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Abstract

The diagnosis of cancer by modern computer tools, at the very first stages of the

incident, is a very important issue that has involved many researchers. In the mean-

time, skin cancer is a great deal of research because many people are involved with

it. The purpose of this paper is to introduce an innovative method based on tissue

frequency analyzes to obtain the accurate and real‐time evaluation of skin cancers.

According to the Biological resonance theory, body cells have natural and unique

frequencies based on their biological fluctuations, which, if the structure, profile and

cellular status change, its frequency also varies. This concept and theory is consid-

ered as the basis for analyzing skin tissue health in the proposed method. Reflected

ultrasound waves from tissue have been processed and studied based on frequency

analysis as a new method for early detection and diagnosis of accurate location and

type of skin diseases. The developed algorithm was approved through 400 patients

from CRED; its ability to evaluate benign and malignant skin lesions was shown

(AUC = 0.959), with comparable clinical precision; as for the selected threshold, sen-

sitivity, and specificity were 93.8% and 97.3%, respectively. Therefore, this method

can detect skin malignancy with an accurate, noninvasive and real‐time procedure.
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1 | INTRODUCTION

Currently detection of the malignancy of skin lesions, is doing by

dermatologists based on their professional experience using the

pathologic results from the skin biopsy of the suspicious area; and in

some cases, meanwhile the skin biopsy of the suspected area, they

also recommend the sonography imaging in order to inspect the skin

tissue better and in more details.1 Sonography is a noninvasive

method by which radiologists try to capture unusual symptoms in

the skin sonograms.2 Due to the complication of sonograms in

appearance, the diagnosis of malignant skin depends on the self‐ex-
perience of the dermatologist. This means that in most cases, the

early symptoms of malignant lesions seems to be normal, and

ignored.2 This causes the many false detection. Since these errors

are always hazardous, there is significant interest in developing intel-

ligent methods for detecting these abnormalities as a useful tool for

dermatologists to accelerate the detection and prevention of unnec-

essary skin biopsy.3

The aim of this research is developing an intelligent diagnosis

method for diagnosing malignant skin lesions, but the distinction

between this work and previous researches is the new perspective

on processing the sonograms based on frequency analyzes.

Biological resonance method is based on findings on biophysics

and quantum mechanics. Quantum mechanics, in short, identified
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that everything in universe is a compressed energy and that each

emits its own unique electromagnetic frequency. This means that all

substance and therefore all cells, parts of body, etc. emit electromag-

netic waves. Depending on their nature, all substances have a unique

wavelength or frequency with highly individual characteristics. This

is known as a frequency pattern.4

Thus any exchange of body nature oscillations that take place

between the various cells in the body, can lead to detect an abnor-

mality in that part of body.4

The main issue raised in this research is the use of the above

concept to carry out the diagnostic process. In fact, both benign

and malignant cells of skin are alive and have their natural oscilla-

tions that indicate their mode of life; based on research, the effect

of nature oscillation frequency attend in ultrasonic echoes received

from one part of the skin tissue, so they can be extracted and iden-

tified by using frequency processing and applied to classify these

cells.

Two major tools utilized in this research are discrete cosine

transform (DCT) and Otsu's thresholding method. DCT transform as

the frequency analyzer and Otsu's method as the thresholder for

distinguishing healthy and suspicious tissues from each other in a

single sonogram. Both are widely used in biomedical image process-

ing. DCT transform is used for different applications such as water

marking,18,19 compression,20,21 and classification.22,23 For example,

Gutta and Cheng in their work used DCT of an autocorrelation

function for biometric recognition using ECG signals.37 Also, in the

field of cancer prediction and diagnosis (concerning what we are

doing here), Lahmiri and Boukadoum have investigated DCT and

Radon Transforms (RT) as a feature extraction tool in order to per-

form mammogram classification based on Support Vector Machine

(SVM).38 These researches support the idea that cosine transform is

promising as a feature. Otsu's method is also used for different pur-

poses including thresholding29,30 and segmentation.31 For instance,

Lahmiri in his work39 has tried to outperform Otsu's method by

improved variants of particle swarm optimization (PSO) algorithms

in segmentation of biomedical images, namely brain, breast and

prostate tissues. This shows the stability of this method and its

promising results, although it could be replaced by more improved

methods. Moreover, George in their work40 has used Otsu's method

as a means for elimination of false‐positive (FP) findings (noisy cir-

cles and blood cells) in the cytological images of breast cancer.

Using Otsu's thresholding, c‐means clustering technique and differ-

ent topologies of neural networks, they have developed a remote

computer‐aided breast cancer diagnosis system with a challenging

performance.

According to the above, in brief, the conceptual principles of the

study, the methods, and the results are described in this paper. Fol-

lowing the introduction to the first part, Part 1 examines back-

ground, Section 2 describes the methods of research, and in

Section 3 the two algorithms proposed in this research are pre-

sented. Finally, in Section 4, the discussion and conclusion of the

proposed methods are described.

2 | BACKGROUND

Skin, the body's first defense system against invasive pathogens, is

the largest and most prolific organism and has more than 16% of the

body weight. Because of its importance, research on skin structure

and its functionality has been so extensive that their achievements

in the last decade are greater than those found over the last two

centuries.5

2.A | Skin cancer

Skin cancer is one of the most common cancers in the world. In fact,

the number of skin cancers in the world that is diagnosed every year

is more than the number of all other cancers. The number of cases

of skin cancer has increased significantly over the last few decades.6

Depending on the type of cells eroded, there are several types

of skin cancer that have certain symptoms. The most common types

of skin cancer in the ascending order of harmful effects include basal

cell carcinoma (BCC), squamous cell carcinoma (SCC), and mela-

noma.2

2.B | Current diagnosis methods

Until now, diagnosing of skin diseases has been performed by the

specialist physician's self‐experience and results of pathological tests;

meaning that in most cases, if the specialist figures out any sign of

disease, the patient is directed to pathology laboratory to do skin

biopsy. To increase diagnosing accuracy, some specialists prescribe

imaging as well as biopsy process. As we know anatomically, skin is

classified as soft tissues, so an appropriate imaging method is

needed.2

Among all of the image acquisition methods, sonography is one

of the appropriate methods. With the ability of feature extraction of

skin tissues, it can not only separate the lesions from the healthy

parts but also specification detection of the lesion is noticeable.2

The common frequency range for skin sonography is 20–
100 MHz. There are two parameters for determining the range of

frequency in ultrasound waves in sonography imaging system. First

the depth of examining part of skin and second the desired resolu-

tion.2 Figure 1 shows the sample two‐dimensional (2D) sonogram of

a normal skin with 14 × 7 mm dimensions. The length of the men-

tioned image shows the motion of the probe along the surface of

the skin, and the width of the image shows the depth of the tex-

ture.7 In the normal skin epidermis, dermis and hypodermis sections

are approximately alike and monotonous.8

Because of the fat existence in these layers, these normal parts

of skin seem brightly. On the other hand, the structure of malignant

skin lesions with angiogenesis texture9 is not homogeneous; there-

fore, depending on the skin layer in which the lesion is located, there

is a dark gap screened in the sonogram. These lesions have little

ultrasonic echoes therefore they generally appear in dark colors in

the sonograms (Fig. 2).2
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2.C | The effect of tissue changes on sonograms
frequency pattern

The main feature of this research is described in this section,

which is the main difference with other related studies in this

area. Here is focused on analyzing the frequency of the image

that shows the structure of the skin tissue. Depending on the

concept of biological resonance, corrupted body cells emit cer-

tain energy wavelengths that can be investigated.10 This theory

states that each cell in the body has a specific frequency based

on the current biological status. In another perspective, this idea

can be considered correctly as the concept behind the strings11

in the so‐called M‐theory12 or the energy of the particle photon

E with its associated ν frequency in the Planck‐Einstein relation

(Eq. 1).

E ¼ h � v (1)

where E = energy of the photon, h = Planck's constant, and ν stands

for frequency.

It can also be deduced from this concept that cells in the body

produce a certain frequency in the event of a disorder. Accordingly,

and based on numerous studies in this field, it should be noted

that so far no research has been done to analyze the effect of

electromagnetic waves due to natural fluctuations in tissue (skin

tissue) on the mechanical waveform recorded in the imaging sys-

tem sonography. Needless to say that the purpose of this research

is not to investigate electromagnetic waves or its frequency on the

tissue cell. The purpose of this research is to make similar analyzes

in the field of mechanical waves with the idea of Biological

F I G . 1 . Sample of healthy skin and its
sonogram.

F I G . 2 . Sample of cancerous skin and its
sonogram.
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resonance. In other words, in this research the mechanical response

of skin tissue analyzes to find a main feature for diagnosing the

skin condition.

In this paper, the cells of the body are exposed to ultrasonic

pulses. Since the wave length of these mechanical pulses is much

smaller than the normal wavelength of the cells, therefore it can be

considered relatively as an impulse in cells. Dirac delta input is a use-

ful method to analyze systems' dynamics is the impulse response or

the response of a system in control theory and signal processing.

The dynamic system and its impulse response may be actual physical

objects.13

The cells have an impulse as the input, thus stimulated to inten-

sify their natural frequency; and this frequency will be in the content

of each sample scan, by ultrasound device in this case, at that

time.14–16

The sonography probe sends ultrasound waves and records the

intensity of the pulse echo and reconstructs the 2D image. In recon-

structing image procedure, the mentioned natural frequency from

different parts of the skin tissue is mapped on the corresponding

part of image and leads to the different echoes in the image. So by

analyzing the frequency patterns of ultrasound image, a new golden

biomarker to classify the different skin will be obtained. At last with

extracting the special frequency features from both type of skin

lesions (benign and malignant), these lesions can be classified with

high precision.

3 | METHODOLOGY

In the next sections, two algorithms are designed to perform the

diagnosis procedure. But before discussing the algorithms we first

need to enlighten some topics about our sonogram dataset, their

format (RF and B‐Mode) and the transform we are using to take the

sonograms into the frequency space.

3.A | Preparing dataset

Since the main objective of this study is to distinguish malignant skin

lesions from benign, the analysis of the tissue requires a large

amount of data, so that access to more information increases the

accuracy of the system, thus requiring a number of many examples

of ultrasound of various tissues in different conditions for processing

are clearly visible.

The proposed algorithm was confirmed through a 2 yr database

of 400 patients (aged 18–68 yr old) from the Center of Research and

Training in Skin Diseases. The format and information of some of the

used data are presented in Table 1.

This vast database includes different types of skin lesions, such

as melanomas, basal cell carcinomas, squamous cell carcinomas, acti-

nic keratosis, atypical nevi, benign melanocytic nevi, blue nevi, and

seborrheic keratosis. Of the 400 ultrasound samples used in this

study, 220 cases are malignant, and the remaining lesions are benign.

All of these samples were examined with pathologic results that

were performed after scanning.

3.B | Preprocessing

The ultrasound scanner records data scans along with the patient's

metadata in the binary file. The most important metadata in this

study, other than image size, was the frequency of transducer. All

samples of the ultrasound wave database are at a frequency of

50 MHz.

Figure 3(a) shows the raw RF image. Then, the RF images turn to

B‐Mode to be used in the next steps of this image instead of raw

TAB L E 1 A few examples of data used in research.

Patient no.

Sample of malignant lesions data Sample of benign lesions data

Age Date of visit Tumor dimensions (cm2) Age Date of visit Tumor dimensions (cm2)

1 42 Feb‐08 1.05 57 May‐09 0.43

2 29 Jul‐14 1.70 23 Sep‐09 0.78

3 33 Jan‐14 1.98 46 Apr‐13 1.01

4 38 Oct‐13 0.70 75 Jul‐07 0.85

5 54 May‐07 1.75 69 Jan‐14 0.97

6 37 Jul‐03 1.06 34 May‐15 0.59

7 42 Mar‐15 1.50 45 Oct‐10 1.76

8 40 Sep‐11 0.76 63 Jul‐10 1.11

9 36 Aug‐04 1.30 28 Apr‐08 0.67

10 46 Aug‐14 1.70 71 Oct‐14 1.48

11 25 Jun‐14 0.85 49 Aug‐11 0.68

12 37 Nov‐11 1.10 36 Dec‐11 0.83

13 26 Jul‐11 1.80 29 Jun‐07 0.92

14 44 Sep‐08 1.06 49 Nov‐14 1.32

15 58 Apr‐07 2.34 64 May‐11 1.85
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image. The goal is to enhance the quality of the images in order to

be analyzed. Because the analysis and processing of images in the

RF mode are hard and not precise. We use Eq. (2) to compute the

B‐Image from the RF data:

imgB ¼ 2� absðimgRFÞ � offset (2)

where offset would be a constant integer that the device uses in

order to easily have all the recorded values as unsigned integers. Fig-

ure 3(b) shows main image that all calculations and trends apply.

However, this is not visually familiar, so a custom color scheme has

been applied to it, the result of which is shown in Fig. 3(c).

3.C | Frequency analysis

To frequency analysis of ultrasound imaging data from skin texture,

the data must be transmitted to the frequency space. The most

common frequency conversions used in image processing are fast

fourier transform (FFT) and discrete cosine transforms (DCT).

A DCT shows a set of finite sequence of data points as complete

cosine functions at different frequencies. These transformations are

widely used in image processing. From compression, the loss of

audio data, such as MP3s and images such as JPEGs, can be

removed by small particles with high frequencies, to spectral meth-

ods for numerical solutions of the differential equation with partial

derivatives in the range of DCTs.

Since less cosine functions are needed to approximate an ordi-

nary signal (relative to sinusoidal functions), using the cosine func-

tion instead of sinus is necessary in compression. Also, in the case of

differential functions, cosine functions have more specific boundary

conditions.

Mainly, DCT is used for those processes in which low‐frequency
content (such as nature frequencies of the body), should be

F I G . 3 . 50 MHz sonogram used in this
project (a) RF mode (b) B‐mode (c)
customized color map.
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considered. Nevertheless, the discrete fourier transform (DFT) offers

a better means or intentions for spectral analysis, and the maps draw

those results to very simple physical frequencies.17 The great advan-

tage of DCT calculation is that it contains the required frequencies

based on the size of the image, and the calculations will be meaning-

ful and, accordingly, the DCT is chosen for this study. Mathematical

expressions of DCT calculations of an M‐by‐N matrix “A” are pre-

sented in Eqs. (2), (3), and (4).

Bpq ¼ αpαq ∑
M�1

m¼0
∑
N�1

n¼0
Amn cos

π 2mþ 1ð Þp
2M

cos
π 2nþ 1ð Þq

2N
;
0≤ p≤M� 1
0≤ q≤N� 1

(3)

αp ¼
1ffiffiffi
M

p ; p ¼ 0ffiffiffi
2
M

q
; 1≤ p≤M� 1

8<
: (4)

αq ¼
1
N ; q ¼ 0ffiffiffi
2
N

q
; 1≤ q≤N� 1

(
(5)

where Bpq are called the DCT coefficient of “A”.

DCT transform is widely used in biomedical image processing for

different applications such as water marking,18,19 compression,20,21

and classification.22,23

4 | PROCEDURE

Here, we explain the diagnosis methods. The first method is used to

classify the sonogram based on a frequency transform of the whole

image, and the second method is used for sematic segmentation of the

sonogram in order to differentiate the healthy parts from the suspected

parts. We also have compared the first method to our previous work on

the same dataset in terms of diagnosis quality and computation com-

plexity and speed. The programming of different parts has been done in

MATLAB, but it can be developed in any programming language.

4.A | Sonogram classification

The first diagnosis method is used to classify the sonogram based on

a frequency transform of the whole image. We also have compared

this method to our previous work on the same dataset in terms of

diagnosis quality and computation complexity and speed. The flow-

chart of the classification procedure is shown in Fig. 4. Each step is

explained as following.

4.A.1 | Convert RF Image to B‐Mode

As mentioned before, first and foremost we need to do some pre-

processing in order to build the B‐Mode image from the RF data.

This is a critical step in the procedure since it is much easier to ana-

lyze the B‐Mode image than the raw RF input.

4.A.2 | Apply DCT transform

Figure 5 shows the absolute conversion of DCT for two different

sonograms that one of them is nevus and the other has BCC. Based

on the analysis carried out on the collected data, it is found that the

frequency domain in the cosine transmission of malignant ultra-

sonography tissue is lower than that of benign and healthy tissues.

This is a great way to find the lesions or infected parts of skin in the

image. By measuring the amplitude and frequency, the size of the

affected parts can also be calculated.

4.A.3 | Find Eigen values using SVD

When we calculate the DCT for the whole sonogram, we have a 2D

matrix with the same dimensions of the original sonogram. We can

use this image as the input vector for a deep network which isF I G . 4 . Procedure scheme for sonogram classification.
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widely used nowadays, however, the computational resources for

the deep‐learning approaches is much high and it would be better to

avoid using them in case we can find a better solution. The dimen-

sion reduction algorithms such as principal component analysis (PCA)

offer us a way to reduce the feature map size to a more affordable

and concentrated values that have more eclectic covariance. A very

powerful tool is singular value decomposition (SVD). SVD is a factor-

ization of a real or complex matrix. It is the generalization of the

Eigen decomposition of a positive semidefinite normal matrix to any

matrix via an extension of the polar decomposition. SVD is exten-

sively used in biomedical image processing algorithms as image com-

pressor or feature extractor and so on.24,25

In this research, we apply an economy‐size SVD as following

equation:

S ¼ svdðlog abs dctðimageB�Modeð Þð Þ (6)

A sample plot of the eigenvalues is shown in Fig. 6. We can see

that the first eigenvalues have more energy than the other, but since

in biomedical image processing, the high energy parts are mostly alike

in different images and the differences lies within the low energy val-

ues, we keep all the values as the feature map for classification.

4.A.4 | Classify using neural network

Now we can design a simple pattern recognition shallow neural net-

work to classify the input image into different classes. Pattern recogni-

tion networks are feedforward networks that can be trained to

classify inputs according to target classes. The target data for pattern

recognition networks should consist of vectors of all zero values

except for a 1 in element “I,” where “I” is the class they are to repre-

sent. Preparing the training dataset based on our very complete data-

base is very easy. The input vector for the classifier is the (in this

research 1 × 384 sized) eigenvalues vector, the output of SVD. The

row vector of two hidden layer sizes 10 neurons. For the training

function scaled conjugate gradient backpropagation is selected and

the performance function is cross entropy. Figure 7 shows the net-

work topology and Fig. 8 shows the training state and performance of

the trained network. From the performance of 0.2 we can see that the

training is done well and successfully. Hence we can state that using

size reduced frequency transform as the feature map, we can intro-

duce a new method of feature extraction based on biomedical reso-

nance theory.

F I G . 5 . Frequency transform of (a)
malignant lesion (b) benign lesion.

F I G . 6 . Plot of the singular value decomposition eigenvalues. DCT,
discrete cosine transform.
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F I G . 7 . The pattern recognition network topology.

F I G . 8 . (a) Performance plot of the
trained network (b) training state and
gradient analysis.
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F I G . 9 . Receiver operating characteristic
curve of the proposed classifier.

F I G . 10 . Plot classification confusion
matrix of the proposed classifier.
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4.B | Method evaluation and comparison

Nowadays, in biomedical image processing, for semantic segmenta-

tion and image classification purposes, deep and shallow neural net-

works are used.

Deep networks such as U‐Net26 are very precise and they

include filtering, image processing, feature selection, feature extrac-

tion, and classification in the network topology. However, training

the network is very hard and needs resources. It may take days to

label the whole database for preparing the ground truth for the net-

work. Moreover, it would also take days to train the network with

such a large dataset, and one training does not guarantee the per-

fectness of the network performance. Furthermore, the computa-

tional complexity for each decision‐making and simulation is also

very high. So it may not be very cost‐effective to use such a net-

work, particularly if we can find a better solution.

In our last research on this database2 we presented an image

processing procedure to extract the legion part if there exists any.

Then we introduced some features and trained a complex multilayer

perceptron neural network to classify the images. However we had

two main troubles back then: (a) we needed an image processing

algorithm to first find the lesion and (b) we had to select with which

features we needed to train our network. In this research we have

bypassed the need for the whole image processing and filtering part

of the algorithm and have extended the feature size map from 4 to

384. Additionally we have also shorten the computation complexity

and increased the diagnosis speed. This allows us for example to cre-

ate a website able of processing the uploaded pictures by users all

around the globe in the minimum needed time. Also in our last work

we showed that the type of the cancer does not depend on the

morphological shape of the lesion, instead it depends mostly on the

statistical parameters of the lesion such as entropy and variance.

This also enforces the idea of bioresonance theory presented in this

research. Figure 9 shows the ROC curve of the classifier presenting

the good diagnosing result. Figure 10 shows the confusion matrix

and Table 2 presents the percentages values (represents the per-

centage of false negatives, false positives, true positives, and true

negatives) for the proposed algorithm. Figure 11 shows the ROC

curve of the proposed algorithm in Ref. [2] and Table 3 and Fig. 12

show the confusion values. From these evidences we can see the

improvements of the new classification based on frequency features

TAB L E 2 Confusion table of the proposed approach.

Classes FN FP TP TN

Class 1 0 0 100 100

Class 2 1.1 0 100 98.90

Class 3 0 9.09 90.91 100

Class 4 2.17 0 100 97.83

F I G . 11 . Receiver operating
characteristic curve of the classifier
presented in Ref. [2].

162 | KIA ET AL.



concluded from bioresonance theory. The reader must note that we

have used a very simple pattern recognition classifier, for better

results more hidden layers with more neurons and diverse activation

functions can be used in the classifier.

4.C | Sonogram semantic segmentation

The second method is used for sematic segmentation of the sono-

gram in order to differentiate the healthy parts from the suspected

parts. The flowchart of this method is presented in Fig. 13 and the

algorithm is described below.

4.C.1 | Dividing sonogram into blocks

The first step is to split the image. On one hand, the image fre-

quency is a cumulative concept, and there is no frequency value for

a single pixel; on the other hand, if the frequency transform is

applied to the whole image, there will be a common frequency result

in all scanned sectors. To be more specific, we can divide the image

into blocks, and apply the frequency transform to each, and eventu-

ally reconstruct the image using the resulting blocks. An important

consideration here is the dimensions of each block.

If the frequency conversion is applied to the entire image, the

result of the diagnosis is obtained, but if the process is performed

for each block, it can be determined which part of the tissue is still

healthy or damaged precisely. The whole image is split into blocks

that block size plays an important role in the accuracy of analyzes.

The minimum size for each block is 4 × 4 pixels, but in sonogram

with a resolution of 1024 × 384 (as in this research), 32 × 32, and

16 × 16 blocks are optimal blocks that contain neighboring frequen-

cies in comparison to the exact detection of each image. Figure 14

shows the properly segmented and cropped image.

4.C.2 | Apply DCT transform on each block

Two main notes are important here; first, for the detailed analysis,

there is a need for alternations in the textual data, so the DC portion

of the transformation should be eliminated, and secondly, there is

only a need for the transform amplitude index. The DCT matrix of

each block is as large as the original block in the primary image.

TAB L E 3 Confusion table of the approach presented in Ref. [2

Classes FN FP TP TN

Class 1 2.20 3.45 96.55 97.8

Class 2 1.12 6.45 93.55 98.88

Class 3 2.30 15.15 84.85 97.7

Class 4 5.38 7.41 92.59 94.62

F I G . 12 . Plot classification confusion
matrix of the classifier presented in Ref.
[2].

KIA ET AL. | 163



4.C.3 | Feature extraction and segmentation

After using DCT conversion and DC removal, a two‐dimensional

matrix is calculated for each block, which represents the average

intensity of each frequency in the block. Each row and column of

this resulting matrix actually represents a frequency of the same

block, and each element of that is in fact derived from the correla-

tion of the image signal with that specific and constant frequency.

Thus, by performing a frequency conversion, a matrix will be

obtained, in which the elements indicate how many pixels of each

block have that row frequency and that particular column frequency.

More precisely, the elements of the resulting matrix indicate the

intensity of the presence of that specific frequency in that block.

According to researches and studies related to this project, in

general, healthier parts of the tissue have a higher average value for

the frequencies in the image.13 However, the intensity of different

frequencies in a particular sonogram is a relative property that is not

absolute. Therefore, judging whether it is high or low should be

taken separately in each image and based on its characteristic

parameters. In the sense that it cannot be expressly stated that, for

example, if the frequency value in images or in blocks was less than

a constant limit, it indicates the malignancy of the lesion in the

image captured in that photograph or not. Accordingly, they must be

individually calculated for each block in accordance with their own

parameters, and then accurate values for the threshold of the fre-

quencies should be calculated and determined as the main golden

feature used in the diagnosis process. This is due to the complexity

of the information in the signals and some of the inherent differ-

ences in the skin of different people. This causes complexity and dif-

ficulty as well as the sensitivity of the diagnostic process. To achieve

a high‐power precision method, many calculations and surveys were

carried out.

Finally, the Otsu's adaptive method is selected to perform auto‐
cluster‐based image thresholds27,28 based on investigations. This is

completely as the solution here matches. This criterion gives judg-

ment for each part of sonogram in comparison with other parts. Ulti-

mately, the ability to separate any sonogram into suspicious and

healthy blocks will be created by doing the above calculations and

comparing with the thresholds.

In image processing, Otsu's method, is used to automatically per-

form clustering‐based image thresholding15 or, the reduction of a

gray level image to a binary image. The algorithm assumes that the

image contains two classes of pixels following bimodal histogram

(foreground pixels and background pixels), it then calculates the opti-

mum threshold separating the two classes so that their combined

spread (intraclass variance) is minimal, or equivalently (because the

sum of pairwise squared distances is constant), so that their inter‐
class variance is maximal.28

In this way, the matrix obtained in the previous step, which is

the frequency matrix, enters the calculation program, and the output

of the program will be a number, which will be the threshold for that

image. Therefore, by applying this program for each image, the

threshold for determining the healthy blocks from the lesion blocks

of that image is determined by the intensity of the presence of dif-

ferent frequencies in each block of that image.

When the threshold value is found for each image, the image is

reset to the original matrix and the following steps are reexamined.

From the original image of the RF, a B‐mode image will be created

and then the image will be blocked. In the next step, for each block,

the DCT conversion is taken and the average value of the frequency

for that block is calculated. Then this average value is compared with

the frequency threshold of this image. Now, if the average frequency

of that block is higher than the threshold of the frequency of this

image, according to the concepts, it can be concluded that this block

is healthy and there is no need for future research. It does not

include a lesion, so you can mark this block as a healthy block and

proceed to analyze the next block.

4.D | Computation results

According to Fig. 5, if we apply DCT transformation to image blocks

and combine the whole image using the resulting frequency

F I G . 13 . Procedure scheme for sonogram sematic segmentation.
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matrices, a reconstructed image (Fig. 15) is obtained that shows the

frequency characteristics of each block.

Now, using the threshold of the frequency of each block calcu-

lated by the Otsu's method and by comparing it with the average

frequency of each block, the ability to judge the condition of that

part of the skin is created. To provide a detailed and easy image

analysis for a user or expert, each block of an image can be repre-

sented in a color that expresses its status. In the constructed picture

shown in Fig. 16, the lesion parts of skin are shown in dark color

and healthy parts in bright color.

F I G . 14 . Cropped and segmented image
with 4x4 resolution (a) original B‐mode (b)
segmented.

F I G . 15 . Reassembled image after
applying frequency transform on the
blocks to show the health or disease status
of different parts of the skin tissue.

F I G . 16 . Final classification of each
block according to the selected threshold.
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The designed algorithm is evaluated with the mentioned data-

base and the results are shown in Fig. 17. The region under receiver

operating characteristic (ROC) curve is wide and indicates the quality

of estimation. The research at the calculated threshold has been

received AUC = 0.859, for sensitivities 93.8%, the specificities were

97.3%.

Since usually the sonograms' size is not very large (In this case

384 × 1024), considering the block size of 32 × 32 pixels, we will

have a number of 384 blocks for each sonogram. Computing DCT

for a 32 × 32 image does not take much time (in the range of mil-

liseconds) and so dividing the input image into blocks and applying

DCT on each image will take 2 s most. Computing mean for each

DCT block takes microseconds, and since Otsu's method for 384 ele-

ments is very fast, the whole procedure may take seconds for a low‐
speed computer.

In other words, this noninvasive approach is highly precise, while

it is quick and cost‐effective to detect skin lesions malignant and

reduces rate of false negative and false positive estimates that lead

to additional costs and psychological stress on suspected patients.

5 | CONCLUSION

As mentioned in the previous sections, a lot of research has been

done to develop new methods for diagnosis of skin diseases. In most

of them, there has been a great effort to find and develop a nonin-

vasive detection method with high accuracy during an intelligent

procedure, some of which have been mentioned in the previous sec-

tions and referred to in the references. In each of these studies, sev-

eral indicators have been considered for the examination of the skin

malignancy: for example, chemical vibrational modes of molecules

within tissue,32 terahertz time‐domain spectroscopy for analyzing the

thickness of tissue as a classification index,33 reflectance confocal

microscopy (RCM),34 electrical impedance spectroscopy,35 optical

coherence tomography,36 and some other methods have used differ-

ent index parameters for skin disease diagnosis.

In this research, a novel and innovative way to achieve the ability

to diagnose skin malignancy is presented. Based on this research

concepts, the biological organism has a cellular oscillations, whose

frequencies depend on the type of cells in that part of tissue or

organ, where there is a specific frequency for a specific tissue under

normal conditions, and if the tissue conditions change and there is a

complication, then its natural frequency will be changed. So that the

frequency response of these two parts and, consequently, the fre-

quency of the return echoes received by the ultrasound probe, are

different from each other. This difference is the basis of the classifi-

cation in this study. As is detailed in the text of the article and in

the previous sections, the innovation and novelty of this study is to

use skin tissues natural frequency variations as a very suitable and

powerful bio marker of skin malignancy for the diagnosis of skin

F I G . 17 . Receiver operating
characteristic curve of the semantic
segmentation.
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tissue conditions. Moreover, an important point, and another aspect

of being innovative, is to use ultrasound returned frequency analysis

to find out the frequency characteristics of the tissue.

The presented algorithms (both classification and sematic seg-

mentation) are all implemented in MATLAB R2018b using a laptop

computer with quad core 2.8 GHz speed Core‐i7 processor and

16 GB of RAM. For the classification part of the research, creating

a feature dataset for training the neural network, using feature

extraction based on SVD dimension reduction of DCT matrices, for

a database of 300 sonograms and training the pattern recognition

network takes at most 1 min using the mention hardware specifica-

tion. However, for the proposed algorithm presented in Ref. [2],

creating features dataset and training the network from a database

of 120 sonograms takes around 15 min. The diagnosis procedure

takes <500 ms, meanwhile the proposed approach in Ref. [2] takes

at least 3 s, depending on how the image processing is imple-

mented. This issue becomes a trouble when one needs to imple-

ment the diagnosis algorithm as a web service, also intends to

make the neural network adaptable. Hardware resources of servers

are expensive and considerable. Moreover, for the segmentation

part, the presented segmentation algorithm needs no networks to

be trained, comparing to common intelligent methods of segmenta-

tion like U‐Net. The segmentation procedure of a 384 × 1024

sonogram using 32 × 32pixels blocks takes around 0.1 s for the

mentioned hardware, while simulating a U‐Net network with such

an image would take much longer; not to mention that training a

deep network with a database containing only 20 images would

take about 30 min on such system with a NVIDIA GTX1050 GPU.

An adaptive deep network on a web server for such purpose would

require a lot of resources. Overall, the proposed algorithms for clas-

sification and segmentation do not need an advanced hardware and

could be easily executed in less than a second on an affordable

1.8 GHz Core‐i3 CPU with an 8 GB of RAM (recommended hard-

ware).

Using these ideas and concepts to diagnose skin condition has

created a very high level of fast, noninvasive and accurate detection

that is evaluated by experimental database and could help dermatol-

ogists, to improve the accuracy of skin cancers diagnosis via a nonin-

vasive and real‐time approach.

CONFLICT OF INTEREST

None declared.

REFERENCES

1. Jovanovi D, Paravina M, Spalević L, et al. Characteristic of malignant

melanoma examined by 20‐MHz ultrasound. FU Med Biol.

1998;5:58–60.
2. Kia Sh, Setayeshi S, Shamsaei M, et al. Computer‐aided diagnosis

(CAD) of the skin disease based on an intelligent classification of

sonogram using neural network. Neural Comp Appl. 2013;22:1049–
62.

3. Schmid M, Wendtner Dill‐Müller D. Ultrasound technology in derma-

tology. Semin Cutan Med Surg. 2008;27:44–51.

4. Bioresonance Institute. Leeds: Bicom UK LLP. How Bioresonance

can really help you and your patients. Available from: https://bioreso

nance.com/

5. Dey N, Biswas D, Roy A, Das A, Chaudhui S. DWT‐DCT‐SVD based

blind watermarking technique of gray image in electrooculogram sig-

nal. In: 2012 12th international conference on intelligent systems

design and applications (ISDA). IEEE; 2012.

6. Kallel IF, Kallel M, Bouhlel MS. A secure fragile watermarking algo-

rithm for medical image authentication in the DCT domain. 2006

2nd International Conference on Information & Communication

Technologies. Vol. 1. IEEE; 2006.

7. Shrestha S, Wahid K. Hybrid DWT‐DCT algorithm for biomedical

image and video compression applications. 10th International Con-

ference on Information Science, Signal Processing and their Applica-

tions (ISSPA 2010).IEEE; 2010.

8. Wu Y‐G. Medical image compression by sampling DCT coefficients.

IEEE Trans Inf Technol Biomed. 2002;6:86–94.
9. Ain Q, Mehmood I, Naqi SM, Jaffar MA. Bayesian classification using

DCT features for brain tumor detection. In: Setchi R, Jordanov I,

Howlett RJ, Jain LC, eds. Knowledge‐Based and Intelligent Information

and Engineering Systems. KES 2010. Berlin, Heidelberg: Springer;

2010:340–349.
10. Sarhan AM. Cancer classification based on microarray gene expres-

sion data using DCT and ANN. J Theoret Appl Inform Technol.

2009;6:2.

11. Gutta Sandeep, Cheng Qi. Joint feature extraction and classifier

design for ECG‐based biometric recognition. IEEE J Biomed Health

Inform. 2015;20:460–468.
12. Lahmiri S,Boukadoum M. Hybrid cosine and Radon transform‐based

processing for digital mammogram feature extraction and classifica-

tion with SVM. 2011 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society. IEEE; 2011.

13. Bangare Sunil L, Bangare PS, Patl ST. Reviewing otsu's method for

image thresholding. Intl J Appl Eng Res. 2015;10:21777–21783.
14. Ch Hima B. An improved medical image segmentation algorithm

using Otsu method. Intl J Recent Trends Eng. 2009;2:88.

15. Norouzi A, Rahim MSM, Altameem A, et al. Medical image segmen-

tation methods, algorithms, and applications. IETE Tech Rev.

2014;31:199–213.
16. Lahmiri S, Boukadoum M. An evaluation of particle swarm optimiza-

tion techniques in segmentation of biomedical images. Proceedings

of the Companion Publication of the 2014 Annual Conference on

Genetic and Evolutionary Computation. ACM; 2014.

17. George YM, Zayed HH, Roushdy MI, Elbagoury BM. Remote com-

puter‐aided breast cancer detection and diagnosis system based on

cytological images. IEEE Syst J. 2013;8:949–964.
18. Ferlay J, Soerjomataram I, Ervik M, et al. Cancer incidence and mor-

tality worldwide. Int J Cancer. 2015;5:359–386.
19. Craythorne E, Al‐Niami F. How to examine a patient with skin can-

cer. Medicine. 2017;45:429–430.
20. Gammal SE, Gammal CE, Kaspar K, et al. Sonography of the skin at

100 MHz enables in vivo visualization of stratum corneum and

viable epidermis in palmar skin and psoriatic plaques. J Invest Derma-

tol. 1999;113:821–829.
21. Alam A, White LE, Martin N, et al. Ultrasound tightening of facial

and neck skin: a rater blinded prospective cohort study. JAM ACAD

Dermatol. 2010;62:262–269.
22. Mahabeleshwar GH, Byzova TV. Angiogenesis in melanoma. Sem

Oncol. 2007;34:555–565.
23. Yegane H. Iran is a new member of the Bioresonance World Club.

Transform Mag. 2013;132:14–15.
24. Blumenhagen R, Lüst D, Theisen S. Basic Concepts of String Theory.

Berlin: Springer; 2013.

25. Becker K, Becker M, Schwarz JH. String Theory and M‐Theory: A

Modern Introduction. Cambridge: Cambridge University Press; 2007.

KIA ET AL. | 167

https://bioresonance.com/
https://bioresonance.com/


26. He L, Lu W, Jia C, Hao L. Video quality assessment by compact rep-

resentation of energy in 3D‐DCT domain. Neurocomputing.

2017;269:108–116.
27. Rahman A, Setayeshi S. Designing a health promotion model in an

artificial community by optimizing the distribution pattern of the

population. The first international conference on medical and e‐
health; 2007.

28. Aianzade R. Optimizing the Learning Processes Based on Biological

Processes. Thesis Master in Computer Engineering, Faculty of Engi-

neering and Engineering, Islamic Azad. Branch, Tehran: University,

Science and Research; 2010.

29. Automaton Testlin ML. Theory and Modeling of Biological Systems.

Mathematics in science and Engineering. New York, NY: Academic

Press; 1973.

30. Rubel A, Egiazarian K. Efficiency of texture image enhancement by

DCT‐based filtering. Neuro Comput. 2016;175:948–965.
31. Deserno TM, ed. Biomedical Image Processing. Berlin: Springer

Science & Business Media; 2011.

32. Kekre HB, Sarode T, Natu S. Hybrid watermarking of color images

using DCT‐Wavelet, DCT and SVD. Int J Adv Eng Technol.

2013;6:769.

33. Ronneberger O, Fischer P, Brox T. U‐net: convolutional networks for

biomedical image segmentation. In: Navab N, Hornegger J, Wells W,

Frangi A eds. Medical Image Computing and Computer‐Assisted Inter-

vention. Cham: Springer; 2015.

34. Sezgin M, Sankur B. Survey over image thresholding techniques and

quantitative performance evaluation. J Electron Imaging.

2004;13:146–65.
35. Otsu N. A threshold selection method from gray‐level histograms.

IEEE Trans. Sys., Man., Cyber. 1979;9:62–6.
36. Zhao J, Zeng H, Kalia S, et al. Using Raman Spectroscopy to Detect

and Diagnose Skin Cancer In Vivo. Dermatol Clin. 2017;35:495–504.
37. Rahman A, Rahman AK, Rao B. Early detection of skin cancer via

terahertz spectral profiling and 3D imaging. Biosens Bioelectron.

2016;15:64–70.
38. Haroon A, Shafi S, Rao BK. Using reflectance confocal microscopy in

skin cancer diagnosis. Dermatol Clin. 2017;35:457–464.
39. Braun RP, Mangana J, Goldinger S, et al. Electrical impedance

spectroscopy in skin cancer diagnosis. Dermatol Clin. 2017;35:489–
493.

40. Levine A, Wang K, Markowitz O. Optical coherence tomography in

the diagnosis of skin cancer. Dermatol Clin. 2017;35:465–488.

168 | KIA ET AL.


