represents a power-law decay t−1/2. Error bars represent the standard deviation.
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dynamics of averagedC1,1 with differentW are plotted in Fig. 3a.With the
increasing of W, and as the system approaches the MBL transition, C1,1
decays more slowly. Moreover, the oscillation in the dynamics of C1,1
becomesmore obviouswith largerW, which is related to the presence of
local integrals of motion in the deep many-body localized phase58.

We then fit both the experimental and numerical data with the
time window t ∈ [50ns, 200ns] by adopting the power-law decay
C1,1 ∝ t−α. As shown in Fig. 3b, we observe an anomalous subdiffusive
regionwith the transport exponentα< 1/2. For the strengthofdisorder
W/2π ≳ 50MHz, the transport exponent α ~ 10−2 indicates the freezing
of spin transport and the onset of MBL on the 24-qubit system2. Here,
we emphasize that the estimated transition point between the sub-
diffusive regime and MBL is a lower bound since, with longer evolved
time, the exponent α obtained from the power-law fitting becomes
slightly larger (see Supplementary Note 6).

Next, we explore the transport properties on a tilted super-
conducting qubit ladder, which is subjected to the linear potential
ĤL =

PL
j = 1 Δj

P
m2f",#gσ̂

+
j,mσ̂

�
j,m, with Δ = 2WS/(L − 1) being the slope of

the linear potential (see the tilted ladder in the inset of Fig. 4a). Thus,
the effective Hamiltonian of the tilted superconducting qubit ladder
can be written as ĤT = ĤI + ĤL. Different from the aforementioned
breakdown of ergodicity induced by the disorder, the non-ergodic
behaviors induced by the linear potential arise from strong Hilbert-
space fragmentation55–57. The ergodicity breaking in the disorder-free
system ĤT is known as the Stark MBL28,50–54.

We employ the method based on the quantum circuit shown in
Fig. 1c tomeasure the time evolution of the autocorrelation functionC1,1

with different slopes of the linear potential. The results are presented in
Fig. 4a, b. Similar to the system with the disorder, the dynamics of C1,1

still satisfies C1,1 ∝ t−α with α <0.5, i.e., subdiffusive transport. Figure 4c
displays the transport exponent α with different strengths of the linear
potential, showing that α asymptotically drops as WS increases.

Two remarks are in order. First, by employing the same standard for
the onset of MBL induced by disorder, i.e., α ~ 10−2, the results in Fig. 4c
indicate that the StarkMBLon the tilted 24-qubit ladder occurswhenWS/
2π≳80MHz (Δ/2π≳ 14.6MHz). Second, on the ergodic side (WS/
2π<80MHz and W/2π< 50MHz for the tilted and disordered systems,
respectively), the transport exponent α exhibits rapid decay with
increasingWS up toWS/2π ≃ 20MHz in the tilted system. Subsequently,
asWS continues to increase, the decay of z becomes slower. In contrast,
for the disordered system, α consistently decreases with increasing dis-
ordered strengthW.Wenote that the impact of the emergence of dipole-
moment conservationwith increasing the slope of linear potential on the
spin transport, and its distinction from the transport in disordered sys-
tems remains unclear and deserve further theoretical studies.

Discussion
Based on the novel protocol for simulating the infinite-temperature spin
transport using theHaar-randomstate40,wehaveexperimentallyprobed
diffusive transport on a 24-qubit ladder-type programmable super-
conducting processor. Moreover, when the qubit ladder is subject to
sufficiently strong disorder, we observe the signatures of subdiffusive
transport, accompanied by the breakdown of ergodicity due to MBL.

It is worthwhile to emphasize that previous experimental studies of
the StarkMBLmainly focus on the dynamics of imbalance50,59,60. Different
from the disorder-induced MBL with a power-law decay of imbalance
observed in the subdiffusive Griffith-like region61, for the Stark MBL,
there is no experimental evidence for the power-law decay of
imbalance50,59,60. Here, by measuring the infinite-temperature auto-
correlation function, we provide solid experimental evidence for the
subdiffusion in tilted systems, which is induced by the emergence of
strong Hilbert-space fragmentation55–57. Theoretically, it has been sug-
gested that for a thermodynamically large system, non-zero tilted
potentials, i.e., Δ>0, will lead to a subdiffusive transport with α ≃ 1/417,62.
In finite-size systems, both results, as shown in Fig. 4 and the cold atom
experiments on the tilted Fermi-Hubbard model63 demonstrate a cross-
over from the diffusive regime to the subdiffusive one. Investigating how
this crossover scaleswith increasing system size is a further experimental
task, which requires quantum simulators with a larger number of qubits.

Ensembles of Haar-random pure quantum states have several
promising applications, including benchmarking quantum devices42,64

and demonstrating beyond-classical computation35–39. Our work dis-
plays a practical application of the randomly distributed quantum
state, i.e., probing the infinite-temperature spin transport. In contrast
to employing digital random circuits, where the number of imperfect
two-qubit gates is proportional to the qubit number36–41, the scalable
analog circuit adopted in our experiments can also generate multi-
qubit Haar-random states useful for simulating hydrodynamics. The
protocol employed in our work can be naturally extended to explore
the non-trivial transport properties on other analog quantum simula-
tors, including the Rydberg atoms42,65–67, quantum gas
microscopes68,69, and the superconducting circuits with a central
resonance bus, which enables long-range interactions21,70,71.

Tr
an

sp
or

t e
xp

on
en

t, 

W/2 = 3.5 MHz

= 7 MHz

= 11 MHz

= 50 MHz

= 17 MHz

= 32 MHz

Num. data

Exp. data

101 102

Times,   (ns)

0.1

0.2

0.3

0.4

0.5
Au

to
co

rre
la

tio
n 

fu
nc

tio
n,

 C
1,

1

10 20 30 40 50 

Disorder strength,          (MHz)
60 70

0

0.1

0.2

0.3

0.4

0.5
t

W/2

W/2

W/2

W/2

W/2

W/2

a

b

αα

Fig. 3 | Subdiffusive transport on the superconducting qubit ladder with dis-
order. a The time evolution of autocorrelation function C1,1(t) for the qubit ladder
with L = 12 anddifferent valuesofdisorder strengthW, ranging fromW/2π = 35MHz
(W=Jk ’ 0:5) to W/2π = 70MHz (W=Jk ’ 9:6). Markers (lines) are experimental
(numerical) data. b Transport exponent α as a function ofW obtained from fitting
the data of C1,1(t). Error bars (experimental data) and shaded regions (numerical
data) represent the standard deviation.
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Methods
Derivation of Eq. 4
Here, we present the details of the deviation of Eq. (4), which is based
on the typicality12,40,72. According to Eq. (2), cμ;ν = Tr ½σ̂z

μðtÞσ̂z
ν �=D, with

D = 2N. We define N̂ν = ðσ̂z
ν + 1Þ=2, and then cμ;ν =

1
D Tr ½σ̂z

μðtÞN̂ν �. By using
N̂ν = ðN̂νÞ

2
, we have cμ;ν =

1
D Tr ½N̂ν σ̂

z
μðtÞN̂ν �. We note that N̂ν is an

operator which projects the state of the ν-th qubit to the state ∣0i.
According to the typicality12,40,72, the trace of an operator Ô can be

approximated as the expectation value averaged by the pure Haar-
random state ∣ri, i.e.,

1
D

Tr ½Ô�= hrjÔjri +Oð2�N=2Þ, ð5Þ

with N being the number of qubits. It indicates that the infinite-
temperature expectation value Tr ½Ô�=D canbebetter estimatedby the
expectation value for the Haar-random state hrjÔjri. Thus, cμ;ν ’
hrjN̂ν σ̂

z
μðtÞN̂ν jri= hψR

ν ðtÞjσ̂z
μjψR

ν ðtÞi formulti-qubit systems. Based on the
definition of the projector N̂ν , N̂ν ∣ri is a Haar-random state for the
whole system except for the ν-th qubit, and in the experiment, only a
(N − 1)-qubit Haar-random state is required.

Numerical simulations
Here, we present the details of the numerical simulations.We calculate
the unitary time evolution ∣ψðt +ΔtÞ�= e�iĤΔt ∣ψðtÞ� by employing the
Krylov method49. The Krylov subspace is panned by the vectors

defined as f∣ψðtÞ�,Ĥ∣ψðtÞ�,Ĥ2
∣ψðtÞ�, . . . , Ĥðm�1Þ

∣ψðtÞ�g. Then, the Hamil-
tonian Ĥ in the Krylov subspace becomes a m-dimensional matrix
Hm =Ky

mHKm, where H denotes the Hamiltonian Ĥ in the matrix form,
and Km is the matrix whose columns contain the orthonormal basis
vectors of the Krylov space. Finally, the unitary time evolution can be
approximately simulated in the Krylov subspace as
∣ψðt +ΔtÞ� ’ K y

me
�iHmΔtKm∣ψðtÞ

�
. In our numerical simulations, the

dimension of the Krylov subspacem is adaptively adjusted fromm = 6
to 30, making sure the numerical errors are smaller than 10−14.

For the numerical simulation of the ÛRðtRÞ= e�iĤd tR in Fig. 1c,
based on the experimental data of the XY drive, the parameters in Ĥd

are Ωj,m/2π = 10.4 ± 1.6MHz, and ϕj,m ∈ [ −π/10, π/10].

Details of generating Haar-random states
In this section,we presentmore details about the generation of faithful
Haar-random states. The analog quantum circuit employed to gen-
erate Haar-random states is ÛR = exp½�iðĤI + ĤdÞt�, where ĤI is given
by Eq. (1) and Ĥd =

P
m2f",#g

PL
j = 1 Ωj,mðe�iϕj,m σ̂ +

j,m + eiϕj,m σ̂�
j,mÞ=2 is the

drive Hamiltonian.
Here, we first numerically study the influence of the driving

amplitude Ωj,m. For convenience, we consider ϕj,m =0, and isotropic
driving amplitude, i.e., Ω =Ωj,m for all (j, m). We chose
QR = {Q1,↑, Q2,↑, …, Q12,↑, Q2,↓, Q3,↓, …, Q12,↓} with total 23 qubits. The
dynamics of participation entropy SPE for different values of Ω are
plotted in Fig. 5a, and the values of SPE with the evolved time t = 200ns
and 1000ns are displayed in Fig. 5b. It is seen that for small Ω, the
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growth of SPE is slow and with increasing Ω, it becomes more rapid. In
this experiment, we chose Ω=Jk ’ 1:4 because the participation
entropy can achieve STPE with a relatively short evolved time t ≃ 200ns.
As Ω further increases, the time when STPE is reached does not sig-
nificantly become shorter. Based on the above discussions, Ω=Jk ’ 1:4
is an appropriate choice of the driving amplitude.

Next, we numerically study the influence of the randomness for
the phases of driving microwave pulse ϕj,m. In this experiment, by
using the correction of crosstalk, the randomness of the phases is
small, i.e.,ϕj,m∈ [−π/10,π/10]. Here, we consider the phaseswith large
randomness, i.e., ϕj,m ∈ [ −π, π]. The numerical results for the time
evolution of SPE with 5 samples of ϕj,m are plotted in Fig. 5c. With
ϕj,m ∈ [ −π, π], the participation entropy can still tend to STPE around
200ns. Only the short-time behaviors are slightly different from each
other for the 5 samples (see the inset of Fig. 5c).

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its Supplementary Information files.
Should any raw data files be needed in another format, they are
available from the corresponding author upon reasonable request.
Source data are provided in this paper.
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