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Abstract: Resistance to chemotherapy occurs in various diseases (i.e., cancer and infection), and for
this reason, both are very difficult to treat. Therefore, novel antimicrobial and chemotherapic
drugs are needed for effective antibiotic therapy. The aim of the present study was to assess
the antimicrobial and anti-proliferative effects of skin mucus derived from Dasyatis pastinaca
(Linnaeus, 1758). Our results showed that skin mucus exhibited a significant and specific antibacterial
activity against Gram-negative bacteria but not against Gram-positive bacteria. Furthermore,
we also observed a significant antifungal activity against some strains of Candida spp. Concerning
anti-proliferative activity, we showed that fish mucus was specifically toxic for acute leukemia cells
(HL60) with an inhibition of proliferation in a dose dependent manner (about 52% at 1000 µg/mL of
fish skin mucous, FSM). Moreover, we did not observe effects in healthy cells, in neuroblastoma cells
(SH-SY5Y), and multiple myeloma cell lines (MM1, U266). Finally, it exhibited strong expression and
activity of chitinase which may be responsible, at least in part, for the aforementioned results.
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1. Introduction

The rise and spread of antibiotic resistance represent a unique challenge to both science and
medicine. Resistance to chemotherapy evolves in only two types of diseases—cancer and infection,
and for this reason, both are very difficult to treat [1]. Therefore, several studies were recently carried
out in order to identify new antimicrobial agents to overcome such issue. Interestingly, several natural
agents have been shown to exhibit various grade of antimicrobial activity and among them, fish mucus
is emerging as one of the most active. The external body of fish is covered by a layer of mucus secreted
by specialized cells in the epidermal layer conferring mechanical protective and lubricant functions
as well as reducing body friction in water and thus assisting in swimming [2,3]. In addition, it also
contains a variety of biologically active substances, such as complements, immunoglobulins, lectins,
protease inhibitors, and lytic enzymes—including lysozyme—serving as defense substances [2,3].
In fact, the aquatic environment contains different types of pathogens and the mucus layer provides
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a physical barrier acting as a first line of defense playing an important role in the innate immunity of
fish. To this regard, Austin et al. demonstrated that the mucus extract from the surface of rainbow
trout (Salmo gairdneri) exhibited antibacterial activity [4]. Similarly, other authors identified a unique
antibacterial spectrum of the mucus in rabbit fishes and partially characterized the antibacterial factor
of the S. fuscescens [5]. Similarly, Hellio et al. performed a screening for antifungal, antibacterial,
and cytotoxic activities of epidermal mucus and epidermis extracts of thirteen fish species [3,6–8].
Consistently, the antimicrobial property of crude skin mucus against microbial pathogens was also
demonstrated for other fishes such as Rita rita and Channa punctatus [3]. As far as concern putative
molecules responsible for such activities, previous reports suggested that fish skin mucus possesses
a variety of biologically active substances such as lectins, proteolytic enzymes, flavoenzymes, protein,
apolipoprotein A–I, and antimicrobial peptides that are constitutively expressed to provide immediate
protection to fish from potential pathogens but also antitumor activity [9–11]. In addition, Ben et al.
showed the antibacterial effects of intestinal phospholipase A2 (stingray phospholipase A2 group IIA,
sPLA 2-IIA) from the common stingray D. pastinaca [12,13]. Interestingly, several studies showed that
skin mucus has a cytotoxic effect also in human cancer cells [14].

The aim of the present study was to evaluate the bioactive properties of crude skin mucus derived
from Dasyatis pastinaca with particular regard to the antiproliferative effects in healthy and cancerous
cells and its antimicrobial effect. This species, together with other elasmobranchs, is not commercially
valuable and is usually discarded by fishermen and therefore developing new products from FSM may
transform a wasted product into a significant source.

2. Materials and Methods

2.1. Growth Inhibition Curves by Cell Counting

The growth inhibition activity was tested for the following pathogens: Escherichia coli ATCC 25922,
E. coli ATCC 35218, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, Pseudomonas
aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 700603, and Streptococcus agalactiae DSM 2134.
A bacterial suspension of 0.5 McFarland (1.5 × 108 CFU/mL) was prepared for each pathogen, after
an overnight subculture in Mueller-Hinton broth (MH broth), measuring OD at 600 nm (Model 680
Microplate Reader, Bio-Rad, Milan, Italy). A series of dilutions were prepared in order to obtain
a final concentration of 7.5 × 105 CFU/mL in MH broth. The fish skin mucous (FSM) was added in
a concentration range from 16.50 µg/µL to 0.06 µg/µL. Inoculated bottles were incubated aerobically
with shaking at 37 ◦C; 100 µL of each dilution were taken every 60 min for 22 h for cell counting.
For this purpose, serial 10-fold dilutions in sterile saline (NaCl 0.85% w/v) were performed, and each
dilution was spread on MH agar [15]. All measurements were repeated six times.

2.2. Antifungal Assay

A suspension of overnight culture of each strain of Candida spp. (Candida albicans ATCC90028,
Candida albicans ATCC10231, Candida albicans clinical strain 6, Candida albicans clinical strain 10,
Candida glabrata clinical strain 14, Candida tropicalis clinical strain 21) grown on Sabouraud
chloramphenicol agar plates (SAB Dex Chlor) was prepared in sterile saline (NaCl 0.85% w/v).
Suspensions were adjusted to 1.0 × 106 CFU/mL (0.5 McFarland) and then diluted to obtain
a concentration of 1.0 × 104 CFU/mL in RPMI 1640.

The activity of the extract against Candida strains was determined by microplate assay following
the Clinical and Laboratory Standards Institute document M27-A3 [16]. A mixture of 100 µL C. albicans
suspensions in RPMI broth (final concentration 0.5 × 103 CFU/mL) and 100 µL of FSM were added to
each well of a sterile 96-well microplate (Thermo Scientific™ Sterilin™, Waltham, MA, USA). Plates
were incubated at 35 ◦C aerobically for 24–48 h, and minimum inhibitory concentration values (MICs)
were recorded as OD at 490 nm using a microplate reader (Gen5 Microplate Reader, BioTek Instruments,
Winooski, VT, USA).
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2.3. Western Blot Analysis

Briefly, for Western blot analysis, 30 µg of proteins were loaded into a 12% polyacrylamide
gel MiniPROTEAN® TGXTM (Bio-Rad, Milan, Italy) followed by electrotransfer to nitrocellulose
membrane TransBlot® TurboTM (Bio-Rad, Milan, Italy) using TransBlot® SE Semi-Dry Transfer Cell
(BIO-RAD, Milan, Italy) [17,18]. Subsequently, membrane was blocked in Odyssey blocking buffer
(Licor, Milan, Italy) for 1 h at room temperature. After blocking, membrane was washed three times in
phosphate-buffered saline (PBS) for 5 min and incubated over-night at 4 ◦C with primary antibodies
against CHIT1 (1:500) (anti-rabbit, Santa Cruz, Dallas, TX, USA). Membranes were then washed three
times in PBS for 5 min and incubated with infrared anti-mouse IRDye800CW (1:5000) and anti-rabbit
IRDye700CW secondary antibodies (1:5000) in PBS/0.5% Tween-20 for 1 h at room temperature.
All antibodies were diluted in Odyssey blocking buffer. The blots were visualized using Odyssey
infrared imaging scanner (Licor, Milan, Italy) and protein levels were quantified by densitometric
analysis [19,20].

2.4. Chitotriosidase Activity Assay

Chitotriosidase enzymatic activity was determined by a fluorimetric method using 22 µM
4-methylumbelliferyl β-D-N,N′,N”-triacetylchitotriosidase (Sigma-Aldrich S.r.l. Milan, Italy) in
citrate-phosphate buffer, pH 5.2, as previously described [21,22]. Fluorescence was read at 450 nm
with a Perkin Elmer Victor3 fluorimeter (excitation wavelength 365 nm, Perkin Elmer, Milan, Italy).
As control, cell-free supernatants of monocytes cultured for 24 h were used. Enzymatic activity was
measured as nanomoles of substrate hydrolyzed per mL per hour (nmol/mL/h).

2.5. Cell Cultures

U266, MM1, SH-SY5Y, HS5, and HL60 cells were obtained from American Type Culture Collection
(Manassas, VA, USA). Cell lines were maintained in RPMI medium containing 2 mM L-glutamine,
supplemented with 10% fetal bovine serum (FBS) and with 100 U/mL penicillin and 100 µg/mL
streptomycin at a humidified 37 ◦C incubator providing 5% CO2. Human lymphocytes and monocytes
were isolated, after informed consent, from fresh buffy coat of healthy volunteers provided by the
Transfusional Center of E. Muscatello Hospital—Augusta (SR). Monocytes and lymphocytes then
were purified from the lymphomonocytic population by positive isolation using magnetic beads
coated with goat anti-mouse CD14+ IgG and anti-mouse CD3+ IgG respectively (MiltenyiBiotec GmbH,
Bergisch Gladbach, Germany) [23].

2.6. Cell Viability Assay

Briefly, cells were seeded in 96-well plates at 1 × 103 cells/well. After 24 h of treatment with FSM
20 µL of MTT solution (5 mg/mL) was added to each well. After 3 h of incubation, formazan crystals
were dissolved in 150 µL of 0.1 M HCl in isopropanol. Color intensity was measured at 570 nm with
ELISA plate reader (THERMO Scientific Multiskan FC, Waltham, MA, USA).

2.7. Bacterial Grown Inibition Calculation

The percentage of bacterial grown inhibition for each strain was calculated according to
following formula:

% of inhibition = 100− Sample Ymax at 16.50 µg/µL
Sample Ymax positive control× 100

, (1)

Ymax correspond to the maximum value of CFU/mL obtained for each bacterial strain tested
(alone or in combination with fish mucous). In order to calculate this parameter, all bacterial growth
curves were analyzed with Gompertz function by Prism GraphPad Software 6 (GraphPad Software,
California, CA, USA) (Table 1) [24].
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Table 1. Statistical analysis and growth inhibition percentage in presence of the highest concentration
tested of crude fish mucous.

Strains Tested

Escherichia coli ATCC
35218

Escherichia coli ATCC
25922

Klebsiella pneumoniae
ATCC 700603

Pseudomonas aeruginosa
ATCC 27853

16.50 µg/µL
(22 h)

Control+
(22 h)

16.50 µg/µL
(22 h)

Control+
(22 h)

16.50 µg/µL
(22 h)

Control+
(22 h)

16.50 µg/µL
(22 h)

Control+
(22 h)

Ymax (CFU/mL) 6.74 × 108 9.24 × 108 6.97 × 108 9.07 × 108 4.83 × 108 8.11 × 108 7.36 × 108 8.87 × 108

Ymax Standard Error
(CFU/mL) 4.99 × 106 6.08 × 106 5.39 × 106 4.17 × 106 3.23 × 106 7.37 × 106 5.91 × 106 7.36 × 106

Inhibition (%) 27.05 23.15 40.44 17.02

Control+: positive control.

2.8. Statistical Analysis

All experimental data are expressed as mean ± standard error (SD). Significance was assessed by
ANOVA or Student’s t-test. p < 0.05 was considered to be statistically significant. Gompertz function
was verified by R squared values >0.99 for all the data tested (data not shown).

3. Results

3.1. Bacterial and Fungal Growth Inhibition Curves

The growth rates of the given strains compared to that of control without FSM are shown in
Figure 1. Our data suggest that FSM inhibited growth of Gram-negative strains (p < 0.05).
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Figure 1. Growth curves of 4 strains (E. coli ATCC 35218 (A), Escherichia coli ATCC 25922 (B),
Klebsiella pneumoniae ATCC 700603 (C), Pseudomonas aeruginosa ATCC 27853 (D)) incubated at 37 ◦C
with fish mucous in a concentration range from 16.50 µg·µL−1 to 0.06 µg·µL−1. All experimental
data are expressed as mean ± standard error (SD). Significance was assessed by ANOVA or Student’s
t-test: p < 0.05.



Mar. Drugs 2017, 15, 342 5 of 10

A concentration of 16.50 µg/µL−1 reduced the growth curve of Klebsiella pneumoniae ATCC 700603
by 40.44%, Escherichia coli ATCC 35218 by 27.05%, E. coli ATCC 25922 by 23.15%, and Pseudomonas
aeruginosa ATCC 27853 by 17.02%. Interestingly, FSM did not show any growth curve inhibition of
tested Gram-positive bacteria (i.e., Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923,
Streptococcus agalactiae DSM 2134). The latter finding was probably due to the presence of outer
membrane in Gram-negative strains that could have been damaged by FSM leading to a growth
reduction or more likely by agglutination as suggested by Guan et al. [25].

Antifungal activity defined as MIC values, i.e., the prominent decrease in turbidity corresponding
to approximately 50% inhibition of growth was determined spectrophotometrically [3]. The results
carried out MIC values are indicated in Table 2. All the strains were inhibited at 4.12 µg/µL and no
differences were observed in the susceptibilities of both standard and clinical isolated strains (Table 2).

Table 2. Microdilution assay of crude fish mucous for antifungal activity: Minimum inhibitory
concentration values (MICs) were recorded as OD at 490 nm after 24 h and 48 h for each strain.

Strains
MIC µg·µL−1

24 h 48 h

Candida albicans ATCC90028 4.12 4.12
Candida albicans ATCC10231 4.12 4.12

Candida albicans (6) clinical strain 4.12 4.12
Candida albicans (10) clinical strain 4.12 4.12
Candida glabrata (14) clinical strain 4.12 4.12
Candida tropicalis (21) clinical strain 4.12 4.12

Number in brackets is the reference number of the clinical isolate.

3.2. Chitinase Expression and Activity

Western blot analysis showed CHIT1 expression (55 KD) in FSM of Dasyatis pastinaca. In addition,
the enzymatic activity of CHIT1 was measured; interestingly, (Figure 2) we observed a significant
(p < 0.05) increase of enzymatic activity in a dose dependent manner (2.5 µg/µL: about 50 nmol/mL·h,
5 µg/µL: about 100 nmol/mL·h; 10 µg/µL: about 200 nmol/mL·h).
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Figure 2. (A) Western blot assay showed the presence of CHIT1 protein in FSM. (B) Enzyme activity
was performed by fluorimetric assay and was expressed as nanomoles per mL per hour in FSM.
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3.3. Anti-Proliferative Activity

The anti-proliferative activity of the FSM was tested in U266, MM1, SH-SY5Y, HL60 cancer cell lines
and in healthy cells such as SH5 lymphocytes cells, at different concentrations (500 µg/mL; 1000 µg/mL
and 1500 µg/mL of FSM). After 24 h of treatment, we observed the inhibition of cell proliferation
in a dose-dependent manner (p < 0.0001) (Figure 3) only in HL60 cell lines (p < 0.001). The U266,
MM1, and SH-SY5Y cells showed no sensitivity to FSM treatment (Figure 3). Furthermore, in healthy
lymphocytes and mesenchymal stem cells, FSM treatment had no significant effects (Figure 3).
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Figure 3. MTT assay in (A) HS5 cells normal bone marrow/stroma cells, (B) healthy lymphocytes,
(C) U266 multiple myeloma cell lines, (D) MM1S multiple myeloma cell lines, (E) SH-SY5Y
neuroblastoma cell lines, (F) HL60 acute promyelocytic leukemia cell lines, after treatment with
500 µg/mL, 1000 µg/mL, and 1500 µg/mL of FSM. Bars represent the mean± SEM of four independent
experiments. *** p < 0.0001, * p < 0.01, versus untreated cells.
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4. Discussion

Fish skin or mucus may represent a good source of biologically active compounds to be
used for different medical purposes. The biological interface between fish and their aqueous
environment consists of a mucus layer composed of biochemically diverse secretions from epidermal
and epithelial cells. Interestingly, many anti-microbial peptides are active versus both Gram-positive
and Gram-negative bacteria but few bactericidal peptides have been shown to exhibit anticancer
and antiviral properties [26,27]. Consistently with these observations, several lines of evidence
suggest that the occurrence of infections in fish is very rare [26,28], thus leading scientists to study
fish biological interface. Our data suggest that FSM is able to inhibit microbial growth against
Gram-negative bacteria, but not against Gram-positive bacteria. In particular, among Gram-negative
strains, Klebsiella pneumoniae was the most sensitive strain, followed by two strains of Escherichia coli
(respectively reduction of 27.05% and 23.15%) and Pseudomonas aeruginosa (only 17.02% of growth
inhibition). This selectivity may be explained by the nature of the active molecules present in the FCM.
In fact, most antimicrobial peptides should possess two requirements, the net cationic charge and the
ability to take amphipathic structures. The first property allows the attraction of bacterial membranes
having negative charge, especially Gram-negative ones, and the second property allows the interaction
and absorption inside bacteria [29]. FCM could have a greater effect on Gram-negative strains rather
than Gram-positive ones because of a strong interaction between the outer membrane (present only in
the Gram-negative strains) and the active molecules present in the FCM. Furthermore, Guan et al. [24]
suggested that this interaction could cause damage by growth reduction or more likely by agglutination.
As far as concern the antifungal activity, MIC values showed a great inhibition against four strains of
Candida albicans, Candida glabrata, and Candida tropicalis. Such results are consistent with the presence
of chitinase found in FSM, which may be responsible for the observed strong antifungal activity [30].
However, it should be taken into due account that FSM contains several active compounds, which
may be responsible for the observed biological effects. In particular, previous authors showed that
Larimichthys crocea contains more than 3000 proteins in skin mucus and 521 proteins were also found
in salmon mucus [31,32]. In this regard, mucus proteins may derive from several routes including
that from dead cells and this may explain, at least in part, the large numbers of proteins present in the
mucus. Several studies have examined the differential proteome profile in fish after immune relevant
challenges such as infection, stress, and probiotic exposure [31–33]. Furthermore, FSM contains
well-established antimicrobial proteins such as lysozyme, a different type of lectin, several types of
heat shock proteins, apolipoprotein 1, and complement [34–37]. We demonstrated in this study that
CHIT1 protein is also present in FSM of Dasyatis pastinaca and it showed a high enzymatic activity.
The family of chitinases includes members both with and without glycohydrolase enzymatic activity
against chitin. CHIT1 and acidic mammalian chitinase (CHIA or AMCAse) are the only two true
chitinase possessing chitinolytic (glycohydrolase) activities [38]. Elevated levels of chitinases have
been reported in a variety of diseases including infections, chronic inflammation, and degenerative
disorders [39,40]. Recent studies reported that CHIT1 play a role as antifungal and antibacterial
activity [41–45]. We also demonstrated an enzymatic activity of CHIT1 in FSM that can partially
explain its anti-microbial activity.

5. Conclusions

Our results suggest that FSM exhibit significant and specific antimicrobial and antifungal activities
and possess cytotoxic effects against specific cancer cell lines in the absence of evident toxic effects
on non-tumoral cells. Therefore, this work, offers insight on the development and identification of
chemotherapic agents to overcome microbial and tumoral chemoresistance.

Future studies are now warranted in order to identify specific compounds in FSM responsible
for the observed effects in order to provide new pharmacological strategies for antimicrobial and anti
tumoral activity.
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