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Abstract

Metazoan mitosis requires remodelling of sub-cellular structures to ensure proper division of cellular and genetic material.
Faults often lead to genomic instability, cell cycle arrests and disease onset. These key structural changes are under tight
spatial-temporal and post-translational control, with crucial roles for reversible protein phosphorylation. The
phosphoprotein phosphatases PP1 and PP2A are paramount for the timely execution of mitotic entry and exit but their
interaction partners and substrates are still largely unresolved. High throughput, mass-spectrometry based studies have
limited sensitivity for the detection of low-abundance and transient complexes, a typical feature of many protein
phosphatase complexes. Moreover, the limited timeframe during which mitosis takes place reduces the likelihood of
identifying mitotic phosphatase complexes in asynchronous cells. Hence, numerous mitotic protein phosphatase complexes
still await identification. Here we present a strategy to enrich and identify serine/threonine protein phosphatase complexes
at the mitotic spindle. We thus identified a nucleolar RNA helicase, Ddx21/Gu, as a novel, direct PP1 interactor. Furthermore,
our results place PP1 within the toposome, a Topoisomerase II alpha (TOPOIIa) containing complex with a key role in mitotic
chromatin regulation and cell cycle progression, possibly via regulated protein phosphorylation. This study provides
a strategy for the identification of further mitotic PP1 partners and the unravelling of PP1 functions during mitosis.

Citation: De Wever V, Lloyd DC, Nasa I, Nimick M, Trinkle-Mulcahy L, et al. (2012) Isolation of Human Mitotic Protein Phosphatase Complexes: Identification of
a Complex between Protein Phosphatase 1 and the RNA Helicase Ddx21. PLoS ONE 7(6): e39510. doi:10.1371/journal.pone.0039510

Editor: Beata G. Vertessy, Institute of Enzymology of the Hungarian Academy of Science, Hungary

Received October 27, 2011; Accepted May 21, 2012; Published June 28, 2012

Copyright: � 2012 De Wever et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the National Sciences and Engineering Research Council Canada (NSERC http://www.nserc-crsng.gc.ca/) to GM, LTM and by
the Alberta Cancer Board (http://albertacancer.ca/) to GM (#23161). The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: moorhead@ucalgary.ca

¤ Current address: Beatson Institute for Cancer Research, Bearsden, Scotland

Introduction

Initiation, execution and successful termination of metazoan

mitosis require extensive remodelling of subcellular structures,

including breakdown of the nuclear envelope, nuclear pore

complex and the nucleolus. Mitotic spindles must be formed,

condensed chromosomes aligned and separated and ultimately the

nucleolus and nucleus re-assembled [1]. Key processes such as

DNA transcription and RNA splicing are generally down-

regulated during mitosis, yet some nuclear pore complex proteins

and splicing factors were recently found to relocate to the spindle

and kinetochores during metazoan mitosis where they are essential

for proper mitotic progression [2]. Suggested functions for mitotic

spliceosome elements include regulation of Topoisomerase IIa and

thus decatenation of sister chromatids during mitosis or influenc-

ing microtubule-to-kinetochore interaction and spindle assembly

checkpoint satisfaction [2]. These observations re-open the debate

on the possible roles and regulation of presumed interphase-only

enzymes such as splicing factors and other nucleic acid-regulating

enzymes (e.g. topoisomerases or helicases) during mitosis.

Protein phosphorylation exerts an important regulatory role

during mitosis. Mitotic kinases, including the cyclin dependent

kinase 1 (Cdk1) and Aurora kinases, have been studied

extensively, leading to an in-depth understanding of their key

roles in mitotic phosphorylation and progression [3]. Protein

phosphatases, their counteracting enzymes, were only recently

recognized as equally crucial regulators of metazoan mitotic

progression [4,5]. Biochemical and functional screens identified

the single protein dual specificity (DUSP) phosphatases Cdc14

and Cdc25 and the serine/threonine phosphoprotein phospha-

tase (PPP) family members PP1, PP2A, PP4 and PP6 as

strategic mitotic regulators [4,5,6]. PPP inhibitors, deletion of

selected interaction partners, or the introduction of PPP

catalytic subunit mutants induces mitotic cell cycle arrests,

underscoring the crucial role for protein kinases and phospha-

tases in mitotic progression [7]. However, the identity of mitotic

metazoan PPP complexes and their interaction partners and

substrates remains largely unknown [4,5].

The metazoan PPP family encompasses the catalytic subunits

PP1, PP2A, PP2B, PP4, PP5, PP6 and PP7 [8]. With the exception
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of PP5 and PP7, each phosphatase forms a complex with one

catalytic subunit (PP) and one or more regulatory subunits,

sometimes functioning as scaffolds. PPPs are ubiquitously

expressed and interact with a number of regulatory subunits in

a mainly mutual exclusive manner. This enables the inherently

non-specific PPPs to target phosphorylated substrates with high

specificity [9,10].

PP1 has the largest array of regulatory subunits (.100 to date)

[11], most of which form their primary interaction with PP1 via

a canonical ‘‘RVxF’’ motif that slots into a hydrophobic pocket on

the surface of PP1, opposite from the catalytic cleft [12]. Metazoan

PP1 is present in 3 isoforms (a, b and c), constantly bound to

regulatory or inhibitory proteins to prevent uncontrolled phos-

phatase activity. This leads to a panoply of binary [13], sometimes

ternary PP1 complexes [14]. Several mitotic PP1 complexes were

already identified, for example, PP1 aids the activation of

Cdc25B/C, a key Cdk1 activator, at mitotic onset [4]. PP1 binds

CENP-E, enforcing stable attachment of mitotic chromosomes to

spindle microtubules [15] and later counteracts Aurora B-

mediated phosphorylation events to reduce kinetochore integrity

and initiate mitotic exit [16]. PP1 also interacts with Repo-man

and PNUTS at mitotic exit, forming complexes involved in

chromosome de-condensation [17,18,19].

The core PP2A complex contains a catalytic subunit, PP2Ac

and a scaffold subunit (PR65/A). Both subunits exist as two

isoforms (a, b) in metazoans. Substrate specificity is achieved via

regulatory (B) subunits, divided into B, B’, B’’ and B’’’ [20].

PP2A can also interact with viral proteins [21], a Tip41-like

protein (TIPRL) or alpha4 (a4/IGBP1) [22]. The latter two are

labelled general PPP interactors due to their additional binding

capacity for PP4 and PP6 [6]. TIPRL can even form a trimeric

complex with PP2Ac and a4 [23]. Contrary to PP1, PP2A-B’

prevents Cdk1 activation until mitosis [24]. PP2A-RSA1/2 (B’’)

has a positive impact on mitotic spindle assembly in C. elegans

[25]. In HeLa cells, PP2A-B’ aids in preventing untimely

separation of sister chromatids, while PP2A-B55 is key in post-

mitotic chromatin decondensation and membrane re-assembly

[26,27]. PP4 is presently linked with microtubule organization

and/or centrosome maturation by regulating Cdk1 activity

[28,29] while PP6 recognizes and down-regulates active, mitotic

Aurora A, the latter in a complex with the mitotic spindle

associated protein Tpx2 [6].

Thus, some mitotic-onset and -exit PPP complexes have been

identified yet others, particularly from meta- to telophase,

remain largely unknown [4,5]. Indeed, an active role for PP1

during mitosis still remains under debate [30]. Isolation and

identification of mitotic PPP complexes will be essential to

resolve these issues. Here we aim to identify those mitotic PPP

complexes. We synchronized human cells in mitosis, enriched

the mitotic spindle-associated proteome and subjected this to

PPP affinity chromatography. We thus identified the RNA

helicase Ddx21/Gu as a novel PP1 interactor. We could further

show that Ddx21 and PP1 also form a complex in the nuclei of

unsynchronized cells. Apart from this helicase, we also identified

the splicing factor Prp8 and the serine/arginine kinase SRPK1

as members of the mitotic PP1 interactome. Ddx21, Prp8 and

SRPK1 were previously found in a mitotic, DNA Topoisome-

rase IIa-containing complex, proposed to aid TOPOIIa
mediated unwinding of condensed mitotic DNA [31]. Our

results suggest PP1 is part of this mitotic complex, which opens

up further interesting prospects on novel roles for this

phosphatase during metazoan cell division.

Results

Phosphoprotein Phosphatases at the Mitotic Spindle
Apparatus
Recent literature provides ample indications for the key role of

serine/threonine phosphatases during the onset of, progression

through and exit from eukaryotic mitosis [4,5]. However, the

precise nature of the complexes involved and their direct

substrates remain largely unknown. Furthermore, protein phos-

phatase complexes at transient structures such as the mitotic

spindle apparatus are restricted in time and place. Here we aimed

to enrich these low-abundance, more transient phosphatase

complexes by combining cell synchronizations with subcellular

fractionation and affinity chromatography.

Human cells (HeLa and HEK293) were synchronized with

a thymidine-nocodazole block and G2/M arrested cells enriched

by mitotic shake-off and released in fresh media until metaphase,

as described previously [32] (Fig. S1). Cells were harvested and

lysed in the presence of paclitaxel to release soluble proteins (Fig. 1

and S2, fraction 1) but maintain the mitotic spindle apparatus (Fig.

S2). The actin and intermediate cytoskeleton was removed via

a low ionic strength wash (fraction 2). Fraction 3 consists of the

mitotic spindle associated proteins (MAPs) and microtubules

(MTs), the latter made up from a- and b-tubulin dimers. This

fraction also enriches the microtubule originating centre (MTOC,

centrosomal proteins) and the kinetochores, proteinaceaous

contact points for MTs at mitotic, condensed chromosomes [32].

Consequently, centromeric and additional DNA/chromatin asso-

ciated proteins are present in fraction 3, even though we treated

with DNAse/RNAse. We separated each protein fraction via

SDS-PAGE and analysed them by colloidal stain (Fig. 1A left

panel) or by western blot (Fig. 1A right panel) for the presence of

proteins with known subcellular localizations.

The left panel of Figure 1A shows the dramatic enrichment of

a ,55 kDa protein during the isolation procedure (*). Western

blot analyses confirmed a-tubulin as the major component (Fig. 1A

right panel). A soluble/membrane associated protein (Rock2)

remained in fraction 1 while known MAPs such as the spindle

assembly factor Tpx2 or Topoisomerase IIa (TOPOIIa), a dsDNA

break-and-repair enzyme that localizes at the inner centromere/

kinetochore during mitosis [33], both display enhanced signal

intensity in fraction 3. Histone deacetylase 1 (HDAC1) and the

cyclin dependent kinase Cdk1 are partially soluble but enrich at

the centrosome/mitotic spindle during mitosis [34,35,36]. These

observations were reflected in our western blot analyses, corrob-

orating purification of the mitotic spindle apparatus, using

a previously established protocol. Although likely free of cytosolic

components, we do acknowledge that this methodology does leave

minor chromatin contamination. HEK293 derived spindles gave

similar results to HeLa cells but at a reduced yield (data not

shown).

Our aim was to isolate PPP complexes present within this

subcellular proteome. We analysed the purified mitotic spindle

proteome for the presence of the catalytic subunits of the PPP

family enzymes via western blot analyses (Fig. 1B). Equal protein

amounts were loaded on SDS-PAGE, whereby the tubulin in

fraction 3 was subtracted. The band under PP1a (#) is most

likely a degradation product. The 3 isoforms of PP1, PP2A, PP4

and PP6 are present in fractions 1 and 3, with higher amounts of

PP1a, PP1c and PP6 in fraction 3, compared the other

phosphatase catalytic subunits in each fraction. Indeed, fraction

1 contains ,75% of soluble cellular protein, 3 mg of which was

loaded while fraction 3 represents ,20% of the total original

protein, including the majority of cellular tubulin. We loaded

Phosphoprotein Phosphatases at the Mitotic Spindle
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6.3 mg to accommodate for the tubulin excess (see materials and

methods). It is notable that PP5 is clearly present in fraction 1

but not in the mitotic spindle and chromatin interacting proteins

(fraction 3). To further define the identity of the PPP complexes

present in fraction 3, we probed for a small number of PP2A,

PP4 and PP6 complex subunits. We examined alpha4 (IGBP1)

and TIP41-like protein since they can interact with PP2A, PP4

or PP6 [6,22,23]. Human alpha4 gives an equally strong signal

in fraction 1 and 3, suggesting it is present in soluble complexes

and the spindle apparatus alike. TIP41-like protein on the other

hand displays a dramatically enhanced signal in fraction 3,

indicative of a potentially novel MAP and/or chromatin

interacting protein. The 3 known PP6 regulatory subunits

(SAPS1-3) are found in fractions 1 and 3, supporting the

recently proposed key role for PP6 in mitotic progression [6].

Microcystin-based Isolation of Mitotic Protein
Phosphatases
We showed that PP1, PP2A, PP4, and PP6 are part of the

mitotic spindle and chromatin interacting proteome fraction

(Fig. 1 fraction 3). We subjected fraction 3 to a buffer with

enhanced ionic strength (0.6 M NaCl) in an attempt to solubilize

the PPP complexes from the microtubules and any remaining

chromatin. Solubilized proteins (fraction 3a – MAPs and

chromatin interacting proteins) were separated from chromatin

and microtubules (fraction 3b - MTs) via centrifugation (Fig. S2).

Paclitaxel prevents the collapse of the mitotic spindle (Fig. S2

compare (+) and (2) lanes). The strength of the ionic interactions

between MAPs and MTs hinders full solubilisation of the MAPs

and chromatin interacting proteins at 0.6 M NaCl (Fig. S2

compare 3a(+) with 3b(+)). Increased ionic strength (up to

2 M NaCl or KCl) yielded more soluble MAPs (data not shown)

Figure 1. Purification of the human mitotic spindle and chromatin associated proteome and identification of PPP subunits. A.
Mitotic spindle purification and associated proteome shown via colloidal stain and western blot analyses. Mitotic spindles and associated proteins
were isolated according to (Fig. S1). Isolation is divided in the soluble proteins (fractions 1), low ionic strength wash (fraction 2) and mitotic spindle
and associated proteome (fraction 3). Fraction 3 consists of microtubules (tubulin dimers - MTs) and Mitotic Spindle Associated (MAPs) and
interacting proteins, including remnants of the microtubule organizing centre (MTOC), the spindle-associated centromere/kinetochore region and
DNA-binding proteins. Proteins were separated by SDS-PAGE and visualised by colloidal stain (left), (*: enrichment of tubulin) or subjected to western
blot analyses with antibodies against the indicated proteins (right). Equal protein amounts were loaded for each fraction (lane 1, 3 mg; lane 2, 3 mg),
excluding the estimated total tubulin enrichment in fraction 3 (lane 3, 6.3 mg). B. Phosphoprotein phosphatases (PPP) in the mitotic spindle and
chromatin associated proteome. Experimental set-up was according to (Fig. 1A and S1). Fractions were loaded as in A, except 206 less total protein
was loaded in each lane. Western blot analyses were performed with antibodies against the indicated proteins.
doi:10.1371/journal.pone.0039510.g001
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yet these conditions may cause complex disruption. We therefore

maintained our initial, moderate buffer strength (0.6 M NaCl) for

further solubilisations. We enriched PPP complexes from the

solubilized MAP and chromatin interacting proteome via affinity

chromatography with a pan-phosphoprotein phosphatase (PPP)

complex affinity matrix (microcystin (MC)-Sepharose) or control

matrix (Tris-Sepharose), according to [11]. The matrix was

washed with a low ionic strength buffer (0.3 M NaCl) and the

full PPP interactome eluted with 1% SDS. We obtained

a significant number of potential PPP interactors when compared

with the control Tris-Sepharose purification (Fig. 2A). Raising

the ionic strength of the wash buffer from 0.3 M to 0.5 M NaCl

(Fig. 2B) reduced this number significantly to the most robust

interactions. The silver stains displayed are representative of at

least 3 independent experiments. The positions of the most

prominent bands, labelled A–D (Fig. 2B), correspond to strongly

enriched bands in the low ionic strength eluate (* Fig. 2A). We

excised bands A–D for identification via mass-spectrometry (ESI-

orbitrap) (sequence coverage Fig. S3). Proteins identified by the

presence of numerous unique peptides were (A) the pre-mRNA

processing factor (p220) Prp8; (B) the nucleolar RNA Dead Box

helicase 2 Ddx21/RHII/Gu; (C) a- and b-tubulin and (D) the

ribosomal protein RPL5, Fibrillarin and the phosphatase

catalytic subunits PP1a and PP1b (Fig. S3). Mass spectrometry

analyses did not identify peptides unique for PP1c but its

presence could be confirmed via western blot analyses using

isoform specific antibodies. The other 2 PP1 isoforms (a; b) were
also confirmed by western blot with isoform specific antibodies

(Fig. 2C, panel D).

The Splicing Factor Prp8 and the RNA Helicase Ddx21,
Potential Novel Mitotic PP1 Interactors
Microcystin-Sepharose affinity chromatography enriches PPP

complexes via the catalytic subunits of the PPP family. In this case,

these complexes would be associated with mitotic spindles and/or

chromosomes. Figure 2 shows that we found PP1 isoforms and

a number of interacting proteins, all possible PP1 regulatory

subunits and/or PP1 substrates in this fraction. Most PP1

regulatory subunits have a canonical PP1 interaction motif (RVxF)

[12]. Variations of this motif are present in Prp8 namely

RAVFWD (aa 1151–1156) and in Ddx21 with KGRGVTF (aa

202–208), hereafter motif 1, and RTIIF (aa 440–444) (motif 2).

Tubulin, RPL5 and Fibrillarin do not possess such motifs.

Nonetheless, RPL5 has already been shown to impact PP1 activity

[37]. Tubulin is an abundant protein and can bind non-specifically

to affinity matrices [38], yet our western blot analyses show that a-
tubulin was enriched in the MC-eluates (Fig. 2C), suggesting it

may be an (in)direct PP1 interaction partner. Fibrillarin is a well-

known, non-specific binding partner for affinity matrices (40), and

may be a contaminant here.

Thus, Prp8 and Ddx21 have potential PP1-binding motifs and

were enriched via microcystin-Sepharose chromatography

(Fig. 2C) from the mitotic spindle and chromatin associated

proteome. We confirmed their presence in the mitotic spindle and

chromatin associated proteome (Fig. 3A) and the microcystin-

eluates by western blot analyses (Fig. 2C). Previously, we have

shown that PP1-interactors, relying on their RVxF motif for

binding to PP1, can be displaced from the phosphatase subunit by

an excess of a peptide with an undisputed PP1 motif [11]. Here,

we use this approach to attempt Ddx21 and/or Prp8 displace-

ment. We isolated the mitotic spindle and chromatin associated

proteome, solubilized associated proteins and incubated these with

either MC-Sepharose or Tris-Sepharose matrices. Then, we

proceeded with a sequential elution, consisting of an excess of

RARA peptide (amino acids within the PP1 binding motif were

changed to RARA), followed by an RVxF-motif containing

peptide elution (RVRW) and finally elution with 1% SDS (Fig. 3B).

Western blot analyses of the different elutions show that neither

Ddx21 nor Prp8 were displaced by the RARA peptide (data not

shown). The RVRW-peptide resulted in a partial elution of

Ddx21, but not Prp8, while 1% SDS released the remainder of

Ddx21 and all of Prp8 from the matrix. As expected [11], PP1 was

present in the SDS-MC eluate only. These results suggest that the

potential PP1 binding motifs in Ddx21 play at least a partial role in

its interaction with PP1.

Figure 2. Enrichment of salt-soluble PPP complexes from the mitotic spindle proteome via MC-Sepharose affinity
chromatography. The mitotic spindle and chromatin associated proteome was enriched and separated into soluble proteins and MTs
according to (Fig. 1, S1–2). Soluble proteins were brought to 420 mM NaCl and PPP complexes isolated via affinity chromatography with MC-
Sepharose and Tris-Sepharose as a control matrix. Matrices were washed with buffer A at low (A, 300 mM NaCl) or medium (B, 500 mM NaCl)
ionic strength. Proteins were eluted with 1% SDS, concentrated, separated via SDS-PAGE and visualized by colloidal silver stain (A, B). Specific
interactors (B, bands A–D) were isolated and identified via LC-MS/MS (Fig. S3). C. Western blot analyses with the respective antibodies to verify
the specific presence of the interactors identified in B.
doi:10.1371/journal.pone.0039510.g002
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The RNA Helicase DDx21, a Novel PP1 Interactor?
Previously, we identified Ddx21 as a member of the nuclear

phosphatase proteome in HeLa cells by mass spectrometric

analysis of a microcystin-enriched nuclear fraction [11]. Similar

results were obtained when PP1-GFP was enriched from purified

nucleoli, derived from SILAC-grown HeLa cells, using the method

described in [39]. Ddx21 was recognized as a PP1-GFP

interaction partner (see Fig. S4A for sequence coverage). We

corroborated these nuclear interaction data with a reverse co-

immunoprecipitation of the endogenous proteins, using Ddx21-

antibodies as bait on a nuclear extract of growing HeLa cells. Fig

S4B shows our western blot analyses, identifying PP1 as a co-

eluant of Ddx21. These results define Ddx21 as a novel, low

abundance PP1 interactor in interphase HeLa cells. These data

further support our initial complex identification in mitotic cells.

Next, we investigated a potentially direct interaction via binary

interaction studies, i.e. Far westerns, PP1 activity assays and in vitro

pull downs with bacterially expressed and purified Ddx21 and PP1

isoforms. We cloned and expressed wild type His6-Ddx21 (wt) and

His6-Ddx21 alleles mutated in either one (motif 1, motif 2) or both

(double) of the potential PP1-binding motifs. Both BL21(DE3) and

DH5a bacterial strains can express His6-Ddx21 (wt) (Fig 4A), yet

yield and protein stability for all 4 Ddx21 alleles is more robust in

DH5a (data not shown). PP1 isoforms (Fig. 4A) were expressed

and purified to near homogeneity.

We first studied the impact of the helicase presence on PP1

phosphatase activity (Fig. 4B). Since the native substrate of this

complex remains to be identified, we used the small molecule

substrate para-nitrophenyl phosphate (pNPP). We incubated each

PP1 isoform with increasing amounts of His6-Ddx21wt to a molar

excess of 4:1 (Ddx21:PP1) and measured PP1 activity towards

pNPP. Interestingly, where PP1b and PP1c activity shows no

alteration in the presence of increasing amounts of Ddx21, PP1a
becomes more active towards the substrate. This increasing

activity plateaus at an 8–16 molar excess of Ddx21 to PP1a (data

not shown).

These observations suggest PP1a and Ddx21 may interact

in vitro and PP1 activity could be influenced by Ddx21 presence.

We performed Far-western blot analyses to independently

corroborate this interaction. We made DIG-labelled PP1 isoforms

and confirmed their functionality against crude HeLa and

bacterial lysates (positive control) (data not shown). Far-Western

blot analyses (Fig. 4C) show that DIG-PP1a interacts with His6-

Ddx21wt and His6-Ddx21motif1 but has a severely reduced affinity

for either His6-Ddx21motif2 or His6-Ddx21double. Equal amounts

of all 4 Ddx21 alleles were used (loading control, Fig. 4C),

suggesting that motif 2 is required for the interaction between

PP1a and Ddx21. Similar experiments with DIG-PP1b, c indicate

these isoforms do not interact significantly with Ddx21 under the

conditions employed during Far-Western analyses (Fig. 4C). These

results support our previous observation where Ddx21 presence

influences PP1a activity (Fig. 4B).

Finally, we initiated in vitro pull downs with bacterially expressed

and purified His6-Ddx21, incubated with PP1 isoforms (Figure 5)

to support the findings in Figure 4. We incubated each isoform of

PP1 (a, b, c) either alone or with His6-Ddx21 (wt, mut1, mut2,

double). After a pre-incubation, the Ddx21 proteins were enriched

with Ni-NTA beads. Presence of Ddx21 and PP1, as co-eluant,

was verified by the appropriate western blot which also showed no

unspecific binding of PP1 to the Ni-NTA matrix (Fig. 5). Each PP1

isoform is enriched by His6-Ddx21wt (Fig. 5, wt eluate lane),

supporting the direct interaction of PP1 with the RNA helicase

Ddx21. Interestingly, PP1a and PP1c require the second RVxF

motif within Ddx21 for their interaction with the helicase (Fig. 5

compare eluate lanes wt, mut1 with mut2, double), a need PP1b
does not display (Fig. 5). The lack of PP1b interaction with Ddx21-

His6mut1 is not maintained in Ddx21-His6double (Fig. 5). This

suggests that the observed interaction between Ddx21 (wt) and

PP1b may rely on a larger number of secondary interactions,

rather than on the canonical RVxF motifs alone.

Figure 3. Peptide displacement partially releases mitotic Ddx21 from the MC-Sepharose matrix. A. Prp8 and Ddx21 enrich in the mitotic
spindle proteome. Mitotic spindle and associated fractions were obtained and proteins loaded and separated as in Fig 1. Western blot analyses were
with antibodies against Ddx21 and Prp8. B. A fraction of Ddx21 is displaced by an excess of a PP1-binding peptide. MAPs were incubated with MC- or
Tris-Sepharose matrices and PP1-interaction partners eluted sequentially with an excess of a scrambled PP1-binding peptide (not shown) followed by
a PP1-binding peptide (-RVRW-). Any remaining PPPs, including PP1, and their interaction partners were finally eluted with 1% SDS. Proteins were
separated via SDS-PAGE and presence of Ddx21, Prp8 and PP1 verified by western blot analyses with the respective antibodies.
doi:10.1371/journal.pone.0039510.g003
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Figure 4. Ddx21 interacts with PP1 directly and influences PP1a activity. A. Bacterial expression & purification of Ddx21 and PP1. HIS6-
Ddx21 was purified from DH5a or BL21-DE3* expressing cells with SP-Sepharose and Ni2+-NTA. PP1 isoforms were purified according to [66]. Purified
Ddx21 (*) and PP1 (*) isoforms were separated via SDS-PAGE and stained with colloidal. B. PP1 isoform activity assay in the presence of Ddx21.
Proteins were premixed according to increasing molar ratios of Ddx21:PP1 and then incubated with PP1 substrate (pNPP). Data are shown as mean6
S.D. (n = 3). PP1 activity is normalized against activity without Ddx21 (point 0 on X-axis, normalized to 1). C. Direct interaction between PP1 and
Ddx21 occurs partially through the canonical PP1 binding motif. His6-Ddx21 (wt); His6-Ddx21RARA (aa202–208: motif 1); (aa440–444: motif2) and
(double) were expressed in and purified from DH5a cells. Proteins were separated via SDS-PAGE and loaded amounts verified by colloidal stain
(loading control). Purified PP1a, b and c isoforms were labelled with DIG and overlay assays were executed and visualised with a-DIG antibodies.
doi:10.1371/journal.pone.0039510.g004
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Towards the Identification of the Mitotic PP1-Ddx21
Target
The identification of this novel PP1 complex initiates the quest

for the PP1-Ddx21 substrate(s). This could be Ddx21 itself,

considering the helicase is a mitotic phospho-protein [40].

Alternatively, PP1-Ddx21 can target an unknown phospho-

protein. In this case, the PP1-Ddx21 substrate may have already

been identified as a Ddx21 interactor.

Both Prp8 and Ddx21 were previously identified by Lee and co-

workers within one mitotic protein complex, the toposome [31].

This complex, named for the presence of the DNA topoisomerase

TOPOIIa, further contains the pre-mRNA splicing factors Prp8

and hnRNP C1/2, the protein kinase SRPK1, the RNA helicases

Dhx9/RHA and Ddx21/Gu and the structural protein SSRP1.

The toposome complex stimulates the decatenation of condensed

mitotic chromatin more efficiently than TOPOIIa alone [31],

suggesting the other enzymes in this complex may play a support-

ive role.

If PP1 interacts with the toposome during mitosis, we expect

that the phosphatase interactor proteome, enriched from the

mitotic spindle and chromatin associated proteome (fraction 3),

will contain additional toposome components. Figure 6 clearly

shows that apart from Prp8 and Ddx21 (Fig. 2, 3), this fraction

indeed also enriches hnRNPC1/2, TOPOIIa, SRPK1 and

SSRP1. Thus, Ddx21 could bring PP1 in contact with the mitotic

toposome complex. This led us to investigate the toposome for

potential interactors and/or substrates of the mitotic PP1-Ddx21

complex. We previously identified TOPOIIa as a nuclear PP1

interactor in HeLa cells, an interaction that can be released by

RVxF-peptide displacement [11]. Mitotic spindle associated

TOPOIIa is highly phosphorylated [31,41] which makes it

a potential target for serine/threonine phosphatases, prior to

mitotic exit. Whether PP1-Ddx21 indeed dephosphorylates

TOPOIIa in vivo during mitosis will require further studies. Other

potential mitotic PP1-Ddx21 substrates are SRPK1-targeted

phospho-proteins. The protein kinase SRPK1 phosphorylates

Serine-Arginine (SR) repeats within the SR proteins, a family of

key splicing factors, including ASF/SF2 [42]. ASF/SF2 plays

a strategic role in interphase splicing but has recently also been

implicated in mitosis by the mitocheck consortium [2]. The

phosphorylation pattern of the SR proteins in general and ASF/

SF2 in particular is complex, with various partial phosphorylation

states each impacting splicing capacity. A recent publication

showed that PP1 can counteract SRPK1 mediated phosphoryla-

tion of the splicing factor ASF/SF2 in vitro [42]. Furthermore, an

independent study confirmed the direct interaction between PP1

and ASF/SF2 in vivo via the PP1-binding motif within the RNA

binding domain of the splicing factor [43]. A third group identified

ASF/SF2 and Ddx21 as co-immunoprecipitates of TIA-R, an

RNA-binding protein with roles in RNA splicing and mRNA

translation [44]. These observations suggest SRPK1, PP1, ASF/

SF2, and Ddx21 to be functioning towards common goals.

However, where Ddx21 is present at the mitotic perichromatin

region [45], ASF/SF2 is released from chromosomes at mitotic

onset and only returns to the chromatin at mitotic exit [46]. As

such, ASF/SF2 is an unlikely target for the SRPK1 molecules

present in the mitotic spindle and chromatin associated proteome.

SRPK1 and PP1 may nonetheless target communal substrates,

possibly within the toposome complex, since this contains active

SRPK1 [31]. To verify their joint presence, we immuno-pre-

cipitated SRPK1 from the mitotic spindle and chromatin

associated proteome of HeLa cells and probed for the presence

of PP1. Our western blot analyses show that PP1 co-precipitates

with the SR protein kinase, as does TOPOIIa and hnRNPC1/2

(Fig. 7A). To validate these results, we also performed a reciprocal

immuno-precipitation with isoform specific PP1 antibodies. We

identified SRPK1 as an interaction partner for PP1a and PP1c but
not PP1b (Fig. 7B). Overall, these data suggest that SRPK1 and

PP1 can be part of a mitotic complex and have the capacity to

regulate common mitotic substrates, other than ASF/SF2.

Whether this target would be Ddx21 itself, a splicing factor within

the toposome or an as yet unidentified substrate awaits our

investigation.

Discussion

Mitosis lasts approximately 3% of the average duration of

a metazoan cell cycle, which makes the identification of mitotic

protein complexes a difficult process. However, to understand cell

growth and division and possibly pinpoint complexes with

pharmaceutical potential, the identification of mitotic phospho-

protein phosphatase (PPP) complexes is key. Here we composed

Figure 5. Pull down of purified, bacterially expressed PP1
isoforms via His-tagged RNA Helicase Ddx21. Bacterially ex-
pressed and purified PP1 (a, b, c) and His6-Ddx21 (wt, motif1, motif2,
double) were incubated together and then mixed with precleared Ni-
NTA beads, all at 4uC. Each PP1 isoform was also incubated without
Ddx21 (-) to verify unspecific binding of PP1 to the Ni-NTA beads.
Enriched His6-Ddx21 and co-precipitated PP1 isoforms were washed
and boiled in 2 X SDS-PAGE sample buffers. PP1 inputs, Ddx21 eluates
and negative control (-) eluates were separated and analysed by
western blot for the presence of Ddx21 and PP1.
doi:10.1371/journal.pone.0039510.g005

Figure 6. Toposome members as part of the mitotic phospha-
tome. Mitotic spindles were isolated (fraction 1-3) and MAPs and MTs
separated as before (Fig. S1–2). Diluted MAPs (IN) were subjected to
MC- or Tris-Sepharose affinity chromatography and proteins eluted with
1% SDS (MC, Tris respectively). Each eluate had a small precipitate after
concentration which was loaded separately (*). Western blot analyses
were performed with antibodies against indicated proteins.
doi:10.1371/journal.pone.0039510.g006
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a strategy for the enrichment and identification of these

complexes, based on previously published elements. We synchro-

nize and harvest mitotic cells from which we isolate the mitotic

spindle proteome (Fig. 1 and S1) together with centrosomal,

centromere/kinetochore and chromatin associated proteins, sim-

ilar to [32]. We then separate the microtubules (MT) and

centrosome from their associated proteins (MAPs and centro-

mere/kinetochore proteins), based on the largely salt-insoluble

properties of the centrosome [47,48]. Note that chromosome

associated proteins such as helicases or Topoisomerase IIa are

mainly soluble under such ionic strength. This step also reduces

nonspecific binding via tubulin in downstream applications (Fig.

S2). Finally, we enrich the PPP complexes from the soluble protein

fraction (3a) via affinity chromatography (Fig. 2). Our approach is

of general interest for researchers studying metazoan mitosis

because the affinity chromatography step can be altered (e.g. from

MC-Sepharose to e.g. a-Ddx21 or a-SRPK1 immunoprecipita-

tions). This procedure is also applicable to various adherent

metazoan cells as HEK293 cells synchronized with similar success

and showed adequate PPP enrichment.

This method delivers novel insights on two levels. We show that

a fraction of all PPPs, with the exception of PP5, is present within

the mitotic spindle and chromatin associated proteome (Fig. 1B,

fraction 3) and subsequently in the soluble fraction (fraction 3a)

(PP1 Fig. 2C, 3, 5–6; PP2A, PP4, PP6 data not shown). Their

presence reinforces their potential as mitotic regulators and

encourages investigating PPP interactors in the mitotic spindle

and chromatin associated proteome. For example, the clear

enrichment of TIP41-like (TIPRL) (Fig. 1B, fraction 3) may offer

inroads towards a functional mitotic annotation for this thus far

elusive PPP interactor.

Second, the PP1 interactome is predicted to contain more than

200 candidates [13], some of which form stable and abundant

complexes, repeatedly identified by high-throughput, quantitative

studies. Others are under tight spatial-temporal control and will

only be identified by a directed approach. This method is designed

to isolate more transient and/or low abundance mitotic phospha-

tase complexes. Previous quantitative approaches using complete

extracts from growing cells listed Ddx21 within the realm of low-

abundance, at or below-threshold PP1 interactors (Fig. S4 and

data not shown). Here, we showed that Ddx21 is a bona fide

interactor, merely hidden underneath the most abundant com-

plexes. Considering we only studied proteins remaining on the

column after a medium-ionic strength wash (Fig. 2), manipulation

of this approach could identify more mitotic PPP complexes.

Ddx21 is a DExD box superfamily 2 (SF2) RNA helicase which,

based on sequence similarity [49,50] and in vitro assays [51,52],

may help unwind dsRNA loops and fold ssRNA strands in vivo,

essential events for RNA processing in growing cells. The precise

regulation and function of Ddx21 during mitosis is particularly

unclear as transcription is silenced and ribosome biogenesis

considered inactive. In keeping with its proposed role in

interphase, Ddx21 localizes in the nucleolar, dense fibrillar

component (DFC) of unstressed cells [53]. Physicochemical

stresses or down-regulation of the transcription factor c-Jun

induce its fast relocation to the nucleoplasm [54,55] as does

expression of Ddx21-S171A [56], preventing the phosphorylation

of S171 in growing cells [40]. Mutation of mitotically phosphor-

ylated Ddx21 residues (S71A, S89A, S121A) [57], did not cause

nucleoplasmic relocation of Ddx21 during interphase [56]. Thus,

phosphorylation of Ddx21 fluctuates throughout the cell cycle and

influences its localization and function [56]. Still, neither the

kinases nor phosphatases responsible have been identified thus far.

Here we present the first interaction of a phosphatase (PP1) with

this RNA helicase in vivo and in vitro (Fig. 2, 3, 4, 5). Furthermore,

PP1 and Ddx21 can co-localize in interphase nucleoli or at the

mitotic perichromatin region [8,45]. This brings further support

for their interaction as does the positive influence of Ddx21 on

PP1a activity towards a small molecule substrate (pNPP) (Fig. 4B).

It is however well documented that phosphoprotein phosphatases

as well as RNA helicases can be promiscuous enzymes in in vitro

assays [10,50]. Thus, the rise in PP1a activity in the presence of

Ddx21 may not reflect an in vivo situation. Indeed, post-trans-

lational modifications of either partner and/or the presence of

further complex components may alter their functional capacities.

Moreover, we studied the interaction between PP1 and Ddx21

in vivo (Fig. 2, 3) and in vitro (Fig. 4, 5) and, not unexpectedly,

identified slight variations in PP1 isoform preference, depending

on experimental conditions.

The in vivo co-immunoprecipitations (Fig. 2, 3) did not

discriminate between PP1 isoforms and further showed that

peptide displacement was only partially successful in releasing

Ddx21. Bacterially expressed Ddx21 requires motif 2 to interact

with PP1a during overlay assays (Fig. 4C). We observed a similar

preference during in vitro pull downs (Fig. 5). PP1b and PP1c on

the other hand showed different preferences for Ddx21, depending

on the experimental conditions. A semi-denatured helicase, i.e.

after SDS-PAGE separation and nitrocellulose transfer did not

interact with PP1b nor PP1c (Fig. 4C). However, when Ddx21 was

directly incubated with PP1c (in vitro pull down, Fig. 5C), motif 2

once again proved essential for interaction with the phosphatase.

Under these conditions, PP1b weakly interacted with Ddx21, even

when both motifs were dysfunctional. This suggested PP1b may

rely on a series of secondary interactions with the helicase (Fig. 5).

Figure 7. PP1 is a toposome interaction partner within the
mitotic spindle proteome. A. Immunoprecipitation of SRPK1
identifies toposome components and PP1. Mitotic spindles were
isolated and MAPs separated as in Fig. S1–2. Diluted MAPs (IN) were
subjected to immunoprecipitations with SRPK1 or control (mouse IgG)
antibodies. Bound proteins were eluted by boiling in 1X sample buffer.
Western blot analyses were performed with antibodies against
indicated proteins. B. PP1a, c are the preferred interaction partners
for SRPK1. Experiments were carried out as in A, except for the use of
antibodies against human PP1 isoforms or control antibodies (PIS rabbit
IgGs).
doi:10.1371/journal.pone.0039510.g007
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In in vitro phosphatase assays, Ddx21 presence increased only

PP1a activity (Fig. 4B). This did not exclude the potential

interaction between PP1b, c and Ddx21. Both motif 1 and 2 are

conserved in the DDX21 homologs, found in Eukaryota from

Protists to Animalia (data not shown). Motif 1 overlaps partially

with one of the DEAD-box family defining helicase motifs [49].

Functional studies with various Ddx21 truncations identified

a dsRNA unwinding domain, followed by an RNA folding domain

at the C-terminal end [52]. Primary sequence analyses (Pfam,

SMART), however, place the DExD-box specific helicase domain

more N-terminal (aa205–532). Within the human Ddx21

sequence, both putative PP1 binding motifs locate within this

helicase domain. It is therefore possible that binding of PP1 will

hinder Ddx21 in its helicase function. Moreover, Ddx21 is one of

the few helicases which has not been crystallized yet [58]. This

may be due to the presence of the N-terminal low complexity

region (aa1–200) or the absence of essential co-factors (e.g. nucleic

acids/chromatin). The flexible structure of the helicase may also

explain our observations regarding the interaction between PP1

isoforms and Ddx21 alleles in independent experimental set-ups.

Indeed, the most pronounced difference between far-western

assays (Fig. 4C) and in vitro pull downs (Fig. 5) is most likely the

protein folding of Ddx21. This coincides with altered PP1

interaction capacities, particularly for PP1b and c, suggesting that

Ddx21 folding may be key for defining its preferred PP1 isoform

in vivo.

Our results (Fig. 2, 5, 6) suggest that PP1 molecules can become

part of the toposome during mitosis via their interaction with

Ddx21. The toposome was isolated from G2/M derived extracts

by Lee and co-workers [31], who also showed it aides TOPOIIa-
mediated decatenation of chromatin. With the exception of Dhx9,

we found all toposome members enriched in the mitotic spindle

and chromatin associated phosphatome (Fig. 5). Moreover, we not

only identified an interaction between PP1 and Ddx21 but also

with other mitotic toposome members, i.e. the pre-mRNA splicing

factor Prp8, and the Serine/Arginine Protein kinase SRPK1

(Fig. 6). These observations are supported by independent

localization data, placing Ddx21 and TOPOIIa at the mitotic

perichromatin region [45], similar to PP1 [17]. In interphase,

many toposome members (TOPOIIa, Ddx21, Prp8, hnRNPC1/

2) and PP1 isoforms are nuclear proteins although they maintain

the capacity to interact with exogenous microtubules [59]. Thus,

their inherent affinity for tubulin and the dismantling of the

nuclear envelope at mitotic onset may be sufficient to bring these

proteins towards the mitotic spindle. SRPK1 on the other hand is

only partially nuclear in growing cells and does not interact with

nuclear PP1 (our unpublished observations) nor with any of the

toposome members [31]. SRPK1 accumulates in the nucleus only

under stress conditions and at the onset of mitosis [60]. This

suggests SRPK1 may be kept separate from the mitotic toposome

and PP1 until mitotic onset (Fig. 6). Once in mitosis, they could

form a complex which contains a protein kinase (SRPK1) and

protein phosphatase (PP1) and multiple phospho-proteins [40],

with potential SRPK1 motifs in at least TOPOIIa and SSRP1

(our observations). Thus, SRPK1 could help ensure the phos-

phorylation of the mitotic toposome members while PP1 would

control their timely dephosphorylation. Apart from TOPOIIa and

SSRP1, another potential substrate for their regulated phosphor-

ylation could be Prp8. We identified this highly conserved splicing

factor as a potential mitotic PP1 interactor (Fig. 2, 3) while the

mitotic arrests of prp8-mutants cells underscore the key role of

Prp8 and the spliceosome during mitosis [2,61]. Also, prp8-mutant

growth defects in S. cerevisiae are suppressed by a mutated PP1

regulatory subunit (Reg1) [62], supporting a role for PP1 in yeast

spliceosome regulation. It remains to be investigated whether

SRPK1, PP1 and additional kinases and phosphatases control the

phosphorylation pattern of these proteins but the general concept

of PP1 and SRPK1 controlling phosphorylation and function of

a splicing factor (ASF/SF2) has been shown before [63]. Follow-up

studies will help to answer these questions and define the

expanding mitotic role of PP1.

Materials and Methods

Chemicals were obtained from VWR or Bioshop Canada,

unless indicated.

Cells, Culturing, Synchronization and Mitotic Spindle
Proteome Isolation
Human adherent cells (HeLa, HEK293; ATCC) were grown

according to [32]. Mid-confluent cells are subjected to a thymidine

(2 mM, 17 h) – nocodazole (130 mM, 9 h) block with a 7 h release

in between. The mitotic spindle (MT) and associated proteins

(MAPs) and interacting proteins (see introduction) are isolated

according to [32]. Briefly, rounded G2/M arrested cells are

released from culture plates by mechanical shake-off, collected and

re-suspended in fresh media to progress into mitosis in the

presence of Paclitaxel (5.85 mM). Mitotic cells are harvested

washed (PBS, 5.85 mM paclitaxel, 2 mg/ml latrunculin) and re-

suspended in lysis-buffer (100 mM PIPES-KOH pH 6.9,

1 mM MgSO4, 2 mM EGTA, 0.5% NP40, 5.85 mM paclitaxel,

2 mg/ml latrunculin, 200 mg/ml DNAseI, 10 mg/ml RNAse A,

5 U/ml micrococcal nuclease, 20 U/ml benzonase, protease

inhibitors). The suspension is incubated at 37uC for 15 min with

regular mixing and spun down (700 g, 3 min, room temperature -

RT) to separate soluble proteins (fraction 1) from the MT/MAPs

and interacting proteins and remnants of the cytoskeleton (actin

and intermediate filaments). The latter are removed by i) using

wash buffer (1 mM PIPES-KOH pH 6.9, 5.85 mM paclitaxel,

1 mM PMSF) to clean tube walls without disturbing the pellet ii)

re-suspending pellet in wash buffer. Centrifugation (1500 g, 3 min,

RT) separates the soluble actin/cytoskeleton remnants (fraction 2)

from the MT/MAPs and interacting proteins (fraction 3). Average

cell equivalent after shake off was 3*10E7 cells, with 43.2 mg

protein overall. After separation, fraction 1 contains approx. 75%

of the total protein, fraction 2 approximately 5% and fraction 3

approx. 20% of all proteins. Tubulin is significantly enriched

during this procedure, thereby influencing the overall protein of

fraction 3. Comparison of fractions 1 23 were done by loading

equal protein amounts. For fraction 1 and 2 this was based on

protein measurements (3 mg/lane) while the volume for fraction 3

was defined by empirical loading and comparison to fractions 1, 2

via colloidal stainings. The required volume of fraction 3

contained approx. 6.3 mg protein (inclusive a disproportionately

large amount of tubulin).

Separation of MAPs and Interacting Proteins from MTs
Fraction 3 was re-suspended in Buffer A (25 mM Tris pH 7.5,

0.1 mM EGTA, 0.1% b-ME, 1 mM benzamidine,

0.1 mM PMSF) with 600 mM NaCl at RT to disrupt interactions

between tubulin dimers and associated proteins [64]. A high speed

centrifugation (52000 g, 35 min, RT) pellets the mitotic spindle

and insoluble interacting proteins (fraction 3b). The supernatant

contains MAPs and additional interacting proteins (fraction 3a)

and was diluted with buffer A to a final concentration of 420 m M

NaCl, ready for phosphoprotein phosphatase (PPP) complex

isolation.
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Isolation of PPP complexes from the Mitotic Spindle and
Chromatin Interacting proteome via Microcystin-
Sepharose
The isolation is described in [11]. Phosphatase complexes were

eluted with 1% concentrated using Amicon filters (10 K MWCO)

prior to separation on SDS-PAGE. Proteins were identified after

tryptic digestion and liquid chromatography mass spectrometry

(LC-MS/MS) analysis on an LTQ-orbitrap system as described

previously [65].

Immunoprecipitation of PP1 and PP1-interacting Proteins
Antibodies against specific proteins or pre-immune serum IgG

were covalently coupled to Protein A-Sepharose (Invitrogen) with

dimethylpimelimidate (Sigma). Protein extracts from growing

HeLa cells or MAP and interacting proteins (4 mg input for each

experiment) were precleared with Protein A-Sepharose (20 min,

4uC) prior to incubation with the respective matrices (end/end,

4uC, 2 h). Next, matrices were washed with 36 20 column

volumes (CV) in (TBS plus 300 mM NaCl, 0.5% NP40) and 16
20 CV PBS for Ddx21 or with 26 20 CV (TBS plus 0.1%

Tween20, 0.1% Triton) and 36 20 CV TBS for SRPK1. Bound

proteins were eluted by boiling in 16Laemmli sample buffer. For

western blot analyses, we loaded 40 mg input and equal volume

fractions throughout, with the exception of the IP lanes (206
volume fraction).

Bacterial Expression and Purification of Ddx21
The DDX21 locus was amplified from a human cDNA library

with PfuII Ultra (Roche) and cloned into the pRSET-A vector

(Invitrogen). Products were verified by DNA sequencing (Univer-

sity of Calgary). pRSET-A-DDX21, transformed in DH5a and

BL21(DE3) cells, was grown (37uC, 225 rpm, 14 h LB-Amp) to

inoculate 1L LB-Amp 0.5% glucose (w/v) to OD600 nm of 0.05.

Cells were grown to OD600 nm of 1.0; induced with 0.4 mM IPTG

(60 min, 37uC); harvested and shock-frozen (280uC) until further
use. Pellets (0.5 L) were resuspended in lysis buffer (50 mM Tris

pH7.5, 100 mM NaCl, 0.5% NP40, 0.5 mM PMSF, 0.5 mM

benzamidine, 4 mM leupeptin, 1.5 mM pepstatin) to 25 ml and

lysed with a french press (Sim-Aminco) (2 runs at 83 MPa exit

pressure) and debris pelleted by centrifugation (23000 g, 4uC,
25 min). The supernatant was incubated with 3 ml pre-equili-

brated SP-Sepharose (90 min, 4uC, end/end). Matrix was batch-

washed with 20 CV of lysis buffer with 0.2 M NaCl and proteins

eluted with 3 CV lysis buffer with 0.8 M NaCl. Sample was

diluted to 150 mM NaCl and 10 mM imidazole added prior to

loading on a pre-equilibrated Ni-NTA column (1.5 ml) (90 min,

4uC, end/end). Matrix was washed (50 mM Tris pH7.5,

1 M NaCl, 30 mM imidazole, 0.05% Triton, 0.5 mM PMSF,

0.5 mM Benzamidine, 4 mM leupeptin, 1.5 mM pepstatin), bound

proteins eluted (50 mM Tris pH7.5, 300 mM NaCl, 300 mM

imidazole, 0.5 mM PMSF, 0.5 mM benzamidine, 4 mM leupep-

tin, 1.5 mM pepstatin) and concentrated (Amicon filters

30 MWCO). Purification of bacterially expressed PP1 isoforms

was described in [66].

Cloning of DDX21 with Modified PP1-binding Motifs
Human Ddx21 contains 2 potential PP1-binding motifs; motif1

(aa202–208) and motif2 (aa440–444). pRSET-A-DDX21 was used

as template for site-directed mutagenesis (Stratagene) to alter the

sequence at motif1 from -KGRGVTF- to -KGAGATF- resulting

in the protein His6-Ddx21motif1 and motif 2 sequence from -

RTIIF- to -RTAIA- (His6-Ddx21motif2). We obtained the double

mutant (His6-Ddx21double) by sub-cloning the motif 1 surrounding

sequence into the motif 2 plasmid. All constructs were verified by

DNA sequencing and expressed proteins by western blot analysis

with a a-Ddx21 antibody. Primer sequences are available upon

request.

Far-Western Blot Analyses
Bacterially expressed His6-Ddx21 proteins, i.e. wild type, motif

1, motif 2 and double (1 mg each) were separated by SDS-PAGE

and transferred to nitrocellulose membranes, along with control

lanes containing 1 mg Bovine Serum Albumin or 15 mg crude

HeLa lysate (data not shown). Membranes were incubated in 20%

milk (w/v in PBS) to prevent unspecific binding, followed by an

overlay with each DIG-labelled PP1 isoform. DIG labelling of PP1

isoforms was done according to the instructions of the manufac-

turer (Roche). Excess DIG-PP1 was washed away and remaining

DIG-PP1 recognized by the a-DIG-HRP antibody (Pierce).

In vitro Pull Down Assays
PP1 isoforms (a, b, c) and Ddx21 proteins were purified as

described. Purified proteins (300 ng PP1 and 200 ng Ddx21) or

PP1 alone was mixed into 200 ml binding buffer (25 mM Tris

pH 7.5, 5% (v/v) glycerol, 150 mM NaCl, 0.5% (v/v) Igepal630

(previously NP-40), 10 mM imidazole). Proteins were allowed to

interact at 4uC for 30 min after which the equivalent of 20 ml
precleared Ni-NTA bead slurry was added and interactions

allowed to proceed for an additional 60 min at 4uC end over end.

Beads are washed with 36 25 volumes wash buffer (25 mM Tris,

450 mM NaCl (c: 500 mM NaCl), 0.5% Tween-20 (c: 0.75%
Tween-20), 5% glycerol). Proteins remaining on the beads were

boiled in 26sample buffer and complete eluates loaded onto SDS-

PAGE. Eluates were compared to an equal amount of the input

PP1. Separated proteins were transferred to nitrocellulose

membranes and analysed by western blot with Ddx21 and PP1

antibodies.

PP1 Activity Assays with pNPP (p-nitrophenyl Phosphate)
Substrate
We studied the impact of Ddx21 on the activity of the 3

isoforms of human PP1, all expressed in E. coli. Assays are

essentially as in [67,68]. Purified PP1 (25 ng) was incubated in

assay buffer with increasing amounts of Ddx21, up to a 16-fold

molar excess at 37uC for 10 min (20 ml). The small molecule

substrate para-nitrophenyl phosphate (pNPP) was added to a final

concentration of 12 mM. Reactions (50 ml) were incubated at

30uC for 1 hr and quenched with 150 ml 0.5 M EDTA,

immediately followed by A405 nm measurements. Data points

are mean of 3 replicates with standard deviation (mean 6 S.D.

n = 3). PP1 activity in the absence of Ddx21 was set to 1 with other

points set out in function thereof. Similar results were obtained in

at least 3 biological replicates, with Ddx21 derived from 2 host

strains (DH5a and BL21-DE3).

Generation of PP1 Isoform Specific Polyclonal Antibodies
Peptides identical to the C-termini of human PP1 isoforms

(generated by Denis McMaster, University of Calgary - sequences

available on request) were used to immunize New Zealand White

rabbits, performed as in [69]. Pre-immune IgGs and PP1-

antibodies were affinity purified from the respective sera via

column chromatography with either Protein A-Sepharose or PP1-

peptides crosslinked to CH-Sepharose. Full procedure and

controls can be found in [70].
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Antibody Sources
Following persons donated antibodies against the indicated

proteins: University of Calgary: M. Walsh (Rock2); MD Nguyen

(Tpx2); JB Rattner (Cdk1); SP Lees-Miller (PP4; PP5; PP6,

alpha4/IGBP1, TIPRL, SAPS1-3); Ebba Kurz (TOPOIIa);
Rockefeller University NY: MM Konarska (Prp8). Further

antibodies were purchased: a-tubulin (Sigma T-9026); HDAC1

(Cell Signalling # 2062); PP2Ac alpha (BD Biosciences 610555);

DDX21 (Aviva Systems Biology); a-DIG-HRP (Pierce); SRPK1

(BD Biosciences 611072); SSRP1 (Biolegend USA); hnRNP C1/2

(Immuquest Ltd).

Supporting Information

Figure S1 Experimental set-up for the isolation of the
mitotic spindle proteome. Human cells (HeLa, HEK293)

were grown to mid-confluence, arrested in S-phase by addition of

2 mM thymidine (17 h), released in fresh media (7 h) and arrested

at G2/M with 130 mM nocodazole (9 h). Rounded, G2/M

arrested cells were harvested by mechanical shake-off and released

into fresh media to progress into mitosis. At the highest level of

metaphase (microscopic observations of DAPI-stained chromo-

somes – data not shown) cells were harvested in the presence of

paclitaxel (5.85 mM) to maintain mitotic spindles. Cells were lysed;

soluble proteins (1) collected by centrifugation and the pellet

washed with a low ionic strength buffer to remove intermediate

and actin filaments (2). This allows harvest of the mitotic spindles

and associated proteins (3) for further applications.

(TIF)

Figure S2 Separation of the mitotic spindle proteome
into microtubules and associated proteins. HeLa cells

were synchronized and the mitotic spindle proteome isolated as in

Fig. S1 whereby only one half of the cells was treated with

paclitaxel, indicated with (+ or -) to prevent microtubule collapse

into soluble tubulin (*). The mitotic spindle proteome (fraction 3)

was separated into soluble microtubule associated proteins (MAPs)

(fraction 3a) and pelletable microtubules (MT) (fraction 3b). In

each case + or – paclitaxel, samples were made exactly the same

volume to allow a direct comparison and 1/1000 of the total

volume of each fraction separated by SDS-PAGE and visualized

by colloidal stain.

(TIF)

Figure S3 LC-MS/MS results from MC-Sepharose en-
riched PPP interaction partners. Excised bands (Fig. 2–

BAND A-D) were trypsin digested and peptides identified by mass

spectrometry (ESI-TRAP). Identified proteins are indicated with

their common and uniprotKB name and identified peptides

highlighted in bold.

(TIF)

Figure S4 PP1 interaction with RNA helicases in the
nucle(ol)i of interphase cells. A. MS-based identification of

Ddx21 as PP1-interactor. Nucleoli were enriched from unsyn-

chronized HeLa cells grown in SILAC media and stably

expressing either EGFP-PP1a or EGFP alone. Proteins were

extracted and incubated with GFP-binder matrices [38]. Matrices

were washed, prior to mixing of equal volumes, elution and

quantitative MS analyses. Identified Ddx21 peptides are high-

lighted on the amino acid sequence. B. Co-immunoprecipitation

of PP1 with Ddx21. Proteins were extracted from nuclei enriched

from unsynchronized HeLa cells and incubated with Ddx21 or

Pre-Immune IgG antibodies, crosslinked to PrA-Sepharose

matrices. Bound proteins were eluted, separated by SDS-PAGE

and analysed by western blot analyses.

(TIF)
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