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Abstract
Understanding the genomic basis of adaptation in maize is important for gene dis‐
covery and the improvement of breeding germplasm, but much remains a mystery in 
spite of significant population genetics and archaeological research. Identifying the 
signals underpinning adaptation are challenging as adaptation often coincided with 
genetic drift, and the base genomic diversity of the species in massive. In this study, 
tGBS technology was used to genotype 1,143 diverse maize accessions including 
landraces collected from 20 countries and elite breeding lines of tropical lowland, 
highland, subtropical/midaltitude and temperate ecological zones. Based on 355,442 
high‐quality single nucleotide polymorphisms, 13 genomic regions were detected 
as being under selection using the bottom‐up searching strategy, EigenGWAS. Of 
the 13 selection regions, 10 were first reported, two were associated with environ‐
mental parameters via EnvGWAS, and 146 genes were enriched. Combining large‐
scale genomic and ecological data in this diverse maize panel, our study supports a 
polygenic adaptation model of maize and offers a framework to enhance our under‐
standing of both the mechanistic basis and the evolutionary consequences of maize 
domestication and adaptation. The regions identified here are promising candidates 
for further, targeted exploration to identify beneficial alleles and haplotypes for de‐
ployment in maize breeding.

K E Y W O R D S

adaptation, domestication, EigenGWAS, EnvGWAS, maize, selection

www.wileyonlinelibrary.com/journal/mec
mailto:﻿
https://orcid.org/0000-0002-9117-5011
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lihuihui@caas.cn
mailto:h.li@cgiar.org
mailto:S.Hearne@cgiar.org


     |  3545LI et al.

1  | INTRODUC TION

When a species migrates from one ecosystem to another, changes 
in various factors, such as climate and geographical surround‐
ings, will result in adaptive changes of the allelic composition of 
the population. In evolutionary biology and ecology, it is import‐
ant to identify loci under selection or adaption (Field et al., 2016; 
Stephan, 2016). In conventional analysis, identifying adaption‐ 
or evolution‐related loci is conducted via a variety of analytical 
methods, such as the FST scan (Wright, 1951), integrated haplotype 
score (iHS) (Voight, Kudaravalli, Wen, & Pritchard, 2006), compos‐
ite of multiple signals (CMS) (Grossman et al., 2010), cross‐popu‐
lation extended haplotype homozygosity (XP‐EHH) (Sabeti et al., 
2007), a multiple‐locus composite likelihood ratio (XP‐CLR) and 
singleton density score (SDS) (Field et al., 2016). Among these, the 
FST method that has been widely applied in plants relies on a prior 
sampling scheme or knowledge of the subpopulation, often un‐
known or hard to define, or on haplotype‐based inference (Field 
et al., 2016).

Recently, Chen, Lee, Zhu, Benyamin, and Robinson (2016) pro‐
posed a single‐marker regression approach based on principal com‐
ponent analysis (or eigen‐analysis), called EigenGWAS. Conceptually 
similar to genome‐wide association studies (GWAS), the analysis 
procedure of EigenGWAS is similar to the conventional regression 
analysis for GWAS but the phenotype is substituted by an eigen‐
vector capturing genetic variation of the studied population. The 
regression coefficient of EigenGWAS approximates that of FST. In 
recent studies, EigenGWAS has been successfully used to identify 
selection signals in species such as human (Parolo, Lacroix, Kaput, & 
Scott‐Boyer, 2017) and in wild birds (Bosse et al.., 2017; Kim et al., 
2017). These studies identified the genes under selection or adap‐
tion and illustrated how genetic signatures of selection translate into 
variation in phenotype fitness.

Previous studies have identified a number of maize genes under 
selection during domestication (Table S1), for example: teosinte 
branched1 (tb1), which modifies plant architecture and signifi‐
cantly reduces the development of tillers (Wang, Stec, Hey, Lukens, 
& Doebley, 1999); c1 governing the tissue‐specific expression of 
anthocyanin biosynthesis (Hanson et al., 1996); bt2, ae1 and su1, 
which encode components of the starch biosynthetic pathway 
(Whitt, Wilson, Tenaillon, Gaut, & Buckler, 2002); zagl1, a putative 
transcription factor (Vigouroux et al., 2002); d8 and ts2 involved 
in plant height, flowering time and sex determination, and exhibit‐
ing a selection imprint in teosintes (Harberd & Freeling, 1989; Irish 
& Nelson, 1993; Thornsberry et al., 2001); and y1, which encodes 
phytoene synthase and that has undergone recent selection for 
endosperm colour (Palaisa, Morgante, Tingey, & Rafalski, 2004). 
Teosinte glume architecture1 (tga1), a member of the SBP‐box gene 
family of transcriptional regulators, has been identified as confer‐
ring naked kernels (Wang, Studer, Zhao, Meeley, & Doebley, 2015), 
and grassy tillers1 (gt1), which encodes a homeodomain leucine 
zipper transcription factor, experienced a tissue‐specific gain in ex‐
pression in maize that is associated with suppressing the initiation 

of multiple ears per plant such that only one or two large ears are 
formed (Whipple et al., 2011; Wills et al., 2013). In addition, Hufford 
et al. (2012) identified 484 chromosomal regions associated with do‐
mestication from wild teosintes to maize landraces and another 695 
chromosomal regions associated with crop improvement from a set 
of 75 teosintes and maize lines. Tian, Stevens, and Buckler (2009), 
using 28 diverse maize inbred lines and 16 teosintes, discovered a 
large region on chromosome 10 involved in adaptation or domes‐
tication that has been the target of strong selection during maize 
domestication. More recently, Gage, White, Edwards, Kaeppler, and 
de Leon (2018) identified that selection impacted maize male inflo‐
rescence morphology through a comparison of 41 unselected early 
generation maize stiff stalk lines and 21 highly selected elite ex‐PVP 
lines.

Environmental GWAS (EnvGWAS) represents the associations 
between single nucleotide polymorphism (SNP) alleles and the 
original environment of accessions. Application of this approach 
can uncover the genetic basis of environmental adaption (Jones et 
al., 2012; Lasky et al., 2015; Turner, Bourne, Von Wettberg, Hu, & 
Nuzhdin, 2010). To help breed climate‐adapted varieties, research‐
ers explored the impact of environment on domestication and found 
evidence of rapid evolution in response to environmental change 
(Bosse et al., 2017; Gaut, Seymour, Liu, & Zhou, 2018; Lasky et al., 
2015). By de novo sequencing the maize EDMX‐2233 genotype of 
the Palomero Toluqueño (Palomero) landrace, a highland popcorn 
from San Lorenzo Teotuitlán, Mexico, Vielle‐Calzada et al. (2009) 
found that environmental factors related to the metal content of 
local soils may have been important in maize domestication. Navarro 
et al. (2017) found that 61.4% of the SNPs associated with flowering 
time were associated with altitude in a study of 4,471 maize landra‐
ces. These insights provide empirical support that genomic determi‐
nants of environmental adaptation can be identified, and this area 
merits further study.

Here, we used genomic characterization of 1,143 maize acces‐
sions from 20 countries, conducting EigenGWAS to identify genomic 
regions associated with local adaptation, and EnvGWAS to identify 
genomic regions associated with high‐resolution, long‐term geo‐
graphical information system (GIS) data in the collection sites. The 
selection regions uncovered by this diverse panel enrich our under‐
standing of the influence of environmental change on adaptation in 
maize, and can be used to facilitate the development of new elite 
cultivars adapted to changing environmental conditions in the face 
of climate change, a serious threat to global food security, sustain‐
able development and poverty eradication.

2  | MATERIAL S AND METHODS

2.1 | Plant materials

In this study, a total of 1,143 maize accessions were collected from 
20 countries (Figure 1), including 11 teosinte inbred lines, 764 lan‐
draces sampled from the maize collection of the CIMMYT germplasm 
bank (MGB), 290 CIMMYT elite maize lines (CMLs) and 78 popcorn 
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lines from the USDA Ames inbred collection (Romay et al., 2013). 
The 11 teosinte inbred lines were developed from wild teosinte 
materials under the Teosinte Inbred Project, 10 of which belong to 
subspecies parviglumis and one (ISU_TIL25) belongs to the subspe‐
cies mexicana. The teosinte information can be found in GRAMENE 
(http://archi​ve.grame​ne.org/db/diver​sity/diver​sity_view?search_
for=TIL&objec​t=div_passp​ort%2Cdiv_synon​ym&db_name=diver​
sity_maize​&x=0&y=0&actio​n=list). The 764 maize landraces se‐
lected originated from 20 countries representing broad adaptation 
and, compared with elite lines, broader genomic diversity. A panel 
of 290 CMLs was chosen from the complete CML set, comprising 
573 lines at the time of the study. Selection of the CMLs was per‐
formed considering representation of the three major environmen‐
tal adaptation groups (Lowland Tropical, Subtropical/Midaltitude 
and Highland Tropical subgroups), the described pedigrees (https​:// 
data.cimmyt.org/datas​et.xhtml​?persi​stent​Id=hdl:11529/​10246​)  
and known genomic relationships between the lines (Wu et al., 
2016) in order to maximize the diversity captured by the 290 entry 
set. Passport information of the 764 maize landraces and the 290 
CMLs can be found at http://hdl.handle.net/11529/​10548183. The 
78 popcorn inbred lines were obtained from the USDA‐ARS North 

Central Regional Plant Introduction Station (NCRPIS) in Ames, Iowa 
(Romay et al., 2013). Line identifiers can be found at http://hdl.han‐
dle.net/11529/​10548183 and associated passport information is 
available from the U.S. National Plant Germplasm System at https​://
npgsw​eb.ars-grin.gov/gring​lobal/​search.aspx.

Of the 1,143 maize germplasm, 764 were open pollinated land‐
races and 379 were inbred lines. A summary of the descriptors for 
this panel of 1,143 accessions is available in Table S2. The maize ma‐
terials in this study represent diverse ecological adaptation including 
tropical lowland, highland, subtropical/midaltitude and temperate, 
covering major ecotypes of maize resources developed during do‐
mestication and breeding.

2.2 | Plant sampling and SNP genotyping

The germplasm panel was genotyped using genotyping‐by‐sequenc‐
ing (tGBS) technology (Data2Bio LLC), an approach which simplifies 
the preparation of high‐quality GBS sequencing libraries and promises 
higher SNP calling accuracy (Ott et al., 2017). Compared with conven‐
tional genotyping‐by‐sequencing (cGBS) (Elshire et al., 2011), tGBS is 
more accurate in genotyping heterozygous sites and is therefore more 

F I G U R E  1   The geographical and adaptive distribution of the 1,143 maize collection. Lines cannot be assigned a geolocation origin so are 
not displayed on the map [Colour figure can be viewed at wileyonlinelibrary.com]

http://archive.gramene.org/db/diversity/diversity_view?search_for=TIL&object=div_passport%2Cdiv_synonym&db_name=diversity_maize&x=0&y=0&action=list
http://archive.gramene.org/db/diversity/diversity_view?search_for=TIL&object=div_passport%2Cdiv_synonym&db_name=diversity_maize&x=0&y=0&action=list
http://archive.gramene.org/db/diversity/diversity_view?search_for=TIL&object=div_passport%2Cdiv_synonym&db_name=diversity_maize&x=0&y=0&action=list
https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10246
https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10246
http://hdl.handle.net/11529/10548183
http://hdl.handle.net/11529/10548183
http://hdl.handle.net/11529/10548183
https://npgsweb.ars-grin.gov/gringlobal/search.aspx
https://npgsweb.ars-grin.gov/gringlobal/search.aspx
www.wileyonlinelibrary.com
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relevant when exploring heterogeneous and heterozygous landrace 
populations. For each landrace, DNA was extracted from bulked leaf 
tissue obtained from ~12 selfed progeny of a single plant. In contrast, 
for each inbred line DNA was extracted from a single plant.

To identify polymorphic sites for each maize accession, alleles which 
differ from the reference genome (https​://www.maize​gdb.org/genom​
e/genome_assem​bly/B73%20Ref​Gen_v3) were scanned. Excluding 
the first and last 3 bp of each read, only sites with PHRED quality ≥20 
represented by at least five reads were retained. Only bi‐allelic sites 
with overall allele frequency ≥80% were considered to be polymor‐
phic. Homozygous genotype sites were defined as five or more reads 
of major allele and overall major allele reads accounting for ≥90%; while 
heterozygous genotype sites were defined with two or more reads for 
each of two alleles, each accounting for at least 20% of the total reads. 
Sites not matching these criteria were assigned as missing.

Genotype calls were further filtered to improve quality via the 
following steps: (1) SNPs that had a minor allele frequency (MAF) of 
≥1%, heterozygosity rate ≤0.2 + 2p(1 − p), where p is the MAF, and 
missing data rate ≤50% were retained; and (2) samples with missing 
data rate ≥90% were removed. There were two sources of missing 
information in the data set: one was missing genotypes for the cov‐
ered sites by tGBS due to the limited read coverage for some maize 
accessions; the other was uncovered sites due to the reduced rep‐
resentation of the genome using tGBS technology. Therefore, impu‐
tation in this study was conducted for both sources (i.e., filling the 
missing genotypes and deducing the uncovered sites). The filtered 
genotypes retained through Steps (1) and (2) were imputed by the 
following steps. (3) Regarding imputation of the missing genotypes 
for the tGBS data set, beagle version 4.1 (Browning & Browning, 
2016, 2007) with default parameters (i.e., window = 50,000, over‐
lap = 3,000; niterations = 15, and cluster = 0.005) without reference 
panel was used (this is the most suitable approach for landrace ger‐
mplasm, Swarts et al., 2014). (4) For imputation of the uncovered 
sites to increase marker density with high statistical accuracy, the 
genetic variation on HapMap version 3.2.1 was used as the refer‐
ence panel, which consists of 1,210 maize lines, includes 83 million 
SNPs (the 30 million "LLD" SNPs are high‐confidence markers) and 
covers global predomesticated and domesticated Zea mays varieties 
(available from the Panzea website: http://cbsus​rv04.tc.corne​ll.edu/
users/​panze​a/fileg​ateway.aspx?categ​ory=Genot​ypes). To control 
the quality of this reference panel, it was filtered to 7,593,114 SNPs 
that met the criteria MAF ≥5%, minimum calling rate ≥30% and sam‐
ple missing rate ≤50% on each chromosome (Table S3). The SNPs 
retained from Step (3) were further imputed using beagle version 4.1 
with the filtered reference panel and default parameters.

2.3 | Population structure analysis

For pairwise taxa, distance matrices using the p‐distances model 
were calculated by the tassel version 5.2 software (Glaubitz et al., 
2014). Neighbour‐joining (NJ) trees were constructed with 1,000 
bootstraps using the tassel version 5.2 software and were visualized 
using the online tool itol version 4 (Letunic & Bork, 2016). Principal 

component analysis (PCA) was conducted using plink 1.9 (https​://
www.cog-genom​ics.org/plink2; Chang et al., 2015) for individuals in 
the HapMap3 reference population and the 1,143 maize materials 
used in this study.

2.4 | Selection analysis

Identification of loci under selection through GWAS of eigenvectors 
was implemented using EigenGWAS (Chen et al., 2016). Using high‐
quality SNPs to generate a genetic relationship matrix, the top 10 ei‐
genvalues and their corresponding eigenvectors were calculated. SNP 
effects, nearly equivalent to FST, could be estimated by regressing each 
SNP for a selected eigenvector. In principle, the estimated genetic ef‐
fect for each locus is driven by genetic drift which is random, and/or 
selection which is directional. To filter out the genetic drift compo‐
nent, we adjusted the p‐value with a genomic control factor (Devlin 
& Roeder, 1999), and consequently the corrected p‐value, PGC, was 
used for detecting the loci under selection. To determine the cutoff of 
significance of loci under direct selection, the first eigenvector was re‐
shuffled 1,000 times to evaluate the null distribution. The 95th quan‐
tile of the 1,000 most significant p‐values across 1,000 permutations 
was used as the significance threshold. After log10 transformation, a p‐
value threshold of 5.87 for an experiment‐wise type I error rate of 0.05 
was used for the EigenGWAS analyses for each of the 10 eigenvectors.

2.5 | GIS data extraction and EnvGWAS

Climate data were extracted from extrapolated climate grids (Fick & 
Hijmans, 2017) at 30 s (~1 km) resolution for 509 maize landrace pop‐
ulations. Raw data files for monthly long‐term average (1970–2000) 
minimum (tmin), maximum (tmax), averaged temperature (tavg), 
rainfall (prec), vapour pressure (vapr) and solar radiation (srad) were 
downloaded from http://world​clim.org/version2 as well as soil pH 
(ph5) at 5 cm depth (Hengl et al., 2017) from https​://soilg​rids.org and 
converted to ESRI grid format for storage and extraction. Curated 
georeferenced collection site locations were used to extract climate 
and soil pH values for accessions using the spatial analyst toolbox in 
ESRI arcmap 10.6. Genome‐wide association was performed using a 
general linear model (GLM; Price et al., 2006) implemented by a mem‐
ory‐efficient, visualization‐enhanced and parallel‐accelerated tool for 
GWAS (MVP; https​://github.com/Xiaol​eiLiu​Bio/MVP/) with seven 
GIS data parameters (tmax, tmin, tavg, srad, vapr, ph5, and prec) as 
response variables. The p‐value threshold was determined using per‐
mutation tests by 1,000 times reshuffling of the of tmin trait. As a 
result, the SNPs with a log p‐value greater than 5.77 were considered 
to be statistically significant for a type I error rate of 0.05.

2.6 | Linkage disequilibrium and haplotype analysis

The squared correlation of allele frequency (r2) was calculated by plink 
1.9 (https​://www.cog-genom​ics.org/plink2; Chang et al., 2015) to eval‐
uate linkage disequilibrium (LD) in the maize panel. Pairwise r2 values 
were plotted against genomic distance in a 1‐kb window, and a locally 

https://www.maizegdb.org/genome/genome_assembly/B73 RefGen_v3
https://www.maizegdb.org/genome/genome_assembly/B73 RefGen_v3
http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category=Genotypes
http://cbsusrv04.tc.cornell.edu/users/panzea/filegateway.aspx?category=Genotypes
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2
http://worldclim.org/version2
https://soilgrids.org
https://github.com/XiaoleiLiuBio/MVP/
https://www.cog-genomics.org/plink2
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weighted polynomial regression (LOESS) curve was fitted using r soft‐
ware. An EHH test was conducted for each of the selected SNPs within 
the 2‐Mb region, identifying long and frequent haplotypes as imple‐
mented in the R package rehh (Gautier & Vitalis, 2012). The same pack‐
age was used for the bifurcation diagrams of alleles. We also screened 
for population‐specific extended haplotypes with Rsb, a statistic that 
compares EHH between populations to detect between‐population se‐
lection. The haplotype data were also presented as bifurcation diagrams 
to clearly illustrate the breakdown/maintenance of haplotype structure.

2.7 | Gene annotation and enrichment analysis

Functional annotations of the target SNPs were performed using snpeff 
(Cingolani et al., 2012). The Maize B73 reference V3 gene annotation 

as a gff3 file type was downloaded from the Maize Genetics and 
Genomics Database (MaizeGDB) (https​://www.maize​gdb.org/assem‐
bly). Functional enrichment analysis of the annotated genes was per‐
formed via the ClueGO plug‐in for cytoscape (Bindea et al., 2009).

2.8 | GWAS analysis on popping trait

To map the popping‐related loci and test if they had undergone se‐
lection, the 1,143 maize accessions were classified into two groups: 
(1) a popping group with 264 landrace populations and the 78 pop‐
corn inbred lines, and (2) a nonpopping group with 500 landrace 
populations and the 290 CMLs. The artificial phenotypes of Group 
(1) were all set as 1, while those of Group (2) were all set as 0. With 
the phenotypes so defined, GWAS was performed based on a GLM 

F I G U R E  2   The intersection of SNPs for the data set imputed by tGBS and imputed by HapMap3 (a), the frequency of minor alleles (b) and 
heterozygosity (c) of 1,143 maize accessions based on the 414,124 SNP data set before filtering and the 355,442 SNP data set after filtering, 
SNPs identified in the 1,143 accessions (d): “a” to “d” depict the nucleotide divergence polymorphism (π) on population “Popcorn inbred” 
(blue), “CMLs” (dark yellow), “Landrace” (green), and “Teosinte” (purple), respectively, and “e” presents 355,442 SNP density [Colour figure 
can be viewed at wileyonlinelibrary.com]

414,124

65,540 359,618

(a) (b)

(c) (d)
e

d
c

b

a

https://www.maizegdb.org/assembly
https://www.maizegdb.org/assembly
www.wileyonlinelibrary.com
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using mvp software (https​://github.com/Xiaol​eiLiu​Bio/MVP/). The 
first five principal components calculated by plink 1.9 (https​://www.
cog-genom​ics.org/plink2; Chang et al., 2015) were included as pop‐
ulation structure. The same whole‐genome p‐value cutoff as that 
used in EnvGWAS (i.e., 2.03E‐06) was used to declare the significant 
SNPs associated with the trait of popping.

3  | RESULTS

3.1 | tGBS genotypes

In total, 0.31 terabases (Tb) of sequence data from 2.5 billion qual‐
ity‐trimmed reads were generated from the 1,145 maize accessions 
via tGBS (Ott et al., 2017) (Figures S1 and S2). After alignment to the 
reference genome (B73 Zea mays AGPv3 genome, http://cbsus​rv04.
tc.corne​ll.edu/users/​panze​a/downl​oad.aspx?fileg​roupx​ml:id=29), 
3,713,115 SNPs were identified. Two accessions with missing rates 
>90% were removed (i.e., one popcorn line AMES_28995 and one 
elite line CML131). Of the 3,713,115 tGBS SNPs, 65,540 were re‐
tained after filtering for MAF and heterozygosity (Figure S3). The 
65,540 tGBS SNPs were imputed without a reference panel. To 
further capture the genetic variation across the maize genome, the 
tGBS 65,540 SNPs were also imputed to 359,618 high‐quality SNPs 
using maize HapMap V3 as a reference panel (Figure 2a and Tables 
S3 and S4). Finally, the union of the two SNP sets (N = 414,124 SNPs; 

Figure 2a) was filtered by MAF and heterozygosity under the same 
criteria as mentioned above, resulting in 355,442 high‐quality SNPs, 
which were retained for further analysis. This SNP set has an average 
MAF of 0.241 and an average heterozygosity of 0.133 (Figure 2b,c). 
The heterozygosity rates of over 85% of the accessions were lower 
than 20% (Figure 2c,d), which is comparable with those from GBS 4K 
landraces (average = 4.2%) by Navarro et al. (2017).

3.2 | Genetic diversity within the 1,143 accessions

In general, the results from phylogenetic analyses and PCA were 
consistent (Figure 3 and Figure S4). The NJ tree revealed clear differ‐
entiation of the 1,143 accessions into four major groups: teosintes, 
landraces, CMLs and popcorn inbred. There were some intersec‐
tions between CMLs and landraces and some between popcorn in‐
bred and landraces (Figure 3). Results from the PCA showed that 
the genetic diversity of 1,143 accessions used in this study covered 
most of the genetic diversity of HapMap 3, reflecting the enormous 
genetic diversity in maize. Two groups of CMLs and landraces clus‐
tered together, while popcorn inbred lines were scattered among the 
landraces (Figure S4).

The first five eigenvectors were compared pair‐wise based on maize 
type and adaptation (Figure 4). Interestingly, most of Ev1 for CMLs 
were negative, but were positive for teosintes and popcorn inbred. Ev1 
for landraces were approximately half positive and half negative. With 

F I G U R E  3   Neighbour‐joining tree 
based on the 1,143 maize panel and 
computed on a simple matching distance 
matrix for the filtered SNPs [Colour figure 
can be viewed at wileyonlinelibrary.com]

https://github.com/XiaoleiLiuBio/MVP/
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2
http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupxml:id=29
http://cbsusrv04.tc.cornell.edu/users/panzea/download.aspx?filegroupxml:id=29
www.wileyonlinelibrary.com
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regard to maize type (landrace, CML, temperate popcorn lines, teosinte 
lines), the popcorn inbred group could be clustered separately from 
other groups by plotting Ev1 versus Ev2, Ev2 versus Ev3, Ev2 versus 
Ev4, and Ev2 versus Ev5, suggesting that Ev2 may be reflecting the 
temperate versus tropical adaptation. In terms of the Ev distribution 
for adaptation, the proportion of negative and positive values varied 
across Ev1–Ev5 for lowland, sub/midaltitude, and highland (Figure 4).

There was high LD for most of the pairwise comparisons when 
using the 355,442 SNP loci, primarily because the imputation proce‐
dure was based on the LD block inferred from the reference data set, 
which therefore lowered the rate of LD decay. Therefore, the unim‐
puted 65,540 SNP data set was used to conduct the LD analyses. 
The extent of LD decay (r2 = .1) was found at an intermarker genetic 
distance of 2.5 kb (Figure S5).

3.3 | Adaptation model of maize using the 1,143 
maize accessions

EigenGWAS analyses were conducted using the entire data set for 
the first 10 eigenvectors. Mean genetic relatedness across the maize 
collection was −0.0014, indicating that the effective sample number 

of the panel was 712.44, and the effective number of genome seg‐
ments was 34.65. The largest eigenvalue was 143.45, explaining 
about 12.6% of the total genetic variation; the 10th largest eigen‐
value was 17.14, explaining about 1.5% of the total genetic variation; 
the top 10 eigenvalues represented ~40.5% of the overall genetic 
variation (Table 1), indicating that the complicated population struc‐
ture of maize could not be captured by the largest eigenvalue only. 
In comparison, a simple population structure such as the genetic 
structure of northwestern and southern European humans could be 
largely explained by the largest eigenvalue alone (Chen et al., 2016; 
Novembre et al., 2008). For a diverse population such as Human 
HapMap, which covers multi‐ethnicities, the largest eigenvalue 
explained about 10% of the total genetic variation, and left more 
variation to be captured by other eigenvalues (table 1 in Chen et 
al., 2016). The genomic inflation factor that is commonly used in ad‐
justing population stratification for GWAS (Devlin & Roeder, 1999), 
namely λGC calculated from EigenGWAS, ranged from 82.38 to 4.16 
(Table 1 and Figure S6). After correction by λGC, the SNPs with −
log10(PGC) exceeding the threshold of 5.87 were declared as the loci 
under selection at the genome‐wide level. Upon positive or negative 
coordinates on the corresponding eigenvector, two subgroups were 

F I G U R E  4   PCA plots of five eigenvectors (Ev1–Ev5) of different maize types and adaptation groups for the 1,143 maize panel [Colour 
figure can be viewed at wileyonlinelibrary.com]
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implicitly defined for all accessions, and their selection differentia‐
tion was quantified by EigenGWAS via the 1df chi‐square test statis‐
tics, which was proportional to FST.

To facilitate the comparison, scanning results from −log10(PGC) 
and FST are shown together as a Miami plot (Figure 5). The peaks from 
−log10(PGC) and FST nearly mirrored each other, indicating reasonable 
grouping as defined by EigenGWAS. In total, 57,639 significant SNPs 
were identified in the 10 EigenGWAS analyses (Table 1, Figure 5 and 
Table S5), with no significant SNPs obtained using Ev10, and the most 
hits (i.e., 22,125 SNPs) using Ev5. The distribution of the identified 
SNPs across different chromosomes varied considerably, with chro‐
mosome 3 (i.e., 14,382 SNPs) having the highest numbers of SNPs 
and chromosomes 6 and 7 (i.e., one SNP each) the lowest. Thirteen 
selection regions were determined via an LD block size of 0.5 Mb from 
57,639 significant SNPs, with two regions on each of chromosomes 
1 and 3, three regions on chromosomes 2, and one region on each of 
chromosomes 4, 5, 6, 7, 8 and 10 (Table 2). The most significant region 
was detected on chromosome 2 with PGC reaching 8.65e‐37 by three 

eigenvectors (i.e., Ev5, Ev7 and Ev8) in EigenGWAS. Twenty‐eight 
genes were annotated in this particular region.

Of the 13 selection regions, three (i.e., SR2.1, SR3.1 and SR10) 
were repeatedly detected by more than one eigenvector, and three 
regions (i.e., SR1.1, SR1.2 and SR5) were reported in previous studies 
(Table 2). Region SR1.1 with a length of 48 bp and SR1.2 with a length 
of 2 Mb were identified as highly divergent with a soft‐sweep model 
(Beissinger et al., 2014). Genes encoding glucanendo‐1,3‐beta‐glu‐
cosidase 7 and disease resistance response protein 206 were located 
in the region of SR1.2. Region SR5 with a length of 6.75 Mb had been 
reported as SMS18, encoding a P‐type copper translocator that also 
detoxifies heavy metals from the Palomero Genome (Vielle‐Calzada 
et al., 2009). Ten selection regions were first reported in this study, 
and only a fraction of the newly identified candidate genes have 
been functionally characterized: for example, legume lectins beta 
domain containing protein in SR2.2, cytokinin‐O‐glucosyltransfer‐
ase 2 in SR2.3, glycosyltransferase family 28 C‐terminal domain 
containing protein in SR3.1, poly [ADP‐ribose] polymerase 2, SUMO 

Eigenvector (Ev) Eigenvalue Mean FST GWAS λGC

Number of 
GWAS hits

1 143.454 0.096 82.383 20

2 83.941 0.048 47.830 105

3 53.03 0.034 27.793 1

4 40.445 0.022 11.213 14,362

5 31.611 0.019 4.156 22,125

6 29.246 0.017 12.276 6,310

7 26.034 0.017 6.229 5,707

8 20.785 0.012 7.720 4,965

9 17.511 0.010 6.004 4,044

10 17.143 0.010 8.138 0

Note: λGC is defined as the ratio between the 1df χ2 value of the median p‐value of .455 minus the 
1df χ2 value of the p‐value of .5.

TA B L E  1   Summary statistics from 
EigenGWAS for 1,143 maize collections

F I G U R E  5   Miami plot from EigenGWAS (upper for PGC and lower for FST) for Ev1–Ev10 based on the 1,143 maize panel. PGC is the p‐
values corrected by λGC in EigenGWAS. Ev1–Ev10 are the first 10 eigenvectors, each of which was used as phenotype for the single‐marker 
association study based on nearly 355,442 markers in EigenGWAS [Colour figure can be viewed at wileyonlinelibrary.com]
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protease, rapid alkalinization factor 1 and ATP‐dependent Clp pro‐
tease proteolytic subunit 1 in SR8, and UDP‐galactose translocator 
and retrotransposon protein SINE subclass in SR10 (Table 2).

To further validate the 13 selection regions, six SNPs (i.e., 
S2_95391165, S5_107377632, S10_40760398, S10_40760575, 
S10_40949675 and S10_40949963, Figures S7–S12), associated 
with more than one eigenvector contained within genes with anno‐
tations such as “start_lost,” “stop_gained,” “stop_lost” and “stop_re‐
tained_variant” functions (Table S6), were chosen for further analysis 
because they would be the most likely to alter known gene function.

S2_95391165 (PGC  =  8.65e‐37 under Ev7 and PGC  =  5.17e‐09 
under Ev5; Table S5), located within SR2.1, was a stop‐retained vari‐
ant in gene GRMZM2G101250, where patterns of genetic variation 
revealed a clear signature of recent selection (Figure S7). EHH tests 
also showed that the S2_95391165‐G haplotypes extended further 
than the reference S2_95391165‐A haplotypes (Figure S13). Large dif‐
ferences in bifurcation diagrams of S2_95391165‐G haplotypes and 
S2_95391165‐A haplotypes could be observed across the four maize 
types (Figure S7). For SNP S2_95391165, the averaged Ev1 values for 
each genotype were significantly different (p < 2.2e‐16), and the fre‐
quency of each genotype was variously distributed across four maize 
types (Figure S7). At the extreme, genotype “GG” existed in all the 
popcorn inbred lines, while genotype “AA” was present in more than 
one‐quarter of the teosintes. Averaged LD values in this extended re‐
gion were much higher in CMLs (i.e., 0.40) and the popcorn inbred 

lines (i.e., 0.52), than those in the teosintes (i.e., 0.19) and the landraces 
(i.e., 0.26). If the teosintes were taken as “wild” types, the much stron‐
ger LD in the maize materials implied a signature of selection, possibly 
by temperate adaptation or via domestication. Similar results were 
observed for the other five SNPs (Figures S8–S12), which displayed 
a significant haplotype diversity difference between reference and 
alternative alleles; the popcorn inbred lines had the greatest impact 
on increasing the Ev1 while CMLs had the smallest effect (Figure S13).

3.4 | Selection regions identified by both 
EigenGWAS and EnvGWAS using 509 maize landrace 
populations

To understand the biological background of the selection loci identi‐
fied by EigenGWAS, Pearson's correlations were estimated across 
seven GIS traits related to environmental attributes and Ev1 to Ev10 
(Table S7). The absolute values of the correlation coefficients of Ev1, 
Ev6 and Ev9 to tmax, tmin and tavg were all highly significant, sug‐
gesting that the selection loci identified from Ev1, Ev6 and Ev9 could 
be significantly associated with growing season temperature. Clear 
associations with tmax, tmin and tavg could be easily observed on 
chromosomes 2, 4, 6, 8 and 10 (Figure S14). The most significant 
association on chromosome 4 was associated with tmin and tavg 
simultaneously, with the highest p‐value reaching 5.59e‐40. As ex‐
pected, most identified SNPs were shared for tmax, tmin and tavg.

TA B L E  2   Thirteen regions under selection identified in the 1,143 maize panel using EigenGWAS

Region Start End Distance Ev p PGC FST Annotation
Gene 
number Gene description Reported

SR1.1 S1_79266034 S1_79266082 48 Ev5 1.28E−31 9.82E−09 0.0609 intergenic_region 0 GRMZM2G048821‐GRMZM2G456401 Beissinger et 
al. (2014)

SR1.2 S1_122588015 S1_124631827 2,043,812 Ev8 3.34E−96 6.97E−14 0.4327 missense_variant, 3_prime_UTR_variant, 5_prime_UTR_variant, 
splice_region_variant&intron_variant

5 glucan endo−1,3‐beta‐glucosidase 7, disease 
resistance response protein 206

Beissinger et 
al. (2014)

SR2.1 S2_90633341 S2_97732843 7,099,502 Ev5, Ev7, Ev8 3.43E−219 8.65E−37 0.2687 stop_retained_variant, 3_prime_UTR_variant, 5_prime_UTR_variant, 
5_prime_UTR_premature_start_codon_gain_variant, missense_var‐
iant, splice_region_variant&synonymous_variant

28 hypothetical protein LOC100272669  

SR2.2 S2_113040712 S2_122223253 9,182,541 Ev8 3.46E−59 5.34E−09 0.1782 3_prime_UTR_variant, 5_prime_UTR_variant, missense_variant 18 legume lectins beta domain containing protein  

SR2.3 S2_200735084 S2_200738759 3,675 Ev2 4.19E−249 1.10E−06 0.171 3_prime_UTR_variant 1 cytokinin‐O‐glucosyltransferase 2  

SR3.1 S3_73092472 S3_85086886 11,994,414 Ev1, Ev4 0 1.12E−09 0.886 3_prime_UTR_variant, 5_prime_UTR_variant, missense_variant, 
start_lost, missense_variant&splice_region_variant, splice_region_
variant&intron_variant, splice_region_variant&synonymous_variant

20 glycosyltransferase family 28 C‐terminal 
domain containing protein

 

SR3.2 S3_100100348 S3_106656690 6,556,342 Ev4 6.56E−103 1.27E−10 0.2026 missense_variant, 3_prime_UTR_variant 9 hypothetical protein LOC100217119  

SR4 S4_110464865 S4_110904488 439,623 Ev9 4.35E−35 4.65E−07 0.1359 missense_variant, 5_prime_UTR_variant 1 hypothetical protein LOC100280215  

SR5 S5_103048851 S5_109807152 6,758,301 Ev9 2.07E−45 8.00E−09 0.1455 missense_variant, start_lost, 3_prime_UTR_variant 6 hypothetical protein LOC100277634 Vielle‐Calzada 
et al. (2009)

SR6 S6_14879186     Ev3 2.47E−155 4.77E−07 0.2329 intergenic_region 0 GRMZM5G884722‐AC186406.4_FG006  

SR7 S7_115180718     Ev8 2.53E−43 6.91E−07 0.1211 intergenic_region 0 GRMZM2G071059‐GRMZM2G171408  

SR8 S8_41930480 S8_55983961 14,053,481 Ev5 8.69E−115 5.25E−29 0.3741 3_prime_UTR_variant, missense_variant, 5_prime_UTR_variant, 
splice_region_variant&intron_variant

35 Poly [ADP‐ribose] polymerase 2, SUMO pro‐
tease, rapid alkalinization factor 1, ATP‐de‐
pendent Clp protease proteolytic subunit 1

 

SR10 S10_37844852 S10_46876871 9,032,019 Ev5, Ev6 2.62E−107 3.40E−27 0.4204 missense_variant&splice_region_variant, stop_gained, mis‐
sense_variant, 5_prime_UTR_variant, 5_prime_UTR_prema‐
ture_start_codon_gain_variant, stop_lost, splice_region_variant, 
splice_region_variant&intron_variant

21 UDP‐galactose translocator, retrotransposon 
protein SINE subclass
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There were 15,743 significant SNPs, distributed on chro‐
mosomes 1, 3, 4, 8 and 10, identified by both EigenGWAS and 
EnvGWAS, almost all of which were associated in EnvGWAS with 
the three temperature traits (Figure 6, Table S8, and Figures S15 
and S16). In total, 16.38% of significant hits for EnvGWAS over‐
lapped hits from EigenGWAS, and 41.58% of significant hits for 
EigenGWAS overlapped hits from EnvGWAS. SNPs S4_172558795 
and S4_172558871 were significantly associated with Ev10 
in EigenGWAS, and tmax, tmin and tavg in EnvGWAS. SNPs 
S8_43182796 and S8_43210849 were significantly associated with 
Ev4 in EigenGWAS, and tmax, tmin, tavg and vapr in EnvGWAS. 
SR10 (5.5 Mb) detected by Ev5 was related to ph5, srad and vapr. 
SNP S3_79126245, which was annotated as “start_lost,” was in the 
common region significantly associated with Ev1 in EigenGWAS, 
and tmax, tmin, tavg and vapr in EnvGWAS. S3_79126245 
(PGC  =  1.31e‐07 under Ev1) located within SR3.1 (Table 2) was a 
“start_lost” variant on gene GRMZM2G701576, where patterns 
of genetic variation revealed a clear signature of recent selec‐
tion (Figure 7). The thickness of the lines in bifurcation diagrams 
is proportional to the frequency of each haplotype, which there‐
fore implies the haplotype diversity. Large differences in bifurca‐
tions diagrams of haplotypes S3_79126245‐C and S3_79126245‐T 
could be observed across four maize types (Figure 7a). Haplotype 
S3_79126245‐T was longer and more abundant than haplotype 
S3_79126245‐C especially in subpopulations of CMLs. Average LD 

values in this extended region were much higher in CMLs (i.e., 0.23) 
and the popcorn inbred lines (i.e., 0.23), than those in the teosin‐
tes (i.e., 0.17) and the landraces (i.e., 0.16) (Figure 7a). If the teosin‐
tes were taken as “wild” types, the much stronger LD in the maize 
materials implied a signature of selection, possibly by domestica‐
tion, representing fixation of potentially favourable haplotypes in 
CMLs and popcorn inbred lines compared with the more ancestral 
landraces and teosintes. Haplotype S3_79126245‐C showed fewer 
mutational branches than haplotype S3_79126245‐T, indicating the 
long‐range haplotype homozygosity across the region of haplotype 
S3_79126245‐T (Figure 7b). EHH tests also showed that haplotype 
S3_79126245‐T extended further than the reference haplotype 
S3_79126245‐C (Figure 7c). For this SNP locus at S3_79126245, the 
averaged Ev1 values for each genotype were significantly differ‐
ent (p < 2.2e‐16; Figure 7d,e), and the frequency of each genotype 
variously distributed across four maize types (Figure 7e). At the ex‐
treme, genotype “TT” existed in 90% of the CMLs, while genotype 
“CC” was present in more than 80% of the teosintes (Figure 7e). A 
significant difference between genotypes “CC” and “TT” could be 
observed in tmax, tmin and tavg (Figure 7f).

3.5 | Gene annotation for the SNPs under selection

The annotation conducted on the 65,540 SNP tGBS data and 
355,442 SNP imputed data showed that 48.76% and 59.12% of the 

TA B L E  2   Thirteen regions under selection identified in the 1,143 maize panel using EigenGWAS

Region Start End Distance Ev p PGC FST Annotation
Gene 
number Gene description Reported

SR1.1 S1_79266034 S1_79266082 48 Ev5 1.28E−31 9.82E−09 0.0609 intergenic_region 0 GRMZM2G048821‐GRMZM2G456401 Beissinger et 
al. (2014)

SR1.2 S1_122588015 S1_124631827 2,043,812 Ev8 3.34E−96 6.97E−14 0.4327 missense_variant, 3_prime_UTR_variant, 5_prime_UTR_variant, 
splice_region_variant&intron_variant

5 glucan endo−1,3‐beta‐glucosidase 7, disease 
resistance response protein 206

Beissinger et 
al. (2014)

SR2.1 S2_90633341 S2_97732843 7,099,502 Ev5, Ev7, Ev8 3.43E−219 8.65E−37 0.2687 stop_retained_variant, 3_prime_UTR_variant, 5_prime_UTR_variant, 
5_prime_UTR_premature_start_codon_gain_variant, missense_var‐
iant, splice_region_variant&synonymous_variant

28 hypothetical protein LOC100272669  

SR2.2 S2_113040712 S2_122223253 9,182,541 Ev8 3.46E−59 5.34E−09 0.1782 3_prime_UTR_variant, 5_prime_UTR_variant, missense_variant 18 legume lectins beta domain containing protein  

SR2.3 S2_200735084 S2_200738759 3,675 Ev2 4.19E−249 1.10E−06 0.171 3_prime_UTR_variant 1 cytokinin‐O‐glucosyltransferase 2  

SR3.1 S3_73092472 S3_85086886 11,994,414 Ev1, Ev4 0 1.12E−09 0.886 3_prime_UTR_variant, 5_prime_UTR_variant, missense_variant, 
start_lost, missense_variant&splice_region_variant, splice_region_
variant&intron_variant, splice_region_variant&synonymous_variant

20 glycosyltransferase family 28 C‐terminal 
domain containing protein

 

SR3.2 S3_100100348 S3_106656690 6,556,342 Ev4 6.56E−103 1.27E−10 0.2026 missense_variant, 3_prime_UTR_variant 9 hypothetical protein LOC100217119  

SR4 S4_110464865 S4_110904488 439,623 Ev9 4.35E−35 4.65E−07 0.1359 missense_variant, 5_prime_UTR_variant 1 hypothetical protein LOC100280215  

SR5 S5_103048851 S5_109807152 6,758,301 Ev9 2.07E−45 8.00E−09 0.1455 missense_variant, start_lost, 3_prime_UTR_variant 6 hypothetical protein LOC100277634 Vielle‐Calzada 
et al. (2009)

SR6 S6_14879186     Ev3 2.47E−155 4.77E−07 0.2329 intergenic_region 0 GRMZM5G884722‐AC186406.4_FG006  

SR7 S7_115180718     Ev8 2.53E−43 6.91E−07 0.1211 intergenic_region 0 GRMZM2G071059‐GRMZM2G171408  

SR8 S8_41930480 S8_55983961 14,053,481 Ev5 8.69E−115 5.25E−29 0.3741 3_prime_UTR_variant, missense_variant, 5_prime_UTR_variant, 
splice_region_variant&intron_variant

35 Poly [ADP‐ribose] polymerase 2, SUMO pro‐
tease, rapid alkalinization factor 1, ATP‐de‐
pendent Clp protease proteolytic subunit 1

 

SR10 S10_37844852 S10_46876871 9,032,019 Ev5, Ev6 2.62E−107 3.40E−27 0.4204 missense_variant&splice_region_variant, stop_gained, mis‐
sense_variant, 5_prime_UTR_variant, 5_prime_UTR_prema‐
ture_start_codon_gain_variant, stop_lost, splice_region_variant, 
splice_region_variant&intron_variant

21 UDP‐galactose translocator, retrotransposon 
protein SINE subclass
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maize genome respectively is in the intergenic region, and 7.54% and 
3.89% respectively is genic (Figure 8a,b). This is consistent with the 
B73 genome where 6% of the maize genome is genic (Schnable et 
al. 2009) and a substantial proportion of loci (i.e., 78.00%) associ‐
ated with phenotypic variation is found in intergenic regions (Li et al., 
2012; Mei, Stetter, Gates, Stitzer, & Ross‐Ibarra, 2018; Wallace et al., 
2014). Therefore, the tGBS SNPs alone were broadly representative 
of the genomic distribution of markers. Compared with the original 
genotypic data, enrichment of particular genomic annotations from 
EigenGWAS and EnvGWAS in the imputed data is higher in intergenic 
regions (85.92% and 66.67%; Figure 8c,d). For the two methods, 
7.67% and 20.76% of SNPs were in the gene upstream and down‐
stream regions, 5.75% and 9.40% SNPs were in the intron regions, 
respectively, and fewer than 4% were in exon, splice sites, utr3 prime 
and utr5 prime regions (Figure 8 and Tables S5 and S6). In total, 146 
and 1941 known genes were mapped by the significant SNPs from 
EigenGWAS and EnvGWAS, respectively, most of which are involved 

in metabolic and cellular process in gene ontology analysis (Tables S9 
and S10).

3.6 | Popping loci related to adaptation

In total, 1,776 significant popping‐related loci, distributing on seven 
chromosomes, were identified (Figure 6 and Table S11); chromo‐
some 2 (i.e., 1,434 SNPs) had the highest number of significant loci, 
while chromosomes 3 and 5 (i.e., two SNPs each) had the lowest. 
S1_103188845 on chromosome 1 was identified as the most signifi‐
cant locus (p = 3.21e‐9). A few annotated popping‐related genes could 
be found on regulatory regions (i.e., intron, upstream, downstream and 
5′ untranslated region). For example, GRMZM2G031802 on chromo‐
some 2 was an endoplasmic reticulum (ER) lumen protein retaining re‐
ceptor, and GRMZM2G071582 on chromosome 6 was a ZAC, which 
is a  putative calcium‐dependent lipid‐binding (CaLB domain) family 
protein. The orthologous gene of GRMZM2G071582 in Arabidopsis 

F I G U R E  6   Circular plot from EigenGWAS for Ev1 (a), Ev4 (b), Ev5 (c) and Ev10 (d) based on 509 landrace maize populations, from 
EnvGWAS on three traits of maximum temperature (tmax; e), minimum temperature (tmin; f), averaged temperature (tavg; g), solar radiation 
(srad; h), vapour pressure (vapr; i), soil pH at 5 cm depth (ph5; j), rainfall (prec; k) from the monthly long‐term average (1970–2000), and from 
GWAS on popping versus nonpopping (l). The highlighted SNP S3_79126245, which was annotated as “stop lost,” was in the common region 
significantly associated with Ev1 in EigenGWAS, and tmax, tmin, tavg and vapr in EnvGWAS. The highlighted SNPs S4_172558795 and 
S4_172558871 were significantly associated with Ev10 in EigenGWAS, and tmax, tmin, tavg and vapr in EnvGWAS. The highlighted SNPs 
S8_43182796 and S8_43210849 were significantly associated with Ev4 in EigenGWAS, and tmax, tmin, tavg and vapr in EnvGWAS. SNPs 
S10_40760398, S10_40760575, S10_40949675 and S10_40949963 were associated with Ev5 in EigenGWAS, and srad in EnvGWAS. Ev1, 
Ev4, Ev5 and Ev10 are the first, fourth, fifth and tenth eigenvectors, each of which was used as phenotype for the single‐marker association 
study based on nearly 355,442 markers in EigenGWAS [Colour figure can be viewed at wileyonlinelibrary.com]
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is AT4G21160.1 which belongs to the calcium‐dependent ARF‐type 
GTPase activating protein family, and in rice is LOC_Os06g40704.1, 
which is a stromal membrane‐associated protein. This implies that the 
popping characteristic could be affected by cellular structure and cell 
membrane formation. It was worth noting that no popping‐related loci 
overlapped with the loci identified by EigenGWAS. Compared with 
significant loci identified by EnvGWAS, almost all the popping‐related 
loci were associated with ph5 (i.e., 1,285) and prec (i.e., 1,587) distrib‐
uted on chromosomes 1 and 2; 485 popping‐related loci distributed on 
chromosomes 1, 2 and 7 were associated with vapr; 173 popping‐re‐
lated loci on chromosomes 1 and 2 were associated with temperature; 
and no locus was detected related to srad (Table S12).

4  | DISCUSSION

4.1 | Large‐scale panel to investigate maize genomic 
regions under selection

Previous reports employed only a limited number of maize accessions 
to identify potential adaptation and domestication signals. For exam‐
ple, 56 maize accessions including 30 improved lines, 19 landraces and 
seven wild relatives were used to investigate how often domestication 

traits were artificially selected (Lai, Yan, Lu, & Schnable, 2018); 62 
Chinese elite inbred lines revealed post‐domestication selection of 
LEAFY genes (Yang et al., 2014); and 75 wild, landrace and improved 
maize lines identified several genes with stronger signals of selection 
than those previously shown to underlie major morphological changes 
(Hufford et al., 2012). In contrast, 1,143 maize materials collected from 
20 countries worldwide were used in the study. This diverse collec‐
tion covered different ecological zones including tropical highland, 
lowland, sub/midaltitude and temperate maize materials (Figure 1), 
and comprised 764 heterozygous landraces and 379 inbred lines. LD 
decayed rapidly (Figure S5), and the PCA combining HapMap V3 and 
the 1,143 maize accessions indicated that the 1,143 individuals had the 
broad genetic divergence for tropical adaptation, covering the regions 
of predomestication and domestication of Zea mays (Figure S4). These 
findings indicate that this panel provides a large effective population 
size and high levels of gene flow in the species, and thus was well suited 
to study evolutionary adaptation.

4.2 | EigenGWAS to detect the selection loci

Selection and adaptation often occur without obvious phenotypic 
change, suggesting a “bottom‐up” strategy, in which the selection 

F I G U R E  7   Bifurcation diagram for haplotypes on SNP locus S3_79126245 in the four maize types and pairwise linkage disequilibrium 
plot with r2 for 2 Mb based on 655,440 data sets around S3_79126245 (a) and in the whole data set (b), extended haplotype homozygosity 
(EHH) plot for haplotypes on the S3_79126245 locus (c), Ev1 and S3_79126245 genotypes in the four maize types (d), boxplot for Ev1 based 
on the genotypes of S3_79126245 and allele frequencies at S3_79126245 in the four maize types (e), and the allele frequency distribution of 
S3_79126245 in three traits related to temperature (f) [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  8   Gene annotation for the original data set (65,540 SNPs) (a), imputed data set (355,442 SNPs) (b), significant SNPs identified 
by EigenGWAS (c) and EnvGWAS (d) on different types of chromatin, and the top 20 enriched Gene Ontology terms found by functional 
enrichment analysis for the 146 genes identified by EigenGWAS (c) and 1,941 genes identified by EnvGWAS (d) [Colour figure can be viewed 
at wileyonlinelibrary.com]
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signal is diffused across the genome. FST scan, the conventional 
strategy for exploring signatures of selection, requires the predefi‐
nition of subpopulations. Gage et al. (2018) assayed genetic differ‐
ences using selection statistics XP‐EHH, XP‐CLR and FST. Hufford 
et al. (2012) identified selection signals by XP‐CLR. Lai et al. (2018) 
identified many “classic” domestication genes through mapping of 
quantitative trait loci (QTL) in biparental populations derived from 
wild/domesticated crosses and showed the signatures of paral‐
lel selection by XP‐CLR. In this study, we mapped selection loci 
across the maize genome, employing eigenvector as a phenotype 
in EigenGWAS, incorporating the definition of subpopulations in a 
data‐driven manner. Highly significant signals were found on chro‐
mosome 3 under Ev1 and Ev4, on chromosome 8 under Ev5, on 
chromosome 10 under Ev5 and Ev6, on chromosome 2 under Ev7, 
on chromosome 1 under Ev8, and on chromosome 5 under Ev9 
(Figure 5). EigenGWAS well replicated the three regions previously 
identified, and novel previously unreported loci were also found, 
providing clues to the global adaptation of maize, and demonstrat‐
ing the effectiveness of EigenGWAS in finding loci under selection.

In theory, given n eigenvectors, we could perform EigenGWAS 
on more than the first 10 eigenvectors utilized here. Selection of the 
number of eigenvectors for analysis could depend upon the signifi‐
cance of the eigenvalue, the overall contribution to genetic variation 
and discernible association of eigenvectors with known variables 
such as phenotype, specific adaptation or growing environment. The 
statistical significance of an eigenvalue could be conducted with a 
Tracy–Widom test (Tracy & Widom, 1994). The result could then be 
used to determine the eigenvectors used for analysis. In addition to 
in silico validation using existing data resources, functional valida‐
tion in future breeding programmes could be explored for the newly 
identified loci/regions.

An eigenvalue represents the mean genetic variation captured, 
whereas λGC of the EigenGWAS on the corresponding eigenvector 
indicates the median of the variation. As an analogue, the difference 
between eigenvalue and λGC is equivalent to the difference between 
the mean and a median of a population, implying the existence of 
strong selection, either a natural selection sweep, or artificial selec‐
tion during breeding or domestication. Much larger differences be‐
tween eigenvalues and λGC were observed in these maize materials 
(Table 1) than that observed in human populations (e.g., 100.14 vs. 
103.72, nearly identical to the difference between the largest eigen‐
value and its corresponding λGC; table 1 in Chen et al., 2016). This 
implies possible selection sweeps during maize domestication and 
adaptation, rather than genetic drift.

4.3 | EnvGWAS to detect selection loci

The EnvGWAS used here link precise geographical, climate and soil 
data for landrace collection sites (called as GIS data for simplicity), 
with genomic data for each collection (Figure 6 and Figure S14) 
(Navarro et al., 2017), providing complementary methods to com‐
prehensively decipher the genomic loci/region related to adaptation 
across the whole genome. Since the GIS data are highly correlated 

with crop adaptation and selection, they are also highly correlated 
with population structure, and therefore there is potential con‐
founding between the effects of GIS variables and the underlying 
population structure. When GIS data were used as phenotype in 
EnvGWAS, methods based on a mixed model including either only a 
kinship matrix or both the kinship and the population structure ma‐
trix showed very limited associations (Navarro et al., 2017), indicat‐
ing that these models lower the false‐positive discovery rate but also 
significantly raise the false‐negative discovery rate. To limit these 
effects, a simple GLM was used in this study to perform EnvGWAS 
(Navarro et al., 2017).

4.4 | Polygenic adaptation model of maize

Up to now, many functionally characterized genes in maize that 
underlie phenotypic changes during the domestication have been 
identified through simple sequence repeat (SSR) markers, SNP 
chips, GBS and resequencing data (Gage et al., 2018; Lai et al., 2018; 
Tian et al., 2009). In this study, tGBS with highly accurate genotypic 
data was first applied to uncover the polygenic domestication and 
adaptation scheme in maize. Although many selection signatures 
had been detected before, it remains difficult to fully explain the 
maize selection and adaptation process and its molecular mecha‐
nism. Thus, it is necessary and important to uncover the archi‐
tecture of selection signatures to understand maize breeding and 
adaptation (Gage et al., 2018; Hufford et al., 2012; Lai et al., 2018). 
As Boyle, Li, and Pritchard (2017) have pointed out, species gener‐
ally adapt by small allele frequency shifts of many causal variants 
across the genome, emphasizing the polygenic nature of evolution. 
This is also true for maize adaptation shown by Stetter, Thornton, 
and Ross‐Ibarra (2018) and in this study. Ten maize regions were 
first found under selection. Most of the candidate genes had been 
found in regulatory regions, such as intergenic, intron, upstream 
and downstream of genes (Table S6). Six SNPs were implicated in 
changing gene transcription and translation, including loss of start 
codon, and loss, gain or retention of stop codon. For five genes 
(i.e., GRMZM2G427685, GRMZM2G357034, GRMZM2G101250, 
GRMZM2G701576, GRMZM2G425583), no functional annotation 
was available (Table 2). Three regions were associated with more 
than one eigenvector, namely SR2.1, SR3.1 and SR10 (Table 2 and 
Table S5). These probably underwent selection at multiple times 
during the domestication, breeding and adaptation processes, as 
reflected in statistically orthogonal eigenvectors (Shlens, 2005). 
Most of the 13 regions under selection were covered by high 
marker densities. Uneven SNP distribution among the genome was 
the result of imputation based on LD (Figure S5). In this case, we 
were able to narrow the target regions down to some extent.

4.5 | Breeding implications and future perspectives

In this study, genomic variations were called by alignment to the 
only available reference genome (B73). Some, possibly significant, 
diversity represented by loci not present in the temperate reference 
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was therefore not included in the analysis. It is important and useful 
to recall SNPs using a tropical reference genome, once a compre‐
hensive version is available, to capture more representative genomic 
variation. An additional limitation is the breadth of diversity pre‐
sent in the panel representing temperate germplasm; although the 
1,143 maize accessions used in this study cover a wide genetic di‐
versity, they still under‐represent the breadth of genetic diversity of 
HapMap3 (Figure S4) due in part to the small sample size of maize 
accessions collected from the temperate zone and the breeding se‐
lection bias incurred in the use of inbreds of this adaptation.

Results of annotation showed that 48.76% of SNPs in the tGBS data 
and 59.12% of SNPs in the imputation data map to intergenic regions, 
while SNP mapping to genic content reflect 7.54% and 3.89% of SNPs, 
respectively. The distribution of SNPs within the panel evaluated is con‐
sistent with the B73 genome where 6% of the maize genome is genic 
(Schnable et al. 2009), and the high proportion of loci (i.e., 78.00%) as‐
sociated with phenotypic variation found in intergenic regions in the 
maize genome (Li et al., 2012; Mei et al., 2018; Wallace et al., 2014). 
Compared with the original genotypic data, the enrichment of particu‐
lar genomic annotations from EigenGWAS and EnvGWAS gave a higher 
number of significant SNPs in intergenic regions—i.e., 85.92% and 
66.67%, respectively (Figure 8). In humans and several model animals, 
most of the GWAS signals map to noncoding regions and potentially 
point to noncoding variants (Celniker et al., 2009; Dunham et al., 2012; 
Stamatoyannopoulos et al., 2012; Zhang & Lupski, 2015); and Hindorff 
et al. (2009) found that most human transcriptionally active sites were 
found to be located in noncoding regions. Combining GWAS with ex‐
pression profiling across several thousand individuals to identify both 
regulatory regions and their effects on phenotype, and including them 
in prediction models will not only enhance our understanding of basic 
genetics, but also help breeders to craft better crops.

The reported adaptation loci in the literature have limited ap‐
plications in breeding, while this is not true in our study. For SNP 
locus S2_95391165, the alternative S2_95391165‐G haplotype was 
longer and more abundant than the reference S2_95391165‐A hap‐
lotype in Figure S7, indicating that the alternative allele was selected 
and fixed, and more adaptive to the environment. Opposing selec‐
tion directions were found in five other haplotypes (Figures S8–S12). 
The haplotype with reference allele in SR5 shows a very different 
adaptation pattern. Temperature has a selection preference on the 
reference haplotype in SR3.1. These results offer potential to help 
breeders better understand the implication of the genomic footprint 
on crop adaptation and response to climate change and explore in a 
more targeted manner exotic germplasm sources containing varia‐
tion in these genomic regions novel to their own germplasm. We are 
currently extending this and genomic prediction‐based approaches 
to whole germplasm bank genomic and GIS data to identify genomic 
regions and accessions of highest breeding relevance.
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