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Nanotechnology is a recent development in the art of the manipulation of materials especially at the atomic or molecular
scale level; it builds the nanoscale structures of chemicals and devices (Mukherjee, 2013; Del Grosso et al., 2015). The
National Nanotechnology Initiative and ASTM International have defined nanotechnology as a term that refers to
technologies that manufacture and manipulate materials with a dimension between 1 and 100 nm to exploit their novel
properties. They are expanding the design, characterization, synthesis, limitations, toxicity, and applications of
nanomaterials (Khajeh et al., 2013; Kaur et al., 2014). Further, nanostructure is defined as a specified structural object with
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at least one dimension equal to or smaller than 100 nm. A wide variety of nanostructures have been identified,
e.g., nanopores, nanorods, nanowires, nanoribbons, nanotubes, and nanoscaffolds (Wu et al., 2016; Yohan and Chithrani,
2014). The most promising features of these structures are their size-dependent properties. They are also known as
nanoparticles (Samarasekera et al., 2015; Premnath et al., 2015).

Early diagnosis of disease is essential for some diseases, like cancer and tumors, to provide better treatment. It increases
the probability of curing the disease and achieving a significant reduction in mortality. Traditionally, it has been difficult to
detect cancer; nowadays, the use of nanostructured devices in the early diagnosis of cancer is being realized (Cheng et al.,
2014a; Liao et al., 2014).

In recent decades, many more studies have explored the formulation and use of nanostructured nanoparticles in the
fields of chemistry, mathematics, and bioengineering. In addition, they have a wide range of applications in the fields of
biology and medicine (Sun et al., 2015). The term “nanotechnology” was first introduced by Professor Norio Taniguchi
of the Tokyo Science University, in 1974. He described nanotechnology as the processing, separation, consolidation, and
deformation of materials by one atom or by one molecule (Mulvaney, 2015). The European Science Foundation defines
nanomedicine as “The science and technology of diagnosing, treating and preventing disease and traumatic injury, of
relieving pain, and of preserving and improving human health, using molecular tools and molecular knowledge of the
human body” (Satalkar et al., 2015). The first therapeutic nanoparticle, i.e., albumin-entrapped paclitaxel (Abraxane),
was successfully used as an anticancer nanomedicine (Gupta et al., 2014; Matsumura, 2014). The applications of
nanoparticles in the medical field are described as diagnostics, drug carriers, drug delivery vehicles, and therapeutic
agents (Rakesh et al., 2015; Khan et al., 2015). This review focuses on the prospects of nanostructured nanoparticles and
nanomedicine as antimicrobial agents in the possible management of neuroinfectious diseases associated with neuro-
degenerative disorders.

2. RELATIONSHIP OF MICROBES IN NEUROINFECTION-ASSISTED
NEURODEGENERATION

Infectious diseases are the most common and potent disorders in the clinical setting. They occur when a pathogen (i.e., virus,
bacterium, fungus, or parasite) and its proteins enter into the body and affect a specific organ, tissue, or system or the whole
body (Huh and Kwon, 2011). They are also called communicable diseases because of their capacity to transfer from one
person to another, e.g., malaria or tuberculosis, or one species to another, e.g., influenza (Rothman et al., 2006). Infectious
diseases are broadly classified as: (1) old, generally well-known diseases, e.g., dengue, malaria, and tuberculosis; (2) new,
previously unknown diseases, €.g., severe acute respiratory syndrome; and (3) diseases known to threaten in the near future,
e.g., avian influenza (Pigott et al., 2015). Infection is the process of pathogenicity when a microbe enters with the capacity to
induce damage or disease, at either a local or a systemic level, in the host organism. It may be an acute (with a short duration
and severe course) or chronic (low grade and long lasting) infection. Neuroinfection is a major harmful condition of the
nervous system and it induces neurodegenerative processes that lead to neurological disorders (Thakur and Zunt, 2015).

3. POSSIBLE APPROACH USING NANOPARTICLES FOR THE TREATMENT
OF INFECTIOUS DISEASE

Some antimicrobial agents are hydrophilic in nature and are unable to enter into the microbial cells. In addition, the
internalized antimicrobial molecules are rapidly degraded by lysosomal activity, which leads to reduced antimicrobial
activity of the drug (Park et al., 2015; Parida et al., 2015). Therefore, the new technology is expected to release the
antimicrobial drug within the microbial cells. It may be through the drug delivery system using passive action on infected
cells via the mononuclear phagocytic system, which may enhance the therapeutic index of the antimicrobial along with a
reduction in side effects (Park et al., 2015). In addition, the systemic administration of antimicrobials affects the host
system. Therefore, nanoparticles and nanomedicine are the future of antimicrobial therapy because they produce cell- and
target-specific actions in the nanoscale range without alteration of host cell functions (Yang et al., 2010; Basnet and
Skalko-Basnet, 2013). Regarding bacterial infections, the development of resistance against antibiotics is the major
problem in antimicrobial therapy (Basnet and Skalko-Basnet, 2013). Resistance to antibiotics occurs for the following three
reasons: (1) modification of the active sites of drug-binding proteins, (2) destruction or modification of the antibiotic by the
enzymatic mechanisms of the organism, and (3) activation of the efflux mechanism for the antibiotic by the organism
(Borges-Walmsley et al., 2003; Arenz and Wilson, 2016).

The hope is that nanoparticles can carry the antimicrobial agents at the nanoscale level and release them at the target site
in the infectious organism. Therefore, nanoparticles have greater potential to eliminate the microbes and avoid the
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development of resistance (Pelgrift and Friedman, 2013; Leid et al., 2012). However, the mutation of some Mycobacterium
to resist silver nanoparticles that are loaded with isoniazid has been documented. However, this resistance occurs only with
silver nanoparticles, whereas CuSO,4 and ZnSO, particles do not produce the microbial resistance (Larimer et al., 2014). In
addition, antimicrobial-loaded nanoparticles enter into host cells, including in the brain region, via the endocytosis process
followed by the release of preloaded drugs in the microbes (Martins et al., 2013). A nanoparticulate system shows
enormous potential in targeted drug delivery, especially in neuroinfective conditions of the brain (Leite et al., 2015b).
However, the implementation of nanomedicine in neuroinfectious diseases for antimicrobial therapy has significant
challenges. Generally, a drug delivery system should have multifunctional actions, i.e., “switch on” and “switch off”
functions when required. And, these multifunctional drug delivery systems must be harmonized in an optimal fashion
(Gendelman et al., 2015; Singh et al., 2010). Nanoparticle-assisted antimicrobial drug delivery is challenged to produce
improved efficacy and avoidance of resistance and it is extremely desired in the treatment of neuroinfective disease (Garg
et al., 2015b).

However, nanomedicine has some special properties; it has the advantage of antimicrobial drug delivery and drug
action against microbial infections in the nervous system (Jong and Huang, 2005; Dando et al., 2014). Antimicrobial
nanoparticles possess six major properties supporting their use in the clinical setting. They are as follows: (1) the surface
properties of nanoparticles can be changed for targeted drug delivery. In this case, small molecules, proteins, peptides, and
nucleic acids, loaded into nanoparticles are not rejected by the immune system and effectively reach the target site of the
specialized tissue (Boraschi et al., 2012); (2) nanocarriers support the solubility or stability of the drug in the targeted cells
and minimize the side effects in the host cells (Singh, 2010); (3) nanotechnology allows the codelivery of two or more
drugs in the form of combination therapy against multiple pathogens (Singh et al., 2014; Hu et al., 2010); (4) antimicrobial
nanoparticles potentially can overcome microbial resistance, which is common in bacterial organisms (Garg et al., 2015b);
(5) the administration of antimicrobial drug-loaded nanoparticles enhances the therapeutic index, with extended half-life in
the systemic circulation leading to the controlled release of the microbial drug and improving the overall pharmacokinetics
(Bisht and Maitra, 2009; Chen et al., 2015); and (6) the administration of antimicrobial drug-loaded nanoparticles is
possible via different routes such as oral, nasal, parenteral, and intraocular (Fonseca-Santos et al., 2015; Almeida et al.,
2015). Therefore, there is great interest in developing antimicrobial nanoparticles as newer methods of drug therapy for
neuroinfectious disease.

4. PROPERTIES OF NANOSTRUCTURED NANOPARTICLES

Various nanostructures are designed to develop nanoparticles and nanomedicines. In the medical system, they are widely
used in diagnosis and as drug delivery systems for cancer treatment. Various nanomaterials, like Au, Ag, ZnO, Cu/CuO,
TiO,, Al;O3, and CeO,, are used in nanomedicine for exploring their antimicrobial activity (Ge et al., 2011; Fu et al.,
2012). These nanoparticles have unique physicochemical properties, e.g., ultrasmall size (less than 100 nm), controllable
size, large surface area-to-mass ratio, high reactivity, no solubility, and target-specific actions. These properties of
nanoparticles allow them to act as nanomedicines because the size of natural functional units in living organisms, like DNA
(2 nm), small RNAs, ribosomes (20 nm), microtubules (25 nm), nuclear pores (50 nm), and various proteins and lipids is
equal to or less than 100 nm (Wang and Wang, 2014; Shang et al., 2014; Matea et al., 2015). Further, it is significant that
innovative nanoparticles can overcome the limitations of traditional diagnostic and therapeutic agents. Furthermore, the
small size of nanoparticles provides extreme mobility and capacity to interact with the biological system (Saptarshi et al.,
2013). However, some research studies have suggested that smaller nanoparticles are expected to produce toxicity because
of their higher reactivity with various biological proteins and peptides (Mu et al., 2014; Zaman et al., 2014). This property
of nanoparticles has raised safety issues with nanomedicine (Yang et al., 2010). In fact, initial findings revealed that
nanoparticles can easily penetrate and propagate in living organisms. A comparative study showed potential benefits in the
diagnosis and cure of diseases without risk to the immune system, lungs, digestive mucosa, and skin. The primary goal of
nanoparticles in medicine is to design target- and site-specific delivery systems with an accurate therapeutic dose (Wang
et al., 2013a). In 2013, a biodegradable polymers was used for the delivery of drugs to a specific location owing to its
potential inherent capacity (Marin et al., 2013). This phenomenon attracted great interest in creating a revolution for the
usage of nanomedicine in the field of pharmaceutical sciences.

5. NANOSTRUCTURED NANOPARTICLES IN BIOMEDICAL RESEARCH

Various structures of nanoparticles are found in their applications in biomedical research. Such nanoparticles are inorganic
metal oxides, polymers, solid lipid, ferritin, liposomes, nanocrystals, nanotubes, nanofibers, nanopores, nanosheets,
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FIGURE 6.1 Structural illustrations of various nanoparticles used in biomedical research. They are potentially engaged in drug delivery, diagnosis,
treatment, and the drug discovery process. Currently, they are documented to produce antimicrobial and neuroprotective activity. Therefore, in the future
they may be used to treat neuroinfectious disorders.

quantum dots, and dendrimers (Mu et al., 2014; Tauran et al., 2013). These nanoparticles show promising results in drug
delivery and neuroprotection systems with their own molecular mechanisms (Upadhyay, 2014; Khanbabaie and
Jahanshahi, 2012). The structures of various nanoparticles are illustrated in Fig. 6.1.

5.1 Inorganic Nanoparticles

Inorganic nanoparticles, especially gold nanoparticles, have an affinity for drugs with covalent and noncovalent bonding and
this property enhances the therapeutic efficacy. The combined action of gold nanoparticles and laser irradiation is useful in
the controlled release of drugs (Mieszawska et al., 2013). The gold nanoshell—antibody complex is known to produce an
ameliorative effect in cancer disease due to its selective transportation of drugs into cancer cell nuclei with conjugation of
arginine—glycine—aspartic acid peptide and polyethylene glycol (Austin et al., 2014). In contrast, it produces hyperthermia
when using noninvasive radio frequency for tumor cells (Gannon et al., 2008; Raoof and Curley, 2011; Chatterjee et al.,
2011). The silver-coated nanoparticle is one of the major nanoparticles in antimicrobial action. Various nanosized particles
have been considered as novel antibacterial agents because of their high surface area and reactivity. The antimicrobial activity
of nanostructured nanoparticles with conventional antimicrobial agents is enhanced compared to regular antimicrobial agents
(Beyth et al., 2015). In addition, they are also shown to produce potent antimicrobial actions by inhibition of microbial
growth and reproduction. This property is higher in silver-decorated polymer micelles and polymeric vesicles, antimicrobial
polymer micelles and vesicles, and antimicrobial peptide-based vesicles (Suchomel et al., 2015; Chen et al., 2014a).

Historically, various organic compounds such as hyaluronic acid, poly(y-glutamic acid), and polyhydroxyalkanoates
have been reported to produce wide-spectrum antimicrobial activity (Lee et al., 2014). Some natural nanoparticles have
been shown to produce antimicrobial activity; such compounds are metallic deposits, e.g., Au, Ag, Cd, Zn, or Fe; virus-like
particles; or other nanoscale proteins (Strable et al., 2008; Arakha et al., 2015). Silver nanoparticles have been identified as
broad-spectrum bactericidal and virucidal nanomaterials and are also used in cosmetics, food packaging materials, dis-
infectants, cleaning agents, etc. (Yah and Simate, 2015). Further, nickel nanoparticles are used in the purification of re-
combinant proteins for nanomagnetizable matrix preparation (Nejadmoghaddam et al., 2011). Silicon oxide nanoparticles
are used in the early detection of cytotoxicity and also in the preparation of mucoadhesive nanosystems for vaginal
microbicidal agents and optical molecular imaging materials for atherosclerosis (Kompella et al., 2013; Freese et al., 2014;
Najafzadeh et al., 2015). The mesoporous silica material is used for the detection of the Neisseria meningitidis trans-
formation process (Hollanda et al., 2011). Current research is evaluating the antimicrobial activity of polymeric nano-
structures in biomedicine (Armentano et al., 2014; Chen et al., 2014a).

Iron oxide nanoparticles are inorganic nanoparticles and are classified based on the size of the iron oxide, i.e., (1)
standard size of superparamagnetic iron oxide is 60—150 nm, (2) ultrasmall size of superparamagnetic iron oxide is
5—40 nm, and (3) subset size of monocrystalline iron oxide is 10—30 nm. They have various unique properties like
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biocompatibility, intrinsic ability to enhance magnetic resonance imaging (MRI) contrast, and capacity for surface
modification that leads to enhanced tumor imaging activity (Wang et al., 2013b). The standard-size nanoparticles are
composed of ferric (Fe*") and ferrous (Fe*") iron (Wahajuddin and Arora, 2012). They have been trapped in the retic-
uloendothelial system through endocytosis or phagocytosis to explore their cytotoxicity profile due to the dissolving
capacity of iron oxide under acidic conditions (Singh et al., 2010; Liu et al., 2013a). In addition, Fe" ions can be stored in
adult humans, accumulating up to 3—5 g of iron. Therefore, the solubility of the iron oxide nanoparticle is negligible and it
avoids metal toxicity (Wells et al., 2012; Yen et al., 2013). For MRI of the cellular system, iron oxide nanoparticles are
coated with contrast agents such as sugars, e.g., dextran, or synthetic polymers, e.g., silicone (Ciobanu et al., 2012). In
addition, it also reported to produce limited toxicity compared other nanoparticles.

Rare earth materials, e.g., lanthanides and silica materials, are also used for the preparation of nanoparticles. The
lanthanides are excellent building blocks of multimodal imaging probes and have luminescent and magnetic properties
(Heffern et al., 2014). Gadolinium (Gd**) has seven unpaired electrons and it shows a high paramagnetic relaxivity.
Therefore, it is also used in the imaging system for MRI (Shen et al., 2013). Other doped lanthanides, e.g., NaYF4
nanoparticles, are also used with Yb*" and Er*" particles (Liu et al., 2013d; Wang et al., 2014a). There is great interest
in silica nanoparticles for the cancer cell imaging system because of their favorable properties; for example, they are
inert, optically transparent, and easy to modify in structure and size. The hydrophilic surface of nanoparticles with
silanol (—Si—OH) and deprotonated silanol (—Si—O—) groups is prepared at neutral pH and this makes the silica
nanoparticles dispersible in water (Lee et al., 2010; Yang et al., 2014). It enhances the specific binding property of silica
nanoparticles at targeted sites and avoids the aggregation of silica nanoparticles in vivo. In addition, silica nanoparticles
are quite photostable with fluorescent dyes and reduce the photochemical oxidation by reactive oxygen species
(Vatansever et al., 2013; Zhao et al., 2014b). Other silica materials, e.g., mesoporous ones, have great structural control
and functionalization (magnetism and luminescence) properties due to their large surface area, high pore volume,
nontoxicity, and good biocompatibility. And they are proven to be effective as a drug delivery system (Bharti et al.,
2015). Moreover, mesoporous silica nanoparticles are also used for the radionuclide imaging process with labeling of
radioisotopes (Xing et al., 2014).

5.2 Polymeric Nanoparticles

These nanoparticles are structurally stable inorganic systems with porous characteristics and these biodegradable polymers
are widely used for controlled drug delivery systems. The drug-loading processes in polymeric nanoparticles are entrapment,
encapsulation, and dissolution or dispersion. These particles are used for the loading of a wide variety of hydrophobic and
hydrophilic drugs (Nitta and Numata, 2013; Zhao et al., 2013). This formulation is widely used for drug delivery, tissue
engineering, and various biomedical applications. Furthermore, the surface of these polymeric nanoparticles contains
various functional groups and can be modified for targeting ligands (Elsabahy and Wooley, 2012). Clinically, the conju-
gation of the polymer—drug has an important role in drug efficacy and reduction of dosing frequency of conventional
medicines (Eliasof et al., 2013). These particles are providing greater efficacy to antiasthmatic (Lu et al., 2014), antitu-
berculosis (Smith, 2011), pulmonary hypertension (Yin et al., 2013; Agyare and Kandimalla, 2014), and anticancer drugs
(Woo et al., 2012). In contrast, there is no report on the biodegradability and toxicity of polymeric nanoparticles in
pulmonary formulations (Marin et al., 2013). Research has found that typical ceramic nanoparticles such as silica and
alumina also have potential drug delivery properties (Fine et al., 2013). In addition, the newer biodegradable synthetic
polymers and natural modified polymers such as chitosan and albumin are also involved in drug delivery systems
(Lohcharoenkal et al., 2014; Wang et al., 201 1a). Furthermore, cytolytic peptide nanoparticles (“NanoBees”) and polymeric
nanoparticles encapsulating curcumin are used for cancer treatment in humans (Ray et al., 2011).

5.3 Solid-Lipid Nanoparticles

The preparation of solid-lipid nanoparticles is a lipid-based submicrometer colloidal carrier formulation. The widely used
solid-lipid nanoparticles are glyce behenate, glycerol palmitostearate, lecithin, triglycerides, and tristearin glyceride (Santo
et al., 2013). In this case, a large amount of surfactants is needed for the stability of the formulation. These particles are
used for the preparation of proteins and antigens for therapeutic purposes (Sahdev et al., 2014; Taki and Smooker, 2015).
This formulation produces good anticancer and antiviral potency (Torrecilla et al., 2014; Yu et al., 2012). In addition,
entrapment of a drug in solid-lipid nanoparticles has a potential penetration property (4—11 times that of traditional
delivery) through the blood—brain barrier and it can treat the various central nervous system disorders (Uner and Yener,
2007; Liu et al., 2014c). Formulations of indomethacin, ketoprofen, isoniazid, pyrazinamide, and primaquine with
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solid-lipid nanoparticles have been reported to produce beneficial effects in the pulmonary, hematological, and gastro-
intestinal systems (Mansour et al., 2009; Omwoyo et al., 2014). The major limitation of this preparation is loading effi-
ciency, owing to the formation of a lipid crystal matrix and changes in the physical state of the lipids (Valetti et al., 2013).

5.4 Ferritin Nanoparticles

Ferritin is a functional protein of living organisms. It is made up of 24 subunits and spontaneously assembled nanoparticles
show a cage-like nanostructure. It has a 8-nm internal diameter and 12-nm external diameter (Zhen et al., 2013b). These
particles allow the loading of lead compounds on both sides, i.e., the inside and outside interfaces of the ferritin nano-
particles. The outer surface of ferritin particles can be modified by chemical or genetic materials and the cavity of the
ferritin particles is able to carry a wide range of metals with high affinities (Theil, 2013). Ferritin nanoparticles have been
applied to carry a biovector on their surface and reach the target of C3; melanoma cancer cells (Xing et al., 2014; Zhen
et al., 2013a). In addition, gadolinium-loaded ferritin nanoparticles have entered a specific tumor of the endothelial cells
(Kitagawa et al., 2012). They are stable at pH 7.4. Therefore, they possess rigidness under physiological conditions and are
easily broken down in an acidic environment (Lin et al., 2011). Hence, they can be useful for target-specific action in the
diagnosis and treatment of tumors and cancer cells.

5.5 Liposomal Nanoparticles

Liposomes are spherical lipid vesicles with a bilayered membrane structure and were introduced for drug delivery in the year
1965. These liposomal nanoparticles are frequently used for the delivery of antimicrobial drugs (Kraft et al., 2014; Monteiro
et al., 2014). Drug-loaded liposomes can be prepared according to the size range of the macrophage. These liposomes can be
digested within the macrophage’s phagosome by the phagocytosis process and release their drug contents (Schwendener, 2014;
Whittenton et al., 2013). In addition, their liposomal membranes can also be incorporated with opsonins, which can activate
endocytosis in other cell types. The major distinguishing feature of liposomes is their lipid bilayer structure that mimics the cell
membranes of infectious microbes and can readily fuse with them (Gao et al., 2014; Wang et al., 2015; Oh and Park, 2014).
Owing to this property, they play a great role in the delivery of antimicrobial drugs directly inside of microbes.

5.6 Nanotubes

Nanotubes are self-assembling sheets of atoms organized as tubes. Based on their structure, they are classified into two
major categories: (1) single-walled cylindrical carbon nanotubes and (2) multiwalled carbon nanotubes, with multiple
cylinders nested within other cylinders (Eatemadi et al., 2014). These particles have unique properties such as electronic,
thermal, and structural characteristics. They produce a good drug delivery action in cancer cells and significantly reduce the
cancer cell progression (He et al., 2013). In addition, they also play a great role in the diagnosis of disease due to their
potential biosensing property. And, they are used in the treatment of cancer disease with a low dose of conventional drugs
because they possess target-specific action in cancer cells (Tilmaciu and Morris, 2015; Tian et al., 2015). However, the
tolerance of this nanoparticle remains unidentified in humans.

5.7 Nanocrystals

Nanocrystals are clustered arrangements of molecules, and they wrap the drug molecule with a thin coating of surfactant.
These materials are widely used in chemical engineering and in biological imaging systems compared to drug delivery
systems (Bian et al., 2014). They are prepared by using a hydrophobic compound coated with a thin layer of hydrophilic
compound. The biological effects of nanocrystals depend on the chemical nature of the hydrophilic coating molecules. This
hydrophilic layer also acts as an aid in the biological distribution and bioavailability of the crystalline drug material. These
factors are responsible for drugs and drug delivery (Lv et al., 2013; Fay et al., 2013). A nanosuspension of this formulation
can be used via the oral route to overcome difficulties in swallowing tablets by pediatric or geriatric patients.

5.8 Nanofibers

Nanofibers are prepared by the electrospinning method and are widely used for the drug delivery process. The nanofibers
are arranged as a fibrous scaffold and it is able to entrap drugs, with a large loading capacity and high encapsulation
efficiency due to its low weight and inherent large surface-to-volume ratio (Xu et al., 2010; Zhang et al., 2011). Nanofibers
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are promising carrier molecules for the delivery of anticancer drugs. They are useful nanoparticles for postoperative local
chemotherapy using surgical implantation of the scaffold (Tseng et al., 2013, 2015). These nanoparticles are able to protect
the encapsulated drugs from enzymatic and hydrolytic degradation (Griffin et al., 2011; Wade et al., 2015). It is evidenced
that insulin-loaded nanoparticles can preserve insulin activity and produce a lowering of the blood glucose level for up to
14 days in diabetic rats (Nishimura et al., 2012).

5.9 Nanopores

The nanopore is a member of the nanoparticles and is a nanoscale-level channel or hole in a free-standing membrane.
Solid-state nanopores such as silicon, SiO;, and Si3N, act as biological sensors of biological transmembrane proteins
(Haque et al., 2013; Majd et al., 2010). The a-hemolysin (a-HL) channel is one of the common nanoparticles used to detect
single-stranded nucleic acids. A modified o-HL nanopore was used to distinguish the individual DNA mononucleotides
(Wanunu, 2012). It revealed that nanopores serve as potent regulators of DNA because of their direct sequencing action on
single molecules of DNA (Haque et al., 2013). And it is a reliable and low-cost nanoparticle for the DNA sequencing
process in genomic research. A similar property is also expected to regulate the genetic information of cancer cells (Wang
et al.,, 2011b). In addition, polydimethylsiloxane (PDMS) polymer has been used to produce microfluidic channels and
microscale devices (Valencia et al., 2012). Briefly, this nanoscale device was prepared by sealing with PDMS polymer. It
consists of two reservoirs connected by a pore of glass material and it is filled with an ionic solution. The potential
difference across the pore was measured at constant applied current by a four-point technique (Jain et al., 2013; Liu et al.,
2013b). The working principle of the nanopore device is that the flow of DNA molecules passing through the pore creates a
downward spike wave in the current recording profile. Each downward peak mimics the movement of a single DNA
molecule in the nanopore device. This nanopore device helps to detect viruses and their viral proteins (Crick et al., 2015;
Dorfman et al., 2013). Furthermore, it has been attached to the biological membrane with a covalent bond and acts as a
probe molecule for detection of specific target sites. The nanopore supports the detection of antigen—antibody binding
reactions (Schibel and Ervin, 2014). Antibody was specifically bound to the colloidal surface of the nanopore and raised
the diameter of the nanoparticle. A limitation arises in this material owing to significant current blockade and higher
resistance in the current flow due to the larger diameter of the colloidal particles (Belkin et al., 2015). This device is used to
detect the presence of Streptococcus group A, and the sensitivity of detection is four times faster than standard latex
agglutination assay (Zhu et al., 2015). The major advantages of nanopores are the cost-effectiveness, simplicity, speed, and
versatility of nanopore assays (Squires et al., 2015). Therefore, this particle can be useful for the preparation of
nanomedical devices for the diagnosis and treatment of neurological disorders.

5.10 Nanosheets

The nanosheet is another nanoparticle and it is arranged as a single- or multiple-layer two-dimensional array of atoms or
molecules. Graphene is one of the nanosheet materials and it is arranged as a two-dimensional honeycomb crystal structure
of a flat monolayer of carbon atoms (Song et al., 2014). It has high thermal conductivity (~5000 W/m K), high specific
surface area, high electron mobility (250,000 cm?/V s), biocompatibility, and thermal stability. Therefore, it is used for
electrochemical immunosensors for the diagnosis of disease (Wang et al., 2012¢; Zhu et al., 2015). The graphene oxide
nanosheet (GO-nS) is used to detect in vivo cellular interactions and DNA cargo functions (Shen et al., 2012). The
interaction of fluorescence-labeled GO-nS and DNA molecules produces an aptamer/GO-nS complex and it is used as a
real-time biosensing platform of living cells. This fluorescence-labeled ATP-binding aptamer (FAM-aptamer) can
potentially be used in a biosensing system with GO-nS owing to its three basic actions, i.e., (1) high fluorescence
quenching efficiency in vivo, (2) potent DNA transport action, and (3) efficient protection of oligonucleotides from
enzymatic cleavage (Hong et al., 2012; Sanchez et al., 2012). In addition, the FAM-aptamer/GO-nS complex has high ATP
specificity and sensitivity with a wide detection range, i.e., from 10 uM to 2.5 mM in vitro (Wu et al., 2015a). Therefore,
this nanoparticle also expected to serve as a molecular tool for the diagnosis of genetic disease.

5.11 Quantum Dots

Quantum dots are inorganic fluorescent semiconductor nanoparticles and they are composed of 10—50 atoms with 2- to
10-nm diameters (Breger et al., 2015). They are mainly used for biological imaging, sensing, and detection. In medicine,
they are used for targeted drug delivery for the treatment of cancer (Wang et al., 2014b). Apart from the drug delivery
process, quantum dots are also useful in the delivery of other biomolecules such as small interfering RNA (siRNA) (Probst
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et al., 2013; Hong and Nam, 2014). They have some limitations due to long-term in vivo toxicity and degradation
properties (Liu et al., 2013c; Sobrova et al., 2013).

5.12 Dendrimers

Dendrimers are well-structured globular macromolecules and they have three regions: (1) a core, (2) layers of branched
repeating units, and (3) functional end groups on the outer layer of the repeating units (Bumb et al., 2010). The highly
branched nature of dendrimers provides a large surface area and allows them to react with microorganisms in vivo (Shao
et al., 2011). Dendrimers with drug molecules are prepared by either complexation or encapsulation. They allow loading of
both hydrophobic and hydrophilic agents. Hydrophobic drugs can be loaded inside the cavity in the hydrophobic core,
whereas hydrophilic drugs are attached to the multivalent surfaces of dendrimers through covalent conjugation or elec-
trostatic interactions. This formulation can be used for oral, transdermal, ocular, and intravenous routes of drug delivery
(Madaan et al., 2014; Yavuz et al., 2013). In addition, dendrimers have been shown to cross cell barriers by paracellular and
transcellular pathways (Wu et al., 2013; Jones et al., 2012). The polyamidoamine dendrimers are most widely used for drug
delivery because of their potential action of facilitating transport through the epithelial barrier (Xu et al., 2014; Tyssen et al.,
2010). However, polyamidoamine dendrimers affect the function of platelets (Jones et al., 2012). The structure—activity
relationship of dendrimers revealed that they have a dual action on human immunodeficiency virus (HIV) and herpes
simplex virus (HSV), i.e., virucidal action on HSV and viral entry inhibitory action on HIV (Tyssen et al., 2010). In
addition, they carry siRNA and deliver it to a specific target site for the silencing of gene sequence (Wu et al., 2013). They
have great potential drug delivering capacity in the CNS (Xu et al., 2014). Therefore, dendrimer particles can be useful for
the delivery of siRNA in gene therapy as well as in nanomedicine for neuroinfectious disorders. A summary of various
nanoparticles and their applications has been tabulated in Table 6.1.

6. PRINCIPLE OF NANOPARTICLE ENTRY INTO CELLULAR SYSTEM

The entry of nanoparticles along with ligands into the cellular system has great challenges due to multiple factors such as
size, biocompatibility, stability, and affinity (Mu et al., 2014; Kettiger et al., 2013). The entry of nanoparticles into the
cellular system has the following principles: (1) uptake of nanoparticles by the tissues and (2) cellular receptor—mediated
endocytosis (Yameen et al., 2014).

6.1 Uptake of Nanoparticles by the Tissues

The major achievement of the treatment process with therapeutic agents is the entry into or uptake of drug by the targeted
tissue because the membrane layers create an obstacle to entry of drugs due to inefficient partitioning capacity (Kettiger
et al., 2013). The partitioning capacity depends upon the polar and nonpolar properties of the drugs. Lipophilic molecules
bypass this obstacle because they have a potent membrane permeativity via diffusion (Mu et al., 2014). Nanoparticles are
able to mask the therapeutic agent and provide efficient delivery into the cytosolic region. Nanoparticles are involved in the
endocytosis process by natural phagocytosis, pinocytosis, and receptor-mediated endocytosis (Oh and Park, 2014).
Phagocytosis involves the ingestion of materials up to 10 um in diameter by a few cells of the reticuloendothelial system,
e.g., macrophages, neutrophils, and dendritic cells. It is an uptake mechanism by almost all cell types and normally it
involves the submicrometer range of material or substances in solution (Kruth, 2011). Larger microparticles enter into the
cytosol by the action of phagocytic cells, whereas nanoparticles cross into all types of cell.

6.2 Cellular Receptor—Mediated Endocytosis

Receptor-mediated endocytosis has potential selectivity in the entry of molecules into cellular target sites. The nanoparticle
surface binds to the extracellular surface and the cell allows carrying the ligands into the cytosolic region (Wang et al.,
2012a). Sometimes, it transduces the signal to the intracellular space and triggers various biochemical pathways.
Furthermore, it may also enhance the internalization of the ligand and its nanoparticle via the endocytosis process. This
process is potentiated by biomolecules such as caveolin and clathrin (Rattanapinyopituk et al., 2014; Smith et al., 2012).
The cross-linking of receptors and nanoparticles is more prone to membrane enfolding and reunification leading to the
formation of an endosome. Nanoparticles between 25 and 50 nm in size are involved in this kind of entry into the cellular
system (El-Sayed and Harashima, 2013; Steketee et al., 2011). Cellular endocytosis follows five steps to carry the
nanoparticle with ligands into the cytosolic region. The steps are as follows: (1) association of nanoparticles with receptors
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TABLE 6.1 Applications and Limitations of Nanoparticles in Biomedical Research

Sl. Class of

No.  Nanoparticle

1 Inorganic
particle

2 Polymer

3 Solid-lipid

nanoparticle

4 Ferritin

5 Liposome

Type of Particles

Silver-coated particle

Silver-coated
polymer micelles

Au, Ag, Cd, Zn, and
Fe particles

Silicon oxide particles

Iron oxide
nanoparticles

Iron oxide coated
with dextran or
silicone

Silica materials

Mesoporous
Lanthanides

NaYF, nanoparticle
coated with Yb’* and
Er’™ particle

Gadolinium (Gd**)

Ceramic nanoparticles
(silica and alumina)
coated with polymer

Polymer coated with
chitosan and albumin

Cytolytic peptide
nanoparticles
(NanoBees)

Glyce behenate,
glycerol palmitostea-
rate, lecithin,
triglycerides, and
tristearin glyceride

Application

1.

Antimicrobial action

2. Reduction of microbial

growth and reproduction

Vaginal microbicides

. Optical imaging

. MRI on tumor activity

Cancer cell imaging

. Fluorescence image probe

. Drug delivery system

MRI with radionuclide

. Diagnosis and treatment of

cancer

Drug delivery system

. Cancer treatment

. Delivery of proteins and

antigens

Anticancer and antiviral
action

Drug delivery in CNS,
pulmonary, hematological,

and gastrointestinal system

. Drug delivery in cancer

cells
Treatment of tumor of the
endothelial cells

. Delivery of antimicrobial

drugs
Controlled release property

High drug loading capacity

Limitations

Metal toxicity

Lack of toxicological

data

Biotransformation

Biodegradability

Toxicity of
pulmonary system

Loading deficiency
with lipid crystal
matrix formation

Changes in physical
state of lipids

Rigidness under
physiological
conditions

Degradation by
phagosomes

Variable kinetics
Physical instability

Lipid crystallization

References

Wang et al. (2013b),
Bharti et al. (2015),
Liu et al. (2013d),
and Wang et al.
(2014a)

Lohcharoenkal et al.
(2014) and Marin
et al. (2013)

Sahdev et al. (2014),
Taki and Smooker
(2015), and Liu et al.
(2014c¢)

Xing et al. (2014)
and Zhen et al.
(2013a)

Kraft et al. (2014)
and Monteiro et al.
(2014)

Continued
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TABLE 6.1 Applications and Limitations of Nanoparticles in Biomedical Research—cont'd

SI.

No.

6

Class of
Nanoparticle

Nanotube

Nanocrystal

Nanofibers

Nanopores

Nanosheets

Quantum
dots

Dendrimers

Type of Particles

SWCNTs and
MWCNTs

5102 and Si3N4
a-hemolysin channel

PDMS polymer-
coated nanopore

Graphene GO-nS

Semiconductor
nanoparticles

Globular
macromolecules.

Polyamidoamine
dendrimers

Application

1. Drug delivery in cancer
cells

2. Reduction of cancer cell
progression

3. Biosensing

1. Biological imaging system;

P9

-

minor role in drug delivery
system

Overcome difficulties of
swallowing tablets in
pediatric or geriatric
patients

. Delivery of anticancer

drugs

. Insulin delivery and

monitoring the insulin
activity

. Analysis of insulin efficacy

in diabetic patients

. DNA sequencing process

. Preparation of nanoscale

device

. Detection of viruses and

their proteins

. Monitoring of antigen—

antibody binding reaction
Detection

of Streptococcus group A
bacteria.

DNA molecules
FAM-aptamer
Real-time biosensing
ATP specificity and
sensitivity

Drug and siRNA delivery

. Treatment of cancer disease

. Facilitate epithelial barrier

transport
Virucidal action on HSV

. Viral entry inhibition of

HIV
SiRNA delivery in gene
therapy

. Drug delivery in CNS

Limitations

Tolerance

Degradation by
biochemicals in the
body

Enzymatic and
hydrolytic
degradation

Blockade of analysis
with colloidal
particles

Toxicity

Degradation
property

Toxicity
Degradation
property
Degradation
property
Cellular toxicity

Hemolytic effects

Lack of carrying
capacity for hydro-
philic drugs

References
He et al. (2013)

Bian et al. (2014)

Tseng et al. (2013)
and Wade et al.
(2015)

Haque et al. (2013)

Crick et al. (2015)
and Zhu et al.,
2015)

Hong et al. (2012)
and Wu et al.
(2015a)

Wang et al. (2014b)
and Liu et al.
(2013¢)

Wau et al. (2013) and
Xu et al. (2014)

FAM-aptamer, fluorescence-labeled ATP-binding aptamer; GO-nS, graphene oxide nanosheet; HIV, human immunodeficiency virus; HSV, herpes
simplex virus; MRI, magnetic resonance imaging; MWCNT, multiwalled carbon nanotube; PDMS, polydimethylsiloxane; siRNA, small interfering RNA;
SWCNT, single-walled cylindrical carbon nanotube.
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on the cell membrane, (2) internalization of nanoparticles with ligands, (3) release of ligands (also known as endosomal
escape) from nanoparticles by the endolysosomal process or lysosomal degradation of nanoparticles, (4) interaction of free
ligands (therapeutic agent) with cytoplasmic organelles or proteins, and (5) exocytosis of nanoparticles via the endosomal
recycling process (Xu et al., 2013; Herd et al., 2013; Serda et al., 2010; Strobel et al., 2015). A summary of nanoparticle
entry and elimination in the cellular system is illustrated in Fig. 6.2.

7. APPLICATION OF NANOSTRUCTURED NANOPARTICLES IN PHARMACEUTICAL
SCIENCE

Nanoparticles have been successfully developed in the fields of material science, information technology, and chemical and
tissue engineering science. In addition, the nanostructured particle has potent action against microbial organisms, and it has
great potential action in the drug delivery process (Babu et al., 2014; Weingart et al., 2013). The investigation of nano-
particles for medical applications is in the stage of preclinical and clinical trials. A few nanoparticles have been shown to
produce their potential action in drug delivery, diagnosis of disease, molecular imaging of cellular function, and drug
development (Liu et al., 2014b; Gomes et al., 2014). In addition, nanomedicine also has shown their therapeutic action in
regenerative medicine, stem cell and gene therapy, brain tumors, cancer, implants, bone repair, drug discovery, and
cosmetic applications (Nitta and Numata, 2013; Jain, 2005; Auffinger et al., 2013; Cheng et al., 2014b; Baetke et al., 2015;
Tautzenberger et al., 2012). Some of the nanoparticles with antimicrobial agents have reached the market for the treatment
of various microbial infections (Zhang et al., 2010; Gao et al., 2014; Ku et al., 2011). The postmarket surveillance is still
under way. Nanostructured medicine has great scope in the treatment of life-threatening diseases such as cancer, acquired
immune deficiency syndrome, and neuroinfectious disease (Masserini, 2013).

Viral infections are the most important factor in neuroinfection-associated neurodegeneration, for example, HIV-1,
human T-cell lymphotropic virus, Epstein—Barr virus, encephalitis viruses, HSV, and parainfluenza virus infection
(Gaikwad et al., 2013; Ahmed et al., 2009; Bily et al., 2015). Viral infection causes the neurodegeneration of the central as
well as the peripheral nervous system (Zhou et al., 2013; Koyuncu et al., 2013). In addition, Theiler’s murine encepha-
lomyelitis virus is known to cause neurodegenerative disease, i.e., multiple sclerosis (MS) (Sato et al., 2011). The chronic
stage of viral infection-associated neuronal damage is responsible for producing neurodegenerative disorders like HIV-
associated dementia, Alzheimer’s disease (AD), Parkinson’s disease (PD), MS, and amyotrophic lateral sclerosis (ALS)

Endocytosis

Endosome
Internalization

Lysosomal
egradation
3+
ndo-lysosome

A
d
()=
}vi
v

% Nanomedicine i
@ Therapeutic agent ‘ Endosome with Drug free Endosome with
Nanomedicne @ endosome Nanoparticle
FIGURE 6.2 The process of nanomedicine entry and elimination of nanoparticles in the cellular system. It has five major steps, i.e., (1) association of

nanoparticle with cellular membrane, (2) internalization of endosomal complex, (3) endolysosomal or lysosomal degradation, (4) release of drug and
activation at targeted site, and (5) release of nanoparticles from cellular system by exocytosis with endosome.
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(Zhou et al., 2013). Some nanoparticles are reported to prevent viral infection in the nervous system (Gomes et al., 2014;
Bolhassani et al., 2014). Therefore, nanomedicine is expected to cure the neuroinfection-assisted neurodegenerative
disorders. However, clinical evidence of nanomedicine therapies is limited. The novel medical applications of nano-
particles and nanomedicine are not exhaustive, but they need to be investigated in a scientific manner for the treatment of
life-threatening diseases like neuroinfectious disease with suitable molecular mechanism and therapeutic efficacy as well as
avoidance of any toxic principles.

7.1 Diagnostic Approach

Nanotechnology provides improvements in imaging systems for the human body through fluorescence microscopy or MRI
scanning. Inorganic nanoparticles, e.g., quantum dots (QDs), possess luminescence properties and are employed as a novel tool
for the diagnosis of biological functions and disease progress (Kiessling et al., 2014). In addition, they have a strong fluorescent
property under ultraviolet light illumination. The major application of QDs is to image tissues and cells, e.g., lymph nodes and
tumors (Helle et al., 2012). However, the other types of nanoparticles possess superparamagnetic iron oxide potential; therefore
they are recognized to detect cancer cells and their progression such as in prostate cancer (Sterenczak et al., 2012). Furthermore,
gold and silver nanoparticles are very commonly used for the diagnosis of various cancer cell types such as skin, ovarian,
pancreatic, breast, and lung cancer (Austin et al., 2014; Patra et al., 2010; Swanner et al., 2015).

7.2 Drug Delivery Process

For the delivery of drugs by nanoparticles a variety of materials such as proteins, polysaccharides, and synthetic polymers
are used. The selection of materials for nanoparticle preparation depends upon the size of the nanoparticles, inherent
properties of the drug, permeability, and degree of biodegradability (Lohcharoenkal et al., 2014; Bolhassani et al., 2014;
Sizovs et al., 2010). Nanoparticles have the ability to carry the drugs into various types of the cells, such as cancer, tumor,
and human cells. The nanoparticle-mediated delivery of drugs has been observed in a cancer cell line (Cui et al., 2014).
Albumin-loaded nanoparticles are used for the delivery of paclitaxel into cancer cells, and they reduce the adverse side
effects associated with the chemotherapeutic agent Abraxane (Zhang et al., 2013a). In addition, nanoparticles help to
deliver HIV antiviral agents into HIV-infected organisms and they have overcome the challenge of bioavailability of HIV
antiviral agents due to their poor water-solubility (Parboosing et al., 2012). The US Food and Drug Administration (FDA)
has approved more than 250 nanomedicines for various pathological disorders in humans such as cancer, tumors, and
infections (Kamaly et al., 2016; Etheridge et al., 2013). The clinically important nanomedicines and their therapeutic
applications are listed in Table 6.2.

7.2.1 Drug Delivery in Neurological Tumors

The delivery of drugs in the CNS is challenging because of the arrangement of the blood—brain barrier (BBB). Generally,
the physiological barrier limits the brain’s uptake of neurotherapeutic agents and neuroimaging contrast agents (Ashton
et al., 2015). Anatomical and cellular manifestations of the CNS, such as the neurovascular capillary of endothelial cells,
pinocytosis, and tight junctions, limit drug delivery. The brain microvasculature has four types of cells, i.e., endothelial
cells, pericytes, astrocyte foot processes, and nerve endings, which contribute to the modulation of drug delivery in the
CNS and prevent drug entry into the brain (Shilo et al., 2015; Gomes et al., 2014). In this case, lipid-mediated free
diffusion and receptor-mediated endocytosis have a great role in the entry of molecules into the CNS. Therefore, lipid-
derived nanoparticles like liposomes have contributed to the great success of drug delivery in the neurological system
(Fonseca-Santos et al., 2015; Fiandaca et al., 2011). Current investigation is focused on the delivery of nanostructured
medicines in the treatment of neurological and neuroinfectious diseases such as glioblastoma, dementia, AD, PD, and ALS
(Fonseca-Santos et al., 2015; Ramos-Cabrer and Campos, 2013). The current concept of drug delivery in the CNS is
focusing on low-density lipoprotein (LDL) particles. The size of natural LDL particles is 22—27 nm in diameter, with a
core of lipids, e.g., cholesteryl esters, with small amounts of triglyceride (Feng and Mumper, 2013; McMahon et al., 2015).
Plasma-derived LDLs are used to deliver nanomedicines for neurological tumors (glioblastoma). Synthetic LDL nano-
particles also provide the efficient delivery of paclitaxel for glioblastoma (Feng and Mumper, 2013).

7.2.2 Drug Delivery in Neurovascular Disease

Vascular diseases contribute to the progress of neurological ischemia that leads to stroke, cerebral aneurysm, and intra-
cranial hemorrhage (Liu et al., 2014a; Sehba et al., 2011; Chen et al., 2014b). The delivery of nanoparticles to the CNS
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TABLE 6.2 List of Clinically Important Nanomedicines and Their Therapeutic Applications

SI.

No. Name of the Drug

1 Liposomal amphotericin B

2 Liposomal cytarabine

3 Liposomal amphotericin B

4 Liposome—PEG doxorubicin

5 Liposomal daunorubicin

6 Liposomal vincristine

7 Liposomal morphine

8 Liposomal IRIV vaccine

9 Liposomal verteporfin

10 Liposomal cytosine arabinoside

11 Micellular estradiol

12 Polymeric docetaxel

13 Polymeric micelle for paclitaxel

14 Albumin protein-bound paclitaxel

15 Pemetrexed

16 PEGylated adenosine

17 PEGylated Fab’ fragment of a
humanized anti-TNF-a antibody

18 Glatiramer acetate (copolymer
composed of L-glutamic acid,
L-alanine, L-lysine, and L-tyrosine)

19 Amine-loaded polymer

20 Leuprolide acetate and PLGH
polymer formulation

21 Aprepitant nanocrystal particles

22 Pegfilgrastim

23 PEG-asparaginase

24 Interleukin-2 diphtheria toxin
fusion protein

25 Peginterferon alfa-2a

26 Peginterferon alfa-2b

27 PEGylated human growth
hormone receptor antagonist

28 Pegaptanib (PEG—anti-VEGF
aptamer)

29 Methoxy PEG-epoetin B

CKD, chronic kidney disease; IRIV, immunopotentiating reconstituted influenza virus; NSCLC, non-small-cell lung cancer; PEG, polyethylene glycol;
PLGH, poly(pL-lactide-co-glycolide); TNF, tumor necrosis factor; UCB, Union Chimique Belge; VEGF, vascular endothelial growth factor (Ventola, 2012;

Wolfram et al., 2015; Paliwal et al., 2014).

Therapeutic Application
Fungal infections

Malignant meningitis

Fungal and protozoal infections
Invasive fungal infections
HIV-related Kaposi’s sarcoma.
Metastatic breast cancer
Metastatic ovarian cancer
HIV-related Kaposi’s sarcoma

Acute lymphoblastic leukemia and
melanoma

Endo postsurgical analgesia
Hepatitis A

Wet age-related macular degeneration
Myopia and ocular histoplasmosis
Lymphomatous meningitis
Menopausal therapy

Advanced solid malignancies
NSCLC

Metastatic breast cancer
Nonsquamous NSCLC

Malignant pleural mesothelioma
Severe combined immunodeficiency
Crohn’s disease

Rheumatoid arthritis

Multiple sclerosis

Serum phosphorus control with CKD

Advanced prostate cancer

Chemotherapy-related nausea and vomiting

Chemotherapy-associated neutropenia
Acute lymphocytic leukemia

Cutaneous T-cell lymphoma

Hepatitis B and C
Hepatitis C

Acromegaly

Wet age-related macular degeneration

Symptomatic anemia associated with CKD

Company
Enzon

Pacira

Gilead Sciences
Sigma Tau

Ortho Biotech

Schering-Plough
Gilead Sciences

Spectrum Pharmaceuticals

SkyePharma
Crucell

QLT Ophthalmics

Pacira
Novavax

Samyang Biopharmaceutical
Corp.

Celgene

Lilly

Sigma Tau

UCB Pharma

Teva

Genzyme

Sanofi

Merck
Amgen
Sigma Tau

Eisai

Genentech
Merck

Pfizer

Eyetech

Hoffman La Roche
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helps to detect neurovascular disease, such as detection of atherosclerotic plaques. Similarly, it also acts to target and
deliver therapeutic agents to these plaques. Tissue factor-targeted nanoparticles loaded with paclitaxel are shown to reduce
smooth muscle cell proliferation (Chan et al., 2011). In addition, nanoparticles loaded with fumagillin (antiangiogenic
agent, targeted to aVb3-integrin epitopes of the vasa vasorum) have been documented to produce an antiangiogenic effect
(Lanza et al., 2010). The utilization of taxol-loaded albumin nanoparticles limits the restenotic response in experimental
animals (Chan et al., 2011).

7.2.3 Drug Delivery in Neurodegenerative Diseases

The degeneration of the neurological system is triggered by infection, inflammation, and oxidative stress, and subsequently
modulates the various cellular and molecular events in the nervous system (Mishra et al., 2015; Alirezaei et al., 2008). The
nanoparticle has a great potential to regulate microbes with antimicrobial agents (Durdn et al., 2010). Nanoparticles are
able to cross the CNS and alter the neurological proteins (Upadhyay, 2014). Based on this evidence they are expected to
control the various neurological diseases. Conventional medicine is limited in treating neurodegenerative diseases by the
difficulty of drug delivery and the toxicity profile of neurological as well as systemic organs (Carroll et al., 2010; Chhabra
et al., 2015; Perreault et al., 2012; Singh and Ramarao, 2013). Therefore, nanoparticles and nanomedicine are a promising
technology for the treatment of neurodegenerative disorders. However, the experimental and clinical evidence exploring
the role of nanomedicine in the treatment of neurodegenerative disease is limited. In contrast to their possible benefits,
various nanoparticles are metallic in nature and metal compounds are well documented to produce neurological damage
(Willhite et al., 2014). Chelators are reported to reduce the metal compounds associated with neuronal damage (Zhang
et al., 2013b; Zhao et al., 2014a). On the other hand, metal chelators, e.g., desferrioxamine, exhibit serious neurotoxicity
and neurological changes due to strong covalent binding properties with membrane proteins (Olivieri et al., 1986; Kapoor,
2013). LDL-receptor-targeted polymeric nanoparticles can potentially cross the BBB or be taken up by the brain endo-
thelial cells and deliver drugs to the brain. And, they effectively mask the covalent bonds of chelators and facilitate the
delivery of drugs and minimization of toxicity (Kreuter, 2013). Therefore, nanoparticles can play the significant role in the
management of neurodegenerative disease.

7.2.4 Drug Delivery for Infective Disease

The science of nanotechnology is expected to treat neuroinfective, neurodegenerative, cerebrovascular, and inflammatory
diseases. The major challenges for drug delivery to the brain are the low permeability of the BBB and its role as the natural
brain-protective layer against the entry of foreign substances and blood microbes (Li et al., 2015; Monopoli et al., 2012).
The usage of polymeric nanoparticles has demonstrated that they are potentially noninvasive drug carriers that can cross
the BBB and enter into the brain (Ong et al., 2014; Patel et al., 2014). The antitubercular drug-loaded nanoparticle has the
capacity to enter into the Mycobacterium tuberculosis organism and produce a potent efficacy against tuberculosis (TB)
(Garg et al., 2015a; Pandey et al., 2003). The oral administration (five oral doses every 10 days) of coencapsulated poly
(pL-lactide-co-glycolide) nanoparticles with antitubercular drugs (e.g., rifampin, isoniazid, and pyrazinamide) produces
complete bacterial clearance from the organs compared to conventional TB drugs in mice and guinea pigs (Pandey et al.,
2003; Sharma et al., 2004).

Moreover, the oral administration of poly(pL-lactide-co-glycolide) nanoparticles encapsulating ethionamide
produces a potent tissue distribution and manages multidrug-resistant TB. And, the sustained release of ethionamide
for 6 days in plasma comparable to the 6-h plasma concentration of free ethionamide in mice has been shown (Kumar
et al., 2011). Therefore, nanoparticles have the potency to deliver drugs into the infective organism at the level of the
nervous system.

8. NEUROINFECTION-ASSOCIATED NEURODEGENERATIVE DISEASE

The nervous system has various self-defensive cells like glial cells, astrocytes, oligodendrocytes, macrophages, and T and B
cells (Alluri et al., 2015; Tsunoda, 2008). Generally, they play roles in central sensitization and protect the CNS, whereas
overactivation of these cells is responsible for changes to the neurological function and at the extreme stage can cause
neurodegeneration (Jungner et al., 2016). The abnormal activation of these cells is due to various internal and external
factors such as stress, drugs, chemicals, trauma, surgery, heat, hormones, microbes, and peripheral nerve injury (Alizadeh
et al., 2015; Goncharenko et al., 2014; Lee et al., 2015; Matilla-Dueiias et al., 2014; Villanueva et al., 2013). The mechanism
of neurodegeneration takes place via the release of various proinflammatory cytokines (tumor necrosis factor and leuko-
trienes), excitatory neurotransmitters (glutamate and aspartate), and oxidative stress in the neurons (Camara-Lemarroy et al.,
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2012; Wang et al., 2012b; Ramesh et al., 2013). The endothelium of the CNS is the primary target site for neuroinfection
and neuroinflammation (Di Marco et al., 2015). Changes in the central endothelium affect neurological function via acti-
vation of neuronal glial cells, and at the chronic stage it undergoes the enhancement of neurodegeneration (Loane et al.,
2014). Infectious agents cause neuroinflammation by affecting the endothelium of the cerebral blood vessels and astrocytes
(Combes et al., 2012; Freeman et al., 2014).

Meningitis is a neuroinflammatory condition of the CNS, which is caused by bacterial (Streptococcus pneumonia,
N. meningitidis, Haemophilus influenzae, Listeria monocytogenes, Escherichia coli, and M. tuberculosis), viral (varicella
zoster, influenza, mumps, HIV, and HSV), fungal (Cryptococcus neoformans), and parasitic (cysticercosis) infections
(Inoue et al., 2015; Richie and Josephson, 2015). Encephalitis is another neuroinflammatory condition of the CNS and it is
caused by enteroviruses (herpes simplex), rabies virus, and arboviruses (Nile virus). The virus particle is most prone to
causing neuroinflammation and neurodegeneration (Kurkowska-Jastrzebska et al., 2013; Richie and Josephson, 2015).
Generally, viruses are able to infiltrate the nervous system. The entry of the virus particle into the nervous system involves
two methods, i.e., transneuronal and hematogenous spreading methods (Chaves et al., 2011; Coller and Smith, 2008;
Taylor and Enquist, 2015).

The exact mechanism of transneuronal spreading of viruses is not known yet. But it is expected to involve the virus and
its proteins escaping from the immune system by traveling via the axons of the nerves (Feldman et al., 2014; Rall et al.,
1995; Turner et al., 2014). In the hematogenous spreading method, the virus uses one of two main ways to enter into the
brain. The first way is to infect an immune cell; thereafter, the infected immune cell carries the virus into the nervous tissue,
for example, infection of B cells by John Cunningham virus (a type of human polyomavirus) and infection of CD4 T cells
and macrophages by HIV (Chapagain and Nerurkar, 2010; Tebas et al., 2014). The second way is to cross the blood
capillaries, similar to free virus or leukocyte entry (Roe et al., 2014). Furthermore, neurons lack essential molecules for the
binding of killer cells with viral peptides on the viral surface. Therefore, the neuron is a safe house in which the virus can
replicate (Deauvieau et al., 2016; Voss and Bryceson, 2015). Once a virus infects a neuron it can persist for the lifetime of
the host. Further, it interferes with the function of neurons and their homeostasis of the nervous system, leading to the
generation of neuronal damage and neurodegeneration (De Chiara et al., 2012). The infective agents affect the neurological
system and cause neurodegenerative diseases such as AD, PD, and ALS (Alkhawajah et al., 2015; Bourgade et al., 2015;
DeVaughn et al., 2015; Wu et al., 2015b). Further, progressive infective neurodegeneration occurs with a wide range of
molecular and cellular mechanisms leading to deterioration or loss of neurons in the CNS.

Infectious neurodegeneration occurs not only in the CNS. It also affects the peripheral nervous system and it enhances
neuronal inflammation and neurodegeneration (Ramesh et al., 2013; Wada et al., 2013). This leads to peripheral
neuropathy. Peripheral neuropathy mainly develops from infection with herpes varicella zoster (called shingles), HSV, or
cytomegaloviruses (Guedon et al., 2015; Muneshige et al., 2003; Sansone and Sansone, 2014). Epstein—Barr virus and
West Nile virus do not play a role in the development of peripheral neuropathy. Viral infections are able to affect the
nervous system and cause severe damage to the sensory and motor nerves leading to sharp and severe pain (Chikakiyo
et al., 2005; Jo et al., 2013; Kokotis et al., 2013). Moreover, infection with West Nile virus, which occurs through
mosquitoes, causes severe motor neuropathy along with various forms of inflammatory neuropathies. Infection of post-
herpetic neuralgia is also shown to produce long-lasting and intense pain after an attack of shingles (Sansone and Sansone,
2014). HIV infection-associated neuropathy shows different forms depending on the nerves affected and the specific stage
of active HIV disease (Kokotis et al., 2013). Furthermore, bacteria can attack nervous tissue, causing peripheral nerve
damage and neuropathic pain. Such bacterial infections are diphtheria, leprosy, and Lyme disease (Benoliel et al., 1999;
Reis et al., 2014; Zimering et al., 2014). In addition, the tick-borne infection also contributes to neuroinfection-associated
neuropathic pain. It is a rapidly developing infection that progresses to painful polyneuropathy that occurs within a few
weeks of infection (Logigian and Steere, 1992; Zimering et al., 2014). Therefore, the prevention of neuronal infection may
be a promising approach in the treatment of neurodegenerative disorders.

9. THE MECHANISTIC APPROACH OF NANOMEDICINE FOR NEUROINFECTIOUS
NEURODEGENERATIVE DISEASE

Nanoparticles and nanomedicines contribute to various pharmaceutical applications, like diagnosis of disease progres-
sion, drug delivery, and treatment of various ailments, such as cancer, thrombosis, wounds, osteoporosis, vertebral
fracture, and microbial infective diseases, e.g., TB and HIV-associated opportunistic infections (Khajuria et al., 2014;
Palekar et al., 2016; Sagar et al., 2015; Tang et al., 2015; Wolfram et al., 2015). Furthermore, it is expected that they will
produce potential therapeutic agents for neuroinfective disorders. The possible cellular and molecular mechanisms are as
follows.
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9.1 Cellular Mechanism of Nanomedicine for Neuroinfectious Disease

In the nervous system, nanomedicines can cross the BBB directly and regulate the physiological response of the BBB and
brain functions. They can carry circulating immunocytes, such as monocytes, macrophages, and lymphocytes, and stem
cells into the brain (Nowacek and Gendelman, 2009). Further, they can release their cargo material and control the ongoing
disease progress by clearing microbial infections, repairing the neuronal system, eliminating proinflammatory mediators,
and inducing the antiinflammatory response (Raymond et al., 2015). The combined action of nanomedicine and neuronal
function may restore the glial homeostasis function in the brain. The cellular mechanism of nanomedicine in the treatment
of infectious neurodegenerative disease is illustrated in Fig. 6.3.

9.2 Molecular Mechanism of Nanomedicine for Neuroinfectious Disease

Nanostructured antimicrobial drugs are targeted mainly to the receptors of brain endothelial cells, such as the insulin,
leptin, transferrin, and epidermal growth factor receptors for the transfer of lead molecules across the BBB (Gendelman
et al., 2015; Hu and Kesari, 2013). In addition, they are also targeted to the receptors of monocytes/macrophages, such as
the folate, CD4, mannose, and CD44 receptors, to enhance cellular uptake of the nanomedicine for macrophage-based drug
delivery in the brain via the BBB (Irvine et al., 2015). The nanomedicine follows six steps to eliminate microbes from the
nervous system and other biological systems (Hollmann et al., 2015). After entry of the nanomedicine into the nervous
system it attracts and binds to the microbes. Thereafter, it carries out the following steps: (1) it destroys the peptidoglycan
(membrane) layer of the microbe, leading to the control of microbial growth; (2) it releases toxic metal ions into the
cytosolic region of the microbe and can cause microbial death; (3) it alters the cellular ionic environment by activating the
proton efflux pumps, leading to a change in pH; (4) it enhances the generation of free radicals, especially reactive oxygen
species (ROS), leading to raised oxidative stress; (5) it damages the genetic material of the microbial organism, thus
stopping the regulation of microbial growth and replication; and (6) it reduces ATP production, thus increasing energy
demand and controlling microbial growth and proliferation (Rizzello et al., 2013; Upadya et al., 2011; Watkins et al., 2015;
Shah et al., 2015). The molecular mechanism of nanomedicine for the elimination of microbes from the nervous system is
illustrated in Fig. 6.4.

Therefore, nanomedicine can achieve therapeutic action against neuroinfection-associated neurodegenerative disease.
Based on this discussion, the approach of using nanostructured antimicrobial agents and nanomedicine can be useful in the
treatment of neuroinfectious and neurodegenerative disease.

10. TOXICOLOGICAL HAZARDS OF NANOPARTICLES

The imaging and drug delivery functions of nanoparticles have been successfully explored in pharmaceutical science. They
can even produce a potent therapeutic ratio or index up to the marginal level. Nanoparticles can act as drug carriers and can
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FIGURE 6.3 The cellular mechanism of nanomedicine in the treatment of infectious neurodegenerative disease. Microbial infection potentially alters the
function of neuronal glial cells and enhances the inflammatory reaction via proinflammatory mediators. Nanomedicines can cross the blood—brain barrier
(BBB) with the help of monocytes, macrophages, lymphocytes, and stem cells. Furthermore, they induce microbial death, regulation of glial function, and
repair of neuronal damage, leading to prevention of infection-associated neurodegeneration.
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FIGURE 6.4 The molecular mechanism of nanomedicine for the elimination of microbes from the nervous system. It has six major steps: (1) destruction
of the peptidoglycan layer, (2) release of toxic metal ions, (3) alteration of proton efflux pumps, (4) generation of free radicals, (5) damage to the genetic
material, and (6) reduction of ATP production.

reduce the toxicity of a drug. However, the toxic effect of the whole formulation (nanoparticle and drug) or the nanoparticle
itself is not described yet. Therefore, the potential usage of nanostructured nanoparticles and nanomedicines remains
questionable because of their potential toxicity, clinical efficacy, and adverse side effects (Baeza-Squiban, 2014; Krishnaraj
et al., 2016; Walters et al., 2014). And, scientific studies need to explore their complete safety and efficacy in humans.
Further, studies on their bioavailability, biotransformation, environmental toxicity, etc., are needed (Battani et al., 2014;
Walters et al., 2014). The true applications of nanoparticles for the treatment of disease require improvement in the specific
formulations, more safety and efficacy, and minimized cellular toxicity. The opinion of toxicologists is that new science,
methods, and protocols are needed with a higher safety profile for the utilization of nanoparticles and nanomedicines
(Hofmann-Amtenbrink et al., 2015).

Based on this discussion the following points must be considered for the development of nanostructured nanomaterials
and nanomedicines: (1) proper testing of nanoparticles, nanomedicines, and devices with advanced techniques; (2) study of
the pharmacokinetics (especially distribution and biotransformation) and pharmacodynamics properties of nanoparticles in
the biological system; and (3) study of the effects of nanoparticle exposure to the biological and environmental levels with
respect to degradation and toxicity (Hofmann-Amtenbrink et al., 2015; Schutz et al., 2013; Lin et al., 2015).

Toxic exposure can be overcome in the following way. The method of risk assessment for the nanomedicine and
nanodevice must be appropriate. Further, assays are performed to detect all the potential risks. The methods of assays and
techniques needed depend upon the type of nanoparticles used, whether biological or nonbiological in origin. As of this
writing, the study of nanoparticles is lacking a basic understanding of nanoparticle pharmacokinetic behavior in biological
systems, especially the distribution and biotransformation of nanoparticles at the organ and cellular levels. Because
nanoparticles are very small sized particles, they may change bodily functions, pass through the BBB, and trigger abnormal
blood coagulation pathways. The nanoparticles must be degraded without the development of harmful effects in animals,
plants, and environmental natural resources. Therefore, the presence of nanoparticles must be detectable in biological and
environmental systems at this stage. This will have major importance in detecting slowly or nondegradable nanoparticles.

11. NANOTOXICOLOGY

Nanotoxicology is a newer branch of science and it deals with the study and application of nanomaterials with regard to
toxicity in humans and the environment. Mainly nanotoxicological studies are intended to determine the extent to which
the toxic properties threaten the environment and human beings (Guadagnini et al., 2015). The types of toxic exposure of
nanoparticle are as follows: (1) consumer exposure—usage of nanoparticle-containing personal care products, cosmetics,
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sunscreen preparations; (2) occupational exposure—for workers in nanomaterial manufacturing and research; (3) envi-
ronmental exposure—the increasing concentrations of nanomaterials in groundwater and soil may produce a significant
environmental risk (Malysheva et al., 2015). Moreover, the toxicity of nanomaterials is broadly classified into two areas:
(1) biological toxicity and (2) environmental toxicity. In biological systems, the nanostructured nanoparticles enter the
body via six principle routes, i.e., oral, intravenous, dermal, subcutaneous, inhalation, and intraperitoneal. The particles
enter the systemic circulation and are distributed to the various organs of the body and may remain structurally the same or
be modified or metabolized. In cellular systems, they can cause biological toxicity by DNA damage or ROS generation.
This leads to tissue damage, inflammation, cytotoxicity, and organ failure from the deposition of nanoparticles. And it also
causes fibrosis and allergies (Fu et al., 2014; Malysheva et al., 2015). In environmental systems, nondegradable nano-
particles are ready to deposit in the groundwater, leading to production of environmental pollutants. Further, they may also
be harmful to plants and microbes. The removal of nanoparticles from the environment is another challenging task in the
management of nanotoxicity (Hussain et al., 2015; PourGashtasbi, 2015).

12. CHALLENGE TO USAGE AND MANAGEMENT OF NANOPARTICLES

Nanoparticles are already exist in nature, e.g., volcanic ash, ocean spray, and forest fire smoke; and they are highly toxic.
The existing chemical nanoparticles, e.g., carbon nanotubes, are also able to produce toxic effects (PourGashtasbi, 2015). It
is argued that natural nanoparticles are not considerable as a new phenomenon because they come from daily human
activities like mining, cooking, and combustion of materials (Gao et al., 2015). Nanoparticle studies have shown that they
have some special properties, i.e., (1) ultrasmall-sized particles have extreme mobility and higher propagation in living
organisms if not controlled, (2) they can create more toxic effects per unit compared to larger particles of the same
chemicals, (3) they can be absorbed more quickly by cells, and (4) they move more quickly, contaminating the environment
through air, soil, and water, leading to damage of plants and animals (Baalousha and Lead, 2013). Some kinds of nano-
particles are responsible for causing inflammatory reactions in the lungs, such as carbon black nanoparticles (QDs or
polymeric nanoparticles). And, they cannot be considered as a uniform group of nanoparticles because they interact and
behave in different manners depending upon several factors (Podila and Brown, 2013).

The lack of data on the potential risks of nanoparticles and nanomedicines with respect to the human body and the
environment, has raised some questions and issues. Scientific research must answer many questions to allow the utilization
of nanoparticles in human beings with an environmentally friendly approach. Such questions are as follows: (1) How do
nanoparticle pathways affect the human body? (2) How long can nanoparticles remain in the human body? (3) What are the
nanoparticles’ effects on cellular and tissue functions? (Cochran et al., 2013). The main challenges of nanoparticle usage
are the identification of toxicity-free nanoparticles, legal evaluation of the final medical products, and elimination of
particles from biological and environmental systems. Nanomedicine remains challengeable because it does not fall into the
traditional classifications of drugs or medical devices. Furthermore, the risk analyses of nanoparticles are complicated
because of the lack of data, techniques, and issues (Ilinskaya and Dobrovolskaia, 2013a,b).

The outcome of using nanomedicine for treatments must be satisfy regulatory, environmental, social, and ethical issues.
The US FDA has effective regulations for the use nanoparticles with strong technologies and scientific advances. Generally,
the FDA classifies the regulatory processes for medical products as drugs, devices, and biological or combination products.
But it lacks regulation for nanomedicine in aspects such as lack of scientific expertise and classification difficulties (Bowman
and Gatof, 2015; Leite et al., 2015a). As for the environmental aspect, the excretory materials are mainly suspended in the
air for long periods and cause respiratory disorders. The National Science Foundation and the Environmental Protection
Agency are raising issues about the potential impact of nanomaterials on the environment and the adverse effects. A social
issue is the usage of neurobiochips that stimulate the brain in humans and manipulate neuropsychological factors. Social and
ethical issues are debated regarding implantable nanodevices that closely monitor illness, privacy rights, and risk of abuse.
The prices of nanodevices would be very high, which is another social issue and one that affects the developing nations
(Leite et al., 2015a). The ethical issues concern proving that nanoparticles are nontoxic, eco-friendly, unable to be used for
terrorism purposes, and easy to remove when toxic effects are produced in the body (King, 2012; Resnik, 2012; Sechi et al.,
2014).

13. FUTURE PERSPECTIVES

The major concern of nanoparticle applications is nanostructure toxicity and it depends upon the physical characteristics of
the individual new particles. Ongoing research reports will give the answer and solve the biological and environmental
toxicity. At this stage, nanostructured nanoparticles and nanomedicine will provide the high sensitivity, specificity, low
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cost, portability, and reusability of nanoparticles. It is a great invention in the field of pharmaceutical and medical sciences.
Various technologies are being established to detect the very fine particles and scientific uncertainties surround the
outcome of nanomedicine (Bello et al., 2013; Ji et al., 2013). The best case scenario brings the success of nanoparticle
usage in the pharmaceutical and other fields. It will provide the fundamental basis to intensify the research in science and
other disciplines. On one side, data are needed for scientific evidence and the toxicological profile of the nanoparticle. On
the other side, the development of the nanoparticle process is not only a scientific task, but also requires answers to all the
issues and questions. Jurists and legal scholars have reported that scientific discoveries following standard guidelines and
providing the minimum safety standards are acceptable for protecting human health. In this point of view, nanotechnology
offers an opportunity for major integration among the different disciplines and especially between science and law.
Therefore, the nanostructured antimicrobial agent can be a future nanomedicine for neuroinfection-assisted neurodegen-
erative disorders.

14. CONCLUSIONS

Various nanomaterials have been reported for the drug delivery process with therapeutic levels in biological systems. They
have great potential to enter into microbes and release a drug. Thus, drug delivery through nanostructured systems and their
antimicrobial actions have been widely explored in preclinical as well as clinical research. The most important advantage
of nanomedicine is low side effects and delivery of an accurate dose in site- and target-specific regions. Nanomedicine
offers the possibility of preventing, diagnosing, and treating diseases and opens up a very promising area in the field of
medicine. Therefore, nanostructural medicine is a future goal in the treatment of neuroinfection-associated neurodegen-
erative disorders like HIV-associated dementia, AD, PD, ALS, and MS, including neuropathic pain.

ACKNOWLEDGMENT

The authors are thankful to all faculty members of Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur-148002,
Punjab, India, for their valuable suggestions and support in completing this chapter.

REFERENCES

Agyare, E., Kandimalla, K., 2014. Delivery of polymeric nanoparticles to target vascular diseases. J. Biomol. Res. Ther. 3.

Ahmed, F., Macarthur, L., de Bernardi, M.A., Mocchetti, 1., 2009. Retrograde and anterograde transport of HIV protein gp120 in the nervous system.
Brain Behav. Immun. 23, 355—364.

Alirezaei, M., Kiosses, W.B., Flynn, C.T., Brady, N.R., Fox, H.S., 2008. Disruption of neuronal autophagy by infected microglia results in neuro-
degeneration. PLoS One 3, €2906.

Alizadeh, A., Dyck, S.M., Karimi-Abdolrezaee, S., 2015. Myelin damage and repair in pathologic CNS: challenges and prospects. Front. Mol. Neurosci. 8.

Alkhawajah, N.M., Chapman, K.M., Moore, G.R., Oger, J., 2015. Amyotrophic lateral sclerosis presentation of a human T-lymphotropic virus type-1
myelopathy—insight into pathogenesis. APMIS 123, 815—820.

Alluri, H., Wiggins-Dohlvik, K., Davis, M.L., Huang, J.H., Tharakan, B., 2015. Blood-brain barrier dysfunction following traumatic brain injury. Metab.
Brain Dis. 30, 1093—1104.

Almeida, H., Amaral, M.H., Lobao, P., Frigerio, C., Sousa Lobo, J.M., 2015. Nanoparticles in ocular drug delivery systems for topical administration:
promises and challenges. Curr. Pharm. Des. 21, 5212—5224.

Arakha, M., Pal, S., Samantarrai, D., Panigrahi, T.K., Mallick, B.C., Pramanik, K., Mallick, B., Jha, S., 2015. Antimicrobial activity of iron oxide
nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 5.

Arenz, S., Wilson, D.N., 2016. Blast from the past: reassessing forgotten translation inhibitors, antibiotic selectivity, and resistance mechanisms to aid
drug development. Mol. Cell 61, 3—14.

Armentano, 1., Arciola, C.R., Fortunati, E., Ferrari, D., Mattioli, S., Amoroso, C.F., Rizzo, J., Kenny, J.M., Imbriani, M., Visai, L., 2014. The interaction
of bacteria with engineered nanostructured polymeric materials: a review. Sci. World J. 2014.

Ashton, J.R., West, J.L., Badea, C.T., 2015. In vivo small animal micro-CT using nanoparticle contrast agents. Front. Pharmacol. 6.

Auffinger, B., Morshed, R., Tobias, A., Cheng, Y., Ahmed, A.U., Lesniak, M.S., 2013. Drug-loaded nanoparticle systems and adult stem cells: a potential
marriage for the treatment of malignant glioma? Oncotarget 4, 378—396.

Austin, L.A., Mackey, M.A., Dreaden, E.C., El-Sayed, M.A., 2014. The optical, photothermal, and facile surface chemical properties of gold and silver
nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 88, 1391—1417.

Baalousha, M., Lead, J.R., 2013. Nanoparticle dispersity in toxicology. Nat. Nanotechnol. 8, 308—309.

Babu, A., Templeton, A.K., Munshi, A., Ramesh, R., 2014. Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of
cancer. AAPS PharmSciTech 15, 709—721.

Baetke, S.C., Lammers, T., Kiessling, F., 2015. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 88, 20150207.

Baeza-Squiban, A., 2014. Physio-pathological impacts of inhaled nanoparticles. Biol. Aujourdhui 208, 151—158.



158 Nanostructures for Antimicrobial Therapy

Basnet, P., Skalko-Basnet, N., 2013. Nanodelivery systems for improved topical antimicrobial therapy. Curr. Pharm. Des. 19, 7237—7243.

Battani, S., Pawar, H., Suresh, S., 2014. Evaluation of oral bioavailability and anticancer potential of raloxifene solid lipid nanoparticles. J. Nanosci.
Nanotechnol. 14, 5638—5645.

Belkin, M., Chao, S.H., Jonsson, M.P., Dekker, C., Aksimentiev, A., 2015. Plasmonic nanopores for trapping, controlling displacement, and sequencing
of DNA. ACS Nano 9, 10598—10611.

Bello, D., Martin, J., Santeufemio, C., Sun, Q., Lee Bunker, K., Shafer, M., Demokritou, P., 2013. Physicochemical and morphological characterisation of
nanoparticles from photocopiers: implications for environmental health. Nanotoxicology 7, 989—1003.

Benoliel, R., Eliav, E., Mannes, A.J., Caudle, R.M., Leeman, S., Iadarola, M.J., 1999. Actions of intrathecal diphtheria toxin-substance P fusion protein on
models of persistent pain. Pain 79, 243—253.

Beyth, N., Houri-Haddad, Y., Domb, A., Khan, W., Hazan, R., 2015. Alternative antimicrobial approach: nano-antimicrobial materials. Evid. Based
Complement. Altern. Med. 2015.

Bharti, C., Nagaich, U., Pal, A.K., Gulati, N., 2015. Mesoporous silica nanoparticles in target drug delivery system: a review. Int. J. Pharm. Investig. 5,
124—133.

Bian, X., Song, Z.L., Qian, Y., Gao, W., Cheng, Z.Q., Chen, L., Liang, H., Ding, D., Nie, X.K., Chen, Z., Tan, W., 2014. Fabrication of graphene-
isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci. Rep. 4.

Bily, T., Palus, M., Eyer, L., Elsterova, J., Vancova, M., Ruzek, D., 2015. Electron tomography analysis of Tick-Borne encephalitis virus infection in
human neurons. Sci. Rep. 5, 10745.

Bisht, S., Maitra, A., 2009. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1,
415—425.

Bolhassani, A., Javanzad, S., Saleh, T., Hashemi, M., Aghasadeghi, M.R., Sadat, S.M., 2014. Polymeric nanoparticles: potent vectors for vaccine delivery
targeting cancer and infectious diseases. Hum. Vaccin. Immunother. 10, 321—332.

Boraschi, D., Costantino, L., Italiani, P., 2012. Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine
(Lond.) 7, 121—131.

Borges-Walmsley, M.I., McKeegan, K.S., Walmsley, A.R., 2003. Structure and function of efflux pumps that confer resistance to drugs. Biochem. J. 376,
313—338.

Bourgade, K., Garneau, H., Giroux, G., Le Page, A.Y., Bocti, C., Dupuis, G., Frost, E.H., Fulop Jr., T., 2015. beta-Amyloid peptides display protective
activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology 16, 85—98.

Bowman, D.M., Gatof, J., 2015. Reviewing the regulatory barriers for nanomedicine: global questions and challenges. Nanomedicine (Lond.) 10,
3275—3286.

Breger, J., Delehanty, J.B., Medintz, I.L., 2015. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley
Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 131—151.

Bumb, A., Brechbiel, M.W., Choyke, P., 2010. Macromolecular and dendrimer-based magnetic resonance contrast agents. Acta Radiol. 51, 751—767.

Camara-Lemarroy, C.R., Gonzalez-Moreno, E.I., Guzman-de la garza, F.J., Fernandez-Garza, N.E., 2012. Arachidonic acid derivatives and their role in
peripheral nerve degeneration and regeneration. Sci. World J. 2012.

Carroll, R.T., Bhatia, D., Geldenhuys, W., Bhatia, R., Miladore, N., Bishayee, A., Sutariya, V., 2010. Brain-targeted delivery of tempol-loaded nano-
particles for neurological disorders. J. Drug Target. 18, 665—674.

Chan, J.M., Rhee, J.W., Drum, C.L., Bronson, R.T., Golomb, G., Langer, R., Farokhzad, O.C., 2011. In vivo prevention of arterial restenosis with
paclitaxel-encapsulated targeted lipid—polymeric nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 108, 19347—19352.

Chapagain, M.L., Nerurkar, V.R., 2010. Human polyomavirus JC (JCV) infection of human B lymphocytes: a possible mechanism for JCV transmigration
across the blood-brain barrier. J. Infect. Dis. 202, 184—191.

Chatterjee, D.K., Diagaradjane, P., Krishnan, S., 2011. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2, 1001—1014.

Chaves, AJ., Busquets, N., Valle, R., Rivas, R., Vergara-Alert, J., Dolz, R., Ramis, A., Darji, A., Majo, N., 2011. Neuropathogenesis of a highly
pathogenic avian influenza virus (H7N;) in experimentally infected chickens. Vet. Res. 42, 106.

Chen, J., Wang, F., Liu, Q., Du, J., 2014a. Antibacterial polymeric nanostructures for biomedical applications. Chem. Commun. (Camb.) 50,
14482—14493.

Chen, S., Feng, H., Sherchan, P., Klebe, D., Zhao, G., Sun, X., Zhang, J., Tang, J., Zhang, J.H., 2014b. Controversies and evolving new mechanisms in
subarachnoid hemorrhage. Prog. Neurobiol. 64—91.

Chen, W.Y., Cheng, Y.H., Hsieh, N.H., Wu, B.C., Chou, W.C., Ho, C.C., Chen, J.K., Liao, C.M., Lin, P., 2015. Physiologically based pharmacokinetic
modeling of zinc oxide nanoparticles and zinc nitrate in mice. Int. J. Nanomed. 10, 6277—6292.

Cheng, B., He, Z., Zhao, L., Fang, Y., Chen, Y., He, R., Chen, F., Song, H., Deng, Y., Zhao, X., Xiong, B., 2014a. Transparent, biocompatible
nanostructured surfaces for cancer cell capture and culture. Int. J. Nanomed. 9, 2569—2580.

Cheng, Y., Morshed, R., Auffinger, B., Tobias, A.L., Lesniak, M.S., 2014b. Multifunctional nanoparticles for brain tumor diagnosis and therapy. Adv.
Drug Deliv. Rev. 42—57.

Chhabra, R., Ruozi, B., Vilella, A., Belletti, D., Mangus, K., Pfaender, S., Sarowar, T., Boeckers, T.M., Zoli, M., Forni, F., Vandelli, M.A., Tosi, G.,
Grabrucker, A.M., 2015. Application of polymeric nanoparticles for CNS targeted zinc delivery in vivo. CNS Neurol. Disord. Drug Targets 14,
1041—1053.

Chikakiyo, H., Kunishige, M., Yoshino, H., Asano, A., Sumitomo, Y., Endo, I., Matsumoto, T., Mitsui, T., 2005. Delayed motor and sensory neuropathy
in a patient with brainstem encephalitis. J. Neurol. Sci. 234, 105—108.



Antimicrobial Nanostructures for Neurodegenerative Infections: Present and Future Perspectives Chapter | 6 159

Ciobanu, C.S., Iconaru, S.L., Gyorgy, E., Radu, M., Costache, M., Dinischiotu, A., Le Coustumer, P., Lafdi, K., Predoi, D., 2012. Biomedical properties
and preparation of iron oxide-dextran nanostructures by MAPLE technique. Chem. Cent. J. 6, 17.

Cochran, D.B., Wattamwar, P.P., Wydra, R., Hilt, J.Z., Anderson, K.W., Eitel, R.E., Dziubla, T.D., 2013. Suppressing iron oxide nanoparticle toxicity by
vascular targeted antioxidant polymer nanoparticles. Biomaterials 34, 9615—9622.

Coller, K.E., Smith, G.A., 2008. Two viral kinases are required for sustained long distance axon transport of a neuroinvasive herpesvirus. Traffic 9,
1458—1470.

Combes, V., Guillemin, G.J., Chan-Ling, T., Hunt, N.H., Grau, G.E., 2012. The crossroads of neuroinflammation in infectious diseases: endothelial cells
and astrocytes. Trends Parasitol. 28, 311—319.

Crick, C.R., Sze, J.Y.Y., Rosillo-Lopez, M., Salzmann, C.G., Edel, J.B., 2015. Selectively sized graphene-based nanopores for in situ single molecule
sensing. ACS Appl. Mater. Interfaces 7, 18188—18194.

Cui, F,, Liu, Q., Li, R.T., Shen, J., Wu, P., Yu, L.X., Hu, W., Wu, F., Jiang, C.P., Yue, G., Qian, X.P., Jiang, X.Q., Liu, B.R., 2014. Enhancement of
radiotherapy efficacy by miR-200c-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer cells. Int. J. Nanomed. 9, 2345—2358.

Dando, S.J., Mackay-Sim, A., Norton, R., Currie, B.J., St John, J.A., Ekberg, J.A., Batzloff, M., Ulett, G.C., Beacham, .R., 2014. Pathogens penetrating
the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin. Microbiol. Rev. 27, 691—726.

De Chiara, G., Marcocci, M.E., Sgarbanti, R., Civitelli, L., Ripoli, C., Piacentini, R., Garaci, E., Grassi, C., Palamara, A.T., 2012. Infectious agents and
neurodegeneration. Mol. Neurobiol. 46, 614—638.

Deauvieau, F., Fenis, A., Dalencon, F., Burdin, N., Vivier, E., Kerdiles, Y., 2016. Lessons from NK cell deficiencies in the mouse. Curr. Top. Microbiol.
Immunol. 395, 173—190.

Del Grosso, E., Dallaire, A.M., Vallee-Belisle, A., Ricci, F., 2015. Enzyme-operated DNA-based nanodevices. Nano Lett. 15, 8407—8411.

DeVaughn, S., Muller-Oehring, E.M., Markey, B., Bronte-Stewart, H.M., Schulte, T., 2015. Aging with HIV-1 infection: motor functions, cognition, and
attention — a comparison with Parkinson’s disease. Neuropsychol. Rev. 25, 424—438.

Di Marco, L.Y., Venneri, A., Farkas, E., Evans, P.C., Marzo, A., Frangi, A.F., 2015. Vascular dysfunction in the pathogenesis of Alzheimer’s disease — a
review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol. Dis. 82, 593—606.

Dorfman, K.D., King, S.B., Olson, D.W., Thomas, J.D.P., Tree, D.R., 2013. Beyond gel electrophoresis: microfluidic separations, fluorescence burst
analysis, and DNA stretching. Chem. Rev. 113, 2584—2667.

Durén, N., Marcato, P.D., Conti, R.D., Alves, O.L., Costa, F., Brocchi, M., 2010. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity
and possible mechanisms of action. J. Braz. Chem. Soc. 21, 949—959.

Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M., Hanifehpour, Y., Joo, S.W., 2014. Carbon nanotubes:
properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9, 393.

El-Sayed, A., Harashima, H., 2013. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther. 21,
1118—1130.

Eliasof, S., Lazarus, D., Peters, C.G., Case, R.I., Cole, R.O., Hwang, J., Schluep, T., Chao, J., Lin, J., Yen, Y., Han, H., Wiley, D.T., Zuckerman, J.E.,
Davis, M.E., 2013. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc. Natl. Acad. Sci.
U.S.A. 110, 15127—15132.

Elsabahy, M., Wooley, K.L., 2012. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545—2561.

Etheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., McCullough, J., 2013. The big picture on nanomedicine: the state of
investigational and approved nanomedicine products. Nanomedicine 9, 1—14.

Fay, F., Sanchez-Gaytan, B.L., Cormode, D.P., Skajaa, T., Fisher, E.A., Fayad, Z.A., Mulder, W.J.M., 2013. Nanocrystal core lipoprotein biomimetics for
imaging of lipoproteins and associated diseases. Curr. Cardiovasc. Imaging Rep. 6, 45—54.

Feldman, E.R., Kara, M., Coleman, C.B., Grau, K.R., Oko, L.M., Krueger, B.J., Renne, R., van Dyk, L.F., Tibbetts, S.A., 2014. Virus-encoded
microRNAs facilitate gammaherpesvirus latency and pathogenesis in vivo. MBio 5, e00981—14.

Feng, L., Mumper, R.J., 2013. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett. 334, 157—175.

Fiandaca, M.S., Berger, M.S., Bankiewicz, K.S., 2011. The use of convection-enhanced delivery with liposomal toxins in neurooncology. Toxins (Basel)
3, 369—397.

Fine, D., Grattoni, A., Goodall, R., Bansal, S.S., Chiappini, C., Hosali, S., Van De Ven, A.L., Srinivasan, S., Liu, X., Godin, B., Brousseau, L.,
Yazdi, I.K., Fernandez-Moure, J., Tasciotti, E., Wu, H.J., Hu, Y., Klemm, S., Ferrari, M., 2013. Silicon micro- and nanofabrication for medicine. Adv.
Healthc. Mater. 2, 632—666.

Fonseca-Santos, B., Gremiao, M.P., Chorilli, M., 2015. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J.
Nanomed. 10, 4981—5003.

Freeman, B.D., Machado, F.S., Tanowitz, H.B., Desruisseaux, M.S., 2014. Endothelin-1 and its role in the pathogenesis of infectious diseases. Life Sci.
118, 110—119.

Freese, C., Schreiner, D., Anspach, L., Bantz, C., Maskos, M., Unger, R.E., Kirkpatrick, C.J., 2014. In vitro investigation of silica nanoparticle uptake into
human endothelial cells under physiological cyclic stretch. Part Fibre Toxicol. 11.

Fu, J., Rong, G., Deng, Y., 2012. Mammalian cell cytotoxicity and genotoxicity of metallic nanoparticles. Adv. Sci. Lett. 5, 294—298.

Fu, P.P., Xia, Q., Hwang, H.M., Ray, P.C., Yu, H., 2014. Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22,
64—75.

Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, S., Galdiero, M., 2013. Antiviral activity of mycosynthesized
silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomed. 8, 4303—4314.



160 Nanostructures for Antimicrobial Therapy

Gannon, C.J., Patra, C.R., Bhattacharya, R., Mukherjee, P., Curley, S.A., 2008. Intracellular gold nanoparticles enhance non-invasive radiofrequency
thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 6, 2.

Gao, W., Thamphiwatana, S., Angsantikul, P., Zhang, L., 2014. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol. 6, 532—547.

Gao, Y., Yang, T., Jin, J., 2015. Nanoparticle pollution and associated increasing potential risks on environment and human health: a case study of China.
Environ. Sci. Pollut. Res. Int. 22.

Garg, T., Rath, G., Goyal, A.K., 2015a. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif.
Cells Nanomed. Biotechnol. 1-5.

Garg, T., Rath, G., Murthy, R.R., Gupta, U.D., Vatsala, P.G., Goyal, A.K., 2015b. Current nanotechnological approaches for an effective delivery of
bioactive drug molecules to overcome drug resistance tuberculosis. Curr. Pharm. Des. 21, 3076—3089.

Ge, Y., Schimel, J.P., Holden, P.A., 2011. Evidence for negative effects of TiO, and ZnO nanoparticles on soil bacterial communities. Environ. Sci.
Technol. 45, 1659—1664.

Gendelman, H.E., Anantharam, V., Bronich, T., Ghaisas, S., Jin, H., Kanthasamy, A.G., Liu, X., Mcmillan, J., Mosley, R.L., Narasimhan, B.,
Mallapragada, S.K., 2015. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine 11, 751—767.

Gomes, M.J., Neves, J., Sarmento, B., 2014. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous
system. Int. J. Nanomed. 9, 1757—1769.

Goncharenko, K., Eftekharpour, E., Velumian, A.A., Carlen, P.L., Fehlings, M.G., 2014. Changes in gap junction expression and function following
ischemic injury of spinal cord white matter. J. Neurophysiol. 112, 2067—2075.

Griffin, J., Delgado-Rivera, R., Meiners, S., Uhrich, K.E., 2011. Salicylic acid-derived poly(anhydride-ester) electrospun fibers designed for regenerating
the peripheral nervous system. J. Biomed. Mater. Res. A 97, 230—242.

Guadagnini, R., Moreau, K., Hussain, S., Marano, F., Boland, S., 2015. Toxicity evaluation of engineered nanoparticles for medical applications using
pulmonary epithelial cells. Nanotoxicology 1 (Suppl. 9), 25—32.

Guedon, J.M., Yee, M.B., Zhang, M., Harvey, S.A., Goins, W.F., Kinchington, P.R., 2015. Neuronal changes induced by Varicella Zoster Virus in a rat
model of postherpetic neuralgia. Virology 482, 167—180.

Gupta, N., Hatoum, H., Dy, G.K., 2014. First line treatment of advanced non-small-cell lung cancer — specific focus on albumin bound paclitaxel. Int. J.
Nanomed. 9, 209—221.

Haque, F., Li, J., Wu, H.C., Liang, X.J., Guo, P., 2013. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of
DNA. Nano Today 8, 56—74.

He, H., Pham-Huy, L.A., Dramou, P., Xiao, D., Zuo, P., Pham-Huy, C., 2013. Carbon nanotubes: applications in pharmacy and medicine. Biomed. Res.
Int. 2013.

Heffern, M.C., Matosziuk, L.M., Meade, T.J., 2014. Lanthanide probes for bioresponsive imaging. Chem. Rev. 114, 4496—4539.

Helle, M., Cassette, E., Bezdetnaya, L., Pons, T., Leroux, A., Plénat, F., Guillemin, F., Dubertret, B., Marchal, F., 2012. Visualisation of sentinel lymph
node with indium-based near infrared emitting quantum dots in a murine metastatic breast cancer model. PLoS One 7.

Herd, H., Daum, N., Jones, A.T., Huwer, H., Ghandehari, H., Lehr, C.M., 2013. Nanoparticle geometry and surface orientation influences mode of cellular
uptake. ACS Nano 7.

Hofmann-Amtenbrink, M., Grainger, D.W., Hofmann, H., 2015. Nanoparticles in medicine: current challenges facing inorganic nanoparticle toxicity
assessments and standardizations. Nanomedicine 11, 1689—1694.

Hollanda, L.M., Cury, G.C., Pereira, R.F., Ferreira, G.A., Sousa, A., Sousa, E.M., Lancellotti, M., 2011. Effect of mesoporous silica under Neisseria
meningitidis transformation process: environmental effects under meningococci transformation. J. Nanobiotechnol. 9, 28.

Hollmann, A., Goncalves, S., Augusto, M.T., Castanho, M.A., Lee, B., Santos, N.C., 2015. Effects of singlet oxygen generated by a broad-spectrum viral
fusion inhibitor on membrane nanoarchitecture. Nanomedicine 11, 1163—1167.

Hong, C.A., Nam, Y.S., 2014. Functional nanostructures for effective delivery of small interfering RNA therapeutics. Theranostics 4, 1211—1232.

Hong, B.J., Compton, O.C., An, Z., Eryzazici, 1., Nguyen, S.T., 2012. Successful stabilization of graphene oxide in electrolyte solutions: enhancement of
bio-functionalization and cellular uptake. ACS Nano 6, 63—73.

Hu, J., Kesari, S., 2013. Strategies for overcoming the blood-brain barrier for the treatment of brain metastases. CNS Oncol. 2, 87—98.

Hu, C.M,, Aryal, S., Zhang, L., 2010. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 1, 323—334.

Huh, A.J., Kwon, Y.J., 2011. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era.
J. Control Release 156, 128—145.

Hussain, S.M., Warheit, D.B., Ng, S.P., Comfort, K.K., Grabinski, C.M., Braydich-Stolle, L.K., 2015. At the crossroads of nanotoxicology in vitro: past
achievements and current challenges. Toxicol. Sci. 147, 5—16.

Ilinskaya, A.N., Dobrovolskaia, M.A., 2013a. Nanoparticles and the blood coagulation system. Part I: benefits of nanotechnology. Nanomedicine (Lond.)
8, 773—784.

Ilinskaya, A.N., Dobrovolskaia, M.A., 2013b. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine (Lond.) 8,
969—981.

Inoue, T., Shimizu, H., Fujimura, M., Sato, K., Endo, H., Niizuma, K., Sakata, H., Tominaga, T., 2015. Risk factors for meningitis after craniotomy in
patients with subarachnoid hemorrhage due to anterior circulation aneurysms rupture. Clin. Neurol. Neurosurg. 139, 302—306.

Irvine, D.J., Hanson, M.C., Rakhra, K., Tokatlian, T., 2015. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115, 11109—11146.

Jain, K.K., 2005. The role of nanobiotechnology in drug discovery. Drug Discov. Today 10, 1435—1442.



Antimicrobial Nanostructures for Neurodegenerative Infections: Present and Future Perspectives Chapter | 6 161

Jain, T., Guerrero, R.J.S., Aguilar, C.A., Karnik, R., 2013. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended
membranes. Anal. Chem. 85, 3871—3878.

Ji, J.H., Woo, D., Lee, S.B., Kim, T., Kim, D., Kim, J.H., Bae, G.N., 2013. Detection and characterization of nanomaterials released in low concentrations
during multi-walled carbon nanotube spraying process in a cleanroom. Inhal. Toxicol. 25, 759—765.

Jo, Y.S., Han, S.D., Choi, J.Y., Kim, L.H., Kim, Y.D., Na, S.J., 2013. A case of acute motor and sensory axonal neuropathy following hepatitis a infection.
J. Korean Med. Sci. 28, 1839—1841.

Jones, C.F., Campbell, R.A., Franks, Z., Gibson, C.C., Thiagarajan, G., Vieira-De-Abreu, A., Sukavaneshvar, S., Mohammad, S.F., Li, D.Y.,
Ghandehari, H., Weyrich, A.S., Brooks, B.D., Grainger, D.W., 2012. Cationic PAMAM dendrimers disrupt key platelet functions. Mol. Pharm. 9,
1599—1611.

Jong, A., Huang, S.H., 2005. Blood-brain barrier drug discovery for central nervous system infections. Curr. Drug Targets Infect. Disord. 5, 65—72.

Jungner, M., Siemund, R., Venturoli, D., Reinstrup, P., Schalen, W., Bentzer, P., 2016. Blood-brain barrier permeability following traumatic brain injury.
Minerva Anestesiol. 82, 525—533.

Kamaly, N., He, J.C., Ausiello, D.A., Farokhzad, O.C., 2016. Nanomedicines for renal disease: current status and future applications. Nat. Rev. Nephrol.
12, 738—753.

Kapoor, S., 2013. Deferoxamine: emerging, new neuro-protective benefits. Neurol. Sci. 34, 2069—2070.

Kaur, I.P., Kakkar, V., Deol, P.K., Yadav, M., Singh, M., Sharma, I., 2014. Issues and concerns in nanotech product development and its commer-
cialization. J. Control Release 193, 51—62.

Kettiger, H., Schipanski, A., Wick, P., Huwyler, J., 2013. Engineered nanomaterial uptake and tissue distribution: from cell to organism. Int. J. Nanomed.
8, 3255—3269.

Khajeh, M., Laurent, S., Dastafkan, K., 2013. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem.
Rev. 113, 7728—7768.

Khajuria, D.K., Razdan, R., Mahapatra, D.R., 2014. Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite
nanoparticle based formulation for treatment of osteoporosis in animal model. Eur. J. Pharm. Sci. 66C, 173—183.

Khan, I., Khan, M., Umar, M.N., Oh, D.H., 2015. Nanobiotechnology and its applications in drug delivery system: a review. IET Nanobiotechnol. 9,
396—400.

Khanbabaie, R., Jahanshahi, M., 2012. Revolutionary impact of nanodrug delivery on neuroscience. Curr. Neuropharmacol. 10, 370—392.

Kiessling, F., Mertens, M.E., Grimm, J., Lammers, T., 2014. Nanoparticles for imaging: top or flop? Radiology 273, 10—28.

King, N.M., 2012. Nanomedicine first-in-human research: challenges for informed consent. J. Law Med. Ethics 40, 823—830.

Kitagawa, T., Kosuge, H., Uchida, M., Dua, M.M., Iida, Y., Dalman, R.L., Douglas, T., McConnell, M.V., 2012. RGD-conjugated human ferritin
nanoparticles for imaging vascular inflammation and angiogenesis in experimental carotid and aortic disease. Mol. Imaging Biol. 14, 315—324.

Kokotis, P., Schmelz, M., Papadimas, G.K., Skopelitis, E.E., Aroni, K., Kordossis, T., Karandreas, N., 2013. Polyneuropathy induced by HIV disease and
antiretroviral therapy. Clin. Neurophysiol. 124, 176—182.

Kompella, U.B., Amrite, A.C., Ravi, R.P., Durazo, S.A., 2013. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog. Retin.
Eye Res. 36, 172—198.

Koyuncu, O.0., Hogue, 1.B., Enquist, L.W., 2013. Virus infections in the nervous system. Cell Host Microbe 13, 379—393.

Kraft, J.C., Freeling, J.P., Wang, Z., Ho, R.J.Y., 2014. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery
systems. J. Pharm. Sci. 103, 29—52.

Kreuter, J., 2013. Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J. Microencapsul. 30, 49—54.

Krishnaraj, C., Harper, S.L., Yun, S.I., 2016. In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio
rerio). J. Hazard Mater. 301, 480—491.

Kruth, H.S., 2011. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native LDL particles. Curr. Opin.
Lipidol. 22, 386—393.

Ku, M.J., Dossin, F.M., Choi, Y., Moraes, C.B., Ryu, J., Song, R., Freitas-Junior, L.H., 2011. Quantum dots: a new tool for anti-malarial drug assays.
Malar. J. 10, 118.

Kumar, G., Sharma, S., Shafiq, N., Pandhi, P., Khuller, G.K., Malhotra, S., 2011. Pharmacokinetics and tissue distribution studies of orally administered
nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv. 18,
65—73.

Kurkowska-Jastrzebska, 1., Swiatkiewicz, M., Zaremba, M., Cudna, A., Piechal, A., Pyrzanowska, J., Widy-Tyszkiewicz, E., Czlonkowska, A., 2013.
Neurodegeneration and inflammation in hippocampus in experimental autoimmune encephalomyelitis induced in rats by one—time administration of
encephalitogenic T cells. Neuroscience 248, 690—698.

Lanza, G., Winter, P., Caruthers, S., Hughes, M., Hu, G., Schmieder, A., Wickline, S., 2010. Theragnostics for tumor and plaque angiogenesis with
perfluorocarbon nanoemulsions. Angiogenesis 13, 189—202.

Larimer, C., Islam, M.S., Ojha, A., Nettleship, 1., 2014. Mutation of environmental mycobacteria to resist silver nanoparticles also confers resistance to a
common antibiotic. Biometals 27, 695—702.

Lee, C.H., Cheng, S.H., Huang, L.P., Souris, J.S., Yang, C.S., Mou, C.Y., Lo, L.W., 2010. Intracellular pH-responsive mesoporous silica nanoparticles for
the controlled release of anticancer chemotherapeutics. Angew. Chem. Int. Ed. Engl. 49, 8214—8219.

Lee, N.-R., Go, T.-H., Lee, S.-M., Jeong, S.-Y., Park, G.-T., Hong, C.-O., Son, H.-J., 2014. In vitro evaluation of new functional properties of poly-y-
glutamic acid produced by Bacillus subtilis D7. Saudi J. Biol. Sci. 21, 153—158.



162 Nanostructures for Antimicrobial Therapy

Lee, W., Moon, M., Kim, H.G., Lee, T.H., Oh, M.S., 2015. Heat stress-induced memory impairment is associated with neuroinflammation in mice.
J. Neuroinflammation 12.

Leid, J.G., Ditto, AJ., Knapp, A., Shah, P.N., Wright, B.D., Blust, R., Christensen, L., Clemons, C.B., Wilber, J.P., Young, G.W., Kang, A.G.,
Panzner, M.J., Cannon, C.L., Yun, Y.H., Youngs, W.J., Seckinger, N.M., Cope, E.K., 2012. In vitro antimicrobial studies of silver carbene com-
plexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J. Antimicrob. Chemother. 67, 138—148.

Leite, F.L., Hausen, M., Oliveira, G.S., Brum, D.G., Oliveira Jr., O.N., 2015a. Nanoneurobiophysics: new challenges for diagnosis and therapy of
neurologic disorders. Nanomedicine (Lond.) 10, 3417—3419.

Leite, P.E., Pereira, M.R., Granjeiro, J.M., 2015b. Hazard effects of nanoparticles in central nervous system: searching for biocompatible nanomaterials for
drug delivery. Toxicol. In Vitro 29, 1653—1660.

Li, F., Wang, Y., Yu, L., Cao, S., Wang, K., Yuan, J., Wang, C., Cui, M., Fu, Z.F., 2015. Viral infection of the central nervous system and neuro-
inflammation precede blood-brain barrier disruption during Japanese Encephalitis virus infection. J. Virol. 89, 5602—5614.

Liao, J., Qi, T., Chu, B., Peng, J., Luo, F., Qian, Z., 2014. Multifunctional nanostructured materials for multimodal cancer imaging and therapy.
J. Nanosci. Nanotechnol. 14, 175—189.

Lin, X., Xie, J., Niu, G., Zhang, F., Gao, H., Yang, M., Quan, Q., Aronova, M.A., Zhang, G., Lee, S., Leapman, R., Chen, X., 2011. Chimeric ferritin
nanocages for multiple function loading and multimodal imaging. Nano Lett. 11, 814—819.

Lin, Z., Monteiro-Riviere, N.A., Riviere, J.E., 2015. Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7,
189—-217.

Liu, L., Hitchens, T.K., Ye, Q., Wu, Y., Barbe, B., Prior, D.E., Li, W.F., Yeh, F.C., Foley, L.M., Bain, D.J., Ho, C., 2013a. Decreased reticuloendothelial
system clearance and increased blood half-life and immune cell labeling for nano- and micron-sized superparamagnetic iron-oxide particles upon pre-
treatment with Intralipid. Biochim. Biophys. Acta 1830, 3447—3453.

Liu, L., Zhu, L., Ni, Z., Chen, Y., 2013b. Detecting a single molecule using a micropore-nanopore hybrid chip. Nanoscale Res. Lett. 8, 498.

Liu, N., Mu, Y., Chen, Y., Sun, H., Han, S., Wang, M., Wang, H., Li, Y., Xu, Q., Huang, P., Sun, Z., 2013c. Degradation of aqueous synthesized CdTe/
ZnS quantum dots in mice: differential blood kinetics and biodistribution of cadmium and tellurium. Part Fibre Toxicol. 10, 37.

Liu, S., Chen, G., Ohulchanskyy, T.Y., Swihart, M.T., Prasad, P.N., 2013d. Facile synthesis and potential bioimaging applications of hybrid upconverting
and plasmonic NaGdFy: Yb>", Er’ */silica/gold nanoparticles. Theranostics 3, 275—281.

Liu, J., Wang, Y., Akamatsu, Y., Lee, C.C., Stetler, R.A., Lawton, M.T., Yang, G.Y., 2014a. Vascular remodeling after ischemic stroke: mechanisms and
therapeutic potentials. Prog. Neurobiol. 115, 138—156.

Liu, Y., Caffry, I., Wu, J., Geng, S.B., Jain, T., Sun, T., Reid, F., Cao, Y., Estep, P., Yu, Y., Vasquez, M., Tessier, P.M., Xu, Y., 2014b. High-throughput
screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. MAbs 6, 483—492.

Liu, Z., Okeke, C.I., Zhang, L., Zhao, H., Li, J., Aggrey, M.O., Li, N., Guo, X., Pang, X., Fan, L., Guo, L., 2014c. Mixed polyethylene glycol-modified
breviscapine-loaded solid lipid nanoparticles for improved brain bioavailability: preparation, characterization, and in vivo cerebral microdialysis
evaluation in adult Sprague Dawley rats. AAPS PharmSciTech 15, 483—496.

Loane, D.J., Kumar, A., Stoica, B.A., Cabatbat, R., Faden, A.L., 2014. Progressive neurodegeneration after experimental brain trauma: association with
chronic microglial activation. J. Neuropathol. Exp. Neurol. 73, 14—29.

Logigian, E.L., Steere, A.C., 1992. Clinical and electrophysiologic findings in chronic neuropathy of Lyme disease. Neurology 42, 303—311.

Lohcharoenkal, W., Wang, L., Chen, Y.C., Rojanasakul, Y., 2014. Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed. Res. Int.
2014.

Lu, X., Zhu, T., Chen, C., Liu, Y., 2014. Right or left: the role of nanoparticles in pulmonary diseases. Int. J. Mol. Sci. 15, 17577—17600.

Lv, LZ., Tong, C.Q., Yu, J., Han, M., Gao, J.Q., 2013. Mechanism of enhanced oral absorption of hydrophilic drug incorporated in hydrophobic
nanoparticles. Int. J. Nanomed. 8, 2709—2717.

Madaan, K., Kumar, S., Poonia, N., Lather, V., Pandita, D., 2014. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity
issues. J. Pharm. Bioallied Sci. 6, 139—150.

Majd, S., Yusko, E.C., Billeh, Y.N., Macrae, M.X., Yang, J., Mayer, M., 2010. Applications of biological pores in nanomedicine, sensing, and nano-
electronics. Curr. Opin. Biotechnol. 21, 439—476.

Malysheva, A., Lombi, E., Voelcker, N.H., 2015. Bridging the divide between human and environmental nanotoxicology. Nat. Nanotechnol. 10,
835—844.

Mansour, H.M., Rhee, Y.S., Wu, X., 2009. Nanomedicine in pulmonary delivery. Int. J. Nanomed. 4, 299—319.

Marin, E., Bricefio, M.1., Caballero-George, C., 2013. Critical evaluation of biodegradable polymers used in nanodrugs. Int. J. Nanomed. 8, 3071—3091.

Martins, S.M., Sarmento, B., Nunes, C., Lucio, M., Reis, S., Ferreira, D.C., 2013. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in
rat after intravenous administration. Eur. J. Pharm. Biopharm. 85, 488—502.

Masserini, M., 2013. Nanoparticles for brain drug delivery. ISRN Biochem. 2013, 238428.

Matea, C.T., Mocan, T., Tabaran, F., Iancu, C., Mocan, L.C., 2015. Rational design of gold nanocarrier for the delivery of JAG-1 peptide.
J. Nanobiotechnol. 13, 41.

Matilla-Duefias, A., Ashizawa, T., Brice, A., Magri, S., Mcfarland, K.N., Pandolfo, M., Pulst, S.M., Riess, O., Rubinsztein, D.C., Schmidt, J., Schmidt, T.,
Scoles, D.R., Stevanin, G., Taroni, F., Underwood, B.R., Sdnchez, 1., 2014. Consensus paper: pathological mechanisms underlying neurodegeneration
in Spinocerebellar Ataxias. Cerebellum 13, 269—302.

Matsumura, Y., 2014. The drug discovery by nanomedicine and its clinical experience. Jpn. J. Clin. Oncol. 44, 515—525.



Antimicrobial Nanostructures for Neurodegenerative Infections: Present and Future Perspectives Chapter | 6 163

McMahon, K.M., Foit, L., Angeloni, N.L., Giles, F.J., Gordon, L.I., Thaxton, C.S., 2015. Synthetic high-density lipoprotein-like nanoparticles as cancer
therapy. Cancer Treat. Res. 166, 129—150.

Mieszawska, A.J., Mulder, W.J.M., Fayad, Z.A., Cormode, D.P., 2013. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol.
Pharm. 10, 831—847.

Mishra, V., Shuai, B., Kodali, M., Shetty, G.A., Hattiangady, B., Rao, X., Shetty, A.K., 2015. Resveratrol treatment after status epilepticus restrains
neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci. Rep. 5, 17807.

Monopoli, M.P., Aberg, C., Salvati, A., Dawson, K.A., 2012. Biomolecular coronas provide the biological identity of nanosized materials. Nat.
Nanotechnol. 7, 779—786.

Monteiro, N., Martins, A., Reis, R.L., Neves, N.M., 2014. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface 11.

Mu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A., Yan, B., 2014. Chemical basis of interactions between engineered nanoparticles and
biological systems. Chem. Rev. 114, 7740—7781.

Mukherjee, B., 2013. Nanosize drug delivery system. Curr. Pharm. Biotechnol. 14, 1221.

Mulvaney, P., 2015. Nanoscience vs nanotechnology—defining the field. ACS Nano 9, 2215—2217.

Muneshige, H., Toda, K., Kimura, H., Asou, T., 2003. Does a viral infection cause complex regional pain syndrome? Acupunct. Electrother. Res. 28,
183—192.

Najafzadeh, H., Ghorbanpour, M., Hekmati-Moghaddam, S.H., Karimiyan, A., 2015. Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and
copper oxide nanoparticles against Candida albicans. Zahedan J. Res. Med. Sci. 17.

Nejadmoghaddam, M.R., Chamankhah, M., Zarei, S., Zarnani, A.H., 2011. Profiling and quantitative evaluation of three nickel-coated magnetic matrices
for purification of recombinant proteins: helpful hints for the optimized nanomagnetisable matrix preparation. J. Nanobiotechnol. 9, 31.

Nishimura, A., Hayakawa, T., Yamamoto, Y., Hamori, M., Tabata, K., Seto, K., Shibata, N., 2012. Controlled release of insulin from self-assembling
nanofiber hydrogel, PuraMatrix™: application for the subcutaneous injection in rats. Eur. J. Pharm. Sci. 45, 1—7.

Nitta, S.K., Numata, K., 2013. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 14, 1629—1654.

Nowacek, A., Gendelman, H.E., 2009. NanoART, neuroAIDS and CNS drug delivery. Nanomedicine (Lond.) 4, 557—574.

Oh, N., Park, J.H., 2014. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 9, 51—63.

Olivieri, N.F., Buncic, J.R., Chew, E., Gallant, T., Harrison, R.V., Keenan, N., Logan, W., Mitchell, D., Ricci, G., Skarf, B., 1986. Visual and auditory
neurotoxicity in patients receiving subcutaneous deferoxamine infusions. N. Engl. J. Med. 314, 869—873.

Omwoyo, W.N., Ogutu, B., Oloo, F., Swai, H., Kalombo, L., Melariri, P., Mahanga, G.M., Gathirwa, J.W., 2014. Preparation, characterization, and
optimization of primaquine-loaded solid lipid nanoparticles. Int. J. Nanomed. 9, 3865—3874.

Ong, W.Y., Shalini, S.M., Costantino, L., 2014. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders. Curr. Med. Chem.
21, 4247—4256.

Palekar, R.U., Vemuri, C., Marsh, J.N., Arif, B., Wickline, S.A., 2016. Antithrombin nanoparticles inhibit stent thrombosis in ex vivo static and flow
models. J. Vasc. Surg. 64, 1459—1467.

Paliwal, R., Babu, R.J., Palakurthi, S., 2014. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15, 1527—1534.

Pandey, R., Zahoor, A., Sharma, S., Khuller, G.K., 2003. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against
murine tuberculosis. Tuberculosis (Edinb.) 83, 373—378.

Parboosing, R., Maguire, G.E.M., Govender, P., Kruger, H.G., 2012. Nanotechnology and the treatment of HIV infection. Viruses 4, 488—520.

Parida, S.K., Axelsson-Robertson, R., Rao, M.V, Singh, N., Master, L., Lutckii, A., Keshavjee, S., Andersson, J., Zumla, A., Maeurer, M., 2015. Totally
drug-resistant tuberculosis and adjunct therapies. J. Intern. Med. 277, 388—405.

Park, H.J., Min, J., Ahn, J.M., Cho, S.J., Ahn, J.Y., Kim, Y.H., 2015. Effect of pH on the formation of lysosome-alginate beads for antimicrobial activity.
J. Microbiol. Biotechnol. 25, 234—237.

Patel, A., Patel, M., Yang, X., Mitra, A.K., 2014. Recent advances in protein and peptide drug delivery: a special emphasis on polymeric nanoparticles.
Protein Pept. Lett. 21, 1102—1120.

Patra, C.R., Bhattacharya, R., Mukhopadhyay, D., Mukherjee, P., 2010. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv.
Drug Deliv. Rev. 62, 346—361.

Pelgrift, R.Y., Friedman, A.J., 2013. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65, 1803—1815.

Perreault, F., Pedroso Melegari, S., Henning da Costa, C., de Oliveira Franco Rossetto, A.L., Popovic, R., Gerson Matias, W., 2012. Genotoxic effects of
copper oxide nanoparticles in Neuro 2A cell cultures. Sci. Total Environ. 441, 117—124.

Pigott, D.M., Howes, R.E., Wiebe, A., Battle, K.E., Golding, N., Gething, P.W., Dowell, S.F., Farag, T.H., Garcia, A.J., Kimball, A.M., Krause, L.K.,
Smith, C.H., Brooker, S.J., Kyu, H.H., Vos, T., Murray, C.J., Moyes, C.L., Hay, S.I., 2015. Prioritising infectious disease mapping. PLoS Negl. Trop.
Dis. 9, e0003756.

Podila, R., Brown, J.M., 2013. Toxicity of engineered nanomaterials: a physicochemical perspective. J. Biochem. Mol. Toxicol. 27, 50—55.

PourGashtasbi, G., 2015. Nanotoxicology and challenges of translation. Nanomedicine (Lond.) 10, 3121—3129.

Premnath, P., Tavangar, A., Tan, B., Venkatakrishnan, K., 2015. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive
patterns. Exp. Cell Res. 337, 44—52.

Probst, C.E., Zrazhevskiy, P., Bagalkot, V., Gao, X., 2013. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv.
Rev. 65, 703—718.

Rakesh, M., Divya, T., Vishal, T., Shalini, K., 2015. Applications of nanotechnology. J. Nanomedi. Biotherapeutic Discov. 5, 1.



164 Nanostructures for Antimicrobial Therapy

Rall, G.F., Mucke, L., Oldstone, M.B., 1995. Consequences of cytotoxic T lymphocyte interaction with major histocompatibility complex class I-
expressing neurons in vivo. J. Exp. Med. 182, 1201—1212.

Ramesh, G., Maclean, A.G., Philipp, M.T., 2013. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic
pain. Mediat. Inflamm. 2013.

Ramos-Cabrer, P., Campos, F., 2013. Liposomes and nanotechnology in drug development: focus on neurological targets. Int. J. Nanomed. 8, 951—960.

Raoof, M., Curley, S.A., 2011. Non-invasive radiofrequency-induced targeted hyperthermia for the treatment of hepatocellular carcinoma. Int. J. Hepatol.
2011.

Rattanapinyopituk, K., Shimada, A., Morita, T., Sakurai, M., Asano, A., Hasegawa, T., Inoue, K., Takano, H., 2014. Demonstration of the clathrin- and
caveolin-mediated endocytosis at the maternal—fetal barrier in mouse placenta after intravenous administration of gold nanoparticles. J. Vet. Med. Sci.
76, 377—387.

Ray, B., Bisht, S., Maitra, A., Lahiri, D.K., 2011. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin
(NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J. Alzheimers Dis. 23, 61—77.

Raymond, A.D., Diaz, P., Chevelon, S., Agudelo, M., Yndart-Arias, A., Ding, H., Kaushik, A., Jayant, R.D., Nikkhah-Moshaie, R., Roy, U., Pilakka-
Kanthikeel, S., Nair, M.P., 2015. Microglia-derived HIV Nef+ exosome impairment of the blood-brain barrier is treatable by nanomedicine-
based delivery of Nef peptides. J. Neurovirol. 22.

Reis, F.J., Lopes, D., Rodrigues, J., Gosling, A.P., Gomes, M.K., 2014. Psychological distress and quality of life in leprosy patients with neuropathic pain.
Lepr. Rev. 85, 186—193.

Resnik, D.B., 2012. Responsible conduct in nanomedicine research: environmental concerns beyond the common rule. J. Law Med. Ethics 40, 848—855.

Richie, M.B., Josephson, S.A., 2015. A practical approach to meningitis and encephalitis. Semin. Neurol. 35, 611—620.

Rizzello, L., Cingolani, R., Pompa, P.P., 2013. Nanotechnology tools for antibacterial materials. Nanomedicine (Lond.) 8, 807—821.

Roe, K., Orillo, B., Verma, S., 2014. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte
adhesion and modulate permeability of the in vitro blood-brain barrier model. PLoS One 9, €102598.

Rothman, R.E., Hsieh, Y.H., Yang, S., 2006. Communicable respiratory threats in the ED: tuberculosis, influenza, SARS, and other aerosolized infections.
Emerg. Med. Clin. North Am. 24, 989—1017.

Sagar, V., Pilakka-Kanthikeel, S., Atluri, V.S., Ding, H., Arias, A.Y., Jayant, R.D., Kaushik, A., Nair, M., 2015. Therapeutical neurotargeting via
magnetic nanocarrier: implications to opiate-induced neuropathogenesis and neuroAIDS. J. Biomed. Nanotechnol. 11, 1722—1733.

Sahdev, P., Ochyl, L.J., Moon, J.J., 2014. Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res. 31, 2563—2582.

Samarasekera, C., Tan, B., Venkatakrishnan, K., 2015. Ultrafast laser synthesized nanostructures for controlling cell proliferation. J. Biomed. Nano-
technol. 11, 623—630.

Sanchez, V.C., Jachak, A., Hurt, R.H., Kane, A.B., 2012. Biological interactions of graphene-family nanomaterials — an interdisciplinary review. Chem.
Res. Toxicol. 25, 15—34.

Sansone, R.A., Sansone, L.A., 2014. Herpes zoster and postherpetic neuralgia: an examination of psychological antecedents. Innov. Clin. Neurosci. 11,
31-34.

Santo, LE., Pedro, A.S., Fialho, R., Cabral-Albuquerque, E., 2013. Characteristics of lipid micro- and nanoparticles based on supercritical formation for
potential pharmaceutical application. Nanoscale Res. Lett. 8, 386.

Saptarshi, S.R., Duschl, A., Lopata, A.L., 2013. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J. Nanobiotechnol.
11, 26.

Satalkar, P., Elger, B.S., Shaw, D.M., 2015. Defining nano, nanotechnology and nanomedicine: why should it matter? Sci. Eng. Ethics 22.

Sato, F., Tanaka, H., Hasanovic, F., Tsunoda, I., 2011. Theiler’s virus infection: pathophysiology of demyelination and neurodegeneration. Patho-
physiology 18, 31—41.

Schibel, A.E., Ervin, E.N., 2014. Antigen detection via the rate of ion current rectification change of the antibody-modified glass nanopore membrane.
Langmuir 30, 11248—11256.

Schutz, C.A., Juillerat-Jeanneret, L., Mueller, H., Lynch, 1., Riediker, M., 2013. Therapeutic nanoparticles in clinics and under clinical evaluation.
Nanomedicine (Lond.) 8, 449—467.

Schwendener, R.A., 2014. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines 2, 159—182.

Sechi, G., Bedognetti, D., Sgarrella, F., Van Eperen, L., Marincola, F.M., Bianco, A., Delogu, L.G., 2014. The perception of nanotechnology and
nanomedicine: a worldwide social media study. Nanomedicine (Lond.) 9, 1475—1486.

Sehba, F.A., Pluta, R.M., Zhang, J.H., 2011. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol.
Neurobiol. 43, 27—40.

Serda, R.E., Mack, A., Van De Ven, A., Ferrati, S., Dunner, K., Godin, B., Chiappini, C., Landry, M., Brousseau, L., Liu, X., Bean, A.J., Ferrari, M.,
2010. Logic-embedded vectors for intracellular partioning, endosomal escape, and exocytosis of nanoparticles. Small 6, 2691—2700.

Shah, J., Purohit, R., Singh, R., Karakoti, A.S., Singh, S., 2015. ATP-enhanced peroxidase-like activity of gold nanoparticles. J. Colloid Interface Sci. 456,
100—107.

Shang, L., Nienhaus, K., Nienhaus, G.U., 2014. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnol. 12, 5.

Shao, N., Su, Y., Hu, J., Zhang, J., Zhang, H., Cheng, Y., 2011. Comparison of generation 3 polyamidoamine dendrimer and generation 4 poly-
propylenimine dendrimer on drug loading, complex structure, release behavior, and cytotoxicity. Int. J. Nanomed. 6, 3361—3372.

Sharma, A., Pandey, R., Sharma, S., Khuller, G.K., 2004. Chemotherapeutic efficacy of poly (DL-lactide-co-glycolide) nanoparticle encapsulated anti-
tubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int. J. Antimicrob. Agents 24, 599—604.

Shen, H., Zhang, L., Liu, M., Zhang, Z., 2012. Biomedical applications of graphene. Theranostics 2, 283—294.



Antimicrobial Nanostructures for Neurodegenerative Infections: Present and Future Perspectives Chapter | 6 165

Shen, Y., Shao, Y., He, H., Tan, Y., Tian, X., Xie, F., Li, L., 2013. Gadolinium3+--doped mesoporous silica nanoparticles as a potential magnetic
resonance tracer for monitoring the migration of stem cells in vivo. Int. J. Nanomed. 8, 119—127.

Shilo, M., Sharon, A., Baranes, K., Motiei, M., Lellouche, J.P.M., Popovtzer, R., 2015. The effect of nanoparticle size on the probability to cross the
blood-brain barrier: an in-vitro endothelial cell model. J. Nanobiotechnol. 13.

Singh, S., 2010. Nanomedicine-nanoscale drugs and delivery systems. J. Nanosci. Nanotechnol. 10, 7906—7918.

Singh, R.P., Ramarao, P., 2013. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles. Toxicol. Sci.
136, 131—143.

Singh, N., Jenkins, G.J., Asadi, R., Doak, S.H., 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 1.

Singh, R., Smitha, M.S., Singh, S.P., 2014. The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol. 14, 4745—4756.

Sizovs, A., Mclendon, P.M., Srinivasachari, S., Reineke, T.M., 2010. Carbohydrate polymers for nonviral nucleic acid delivery. Top. Curr. Chem. 296,
131-190.

Smith, J.P., 2011. Nanoparticle delivery of anti-tuberculosis chemotherapy as a potential mediator against drug-resistant tuberculosis. Yale J. Biol. Med.
84, 361—369.

Smith, P.J., Giroud, M., Wiggins, H.L., Gower, F., Thorley, J.A., Stolpe, B., Mazzolini, J., Dyson, R.J., Rappoport, J.Z., 2012. Cellular entry of
nanoparticles via serum sensitive clathrin-mediated endocytosis, and plasma membrane permeabilization. Int. J. Nanomed. 7, 2045—2055.

Sobrova, P., Blazkova, 1., Chomoucka, J., Drbohlavova, J., Vaculovicova, M., Kopel, P., Hubalek, J., Kizek, R., Adam, V., 2013. Quantum dots and prion
proteins: is this a new challenge for neurodegenerative diseases imaging? Prion 7, 349—358.

Song, Y., Zhang, C., Li, B., Ding, G., Jiang, D., Wang, H., Xie, X., 2014. Van der Waals epitaxy and characterization of hexagonal boron nitride
nanosheets on graphene. Nanoscale Res. Lett. 9, 367.

Squires, A.H., Atas, E., Meller, A., 2015. Genomic pathogen typing using solid-state nanopores. PLoS One 10.

Steketee, M.B., Moysidis, S.N., Jin, X.L., Weinstein, J.E., Pita-Thomas, W., Raju, H.B., Igbal, S., Goldberg, J.L., 2011. Nanoparticle-mediated signaling
endosome localization regulates growth cone motility and neurite growth. Proc. Natl. Acad. Sci. U.S.A. 108, 19042—19047.

Sterenczak, K.A., Meier, M., Glage, S., Meyer, M., Willenbrock, S., Wefstaedt, P., Dorsch, M., Bullerdiek, J., Escobar, H.M., Hedrich, H., Nolte, L., 2012.
Longitudinal MRI contrast enhanced monitoring of early tumour development with manganese chloride (MnCl,) and superparamagnetic iron oxide
nanoparticles (SPIOs) in a CT1258 based in vivo model of prostate cancer. BMC Cancer 12, 284.

Strable, E., Prasuhn, D.E., Udit, A.K., Brown, S., Link, A.J., Ngo, J.T., Lander, G., Quispe, J., Potter, C.S., Carragher, B., Tirrell, D.A., Finn, M.G., 2008.
Unnatural amino acid incorporation into virus-like particles. Bioconjug. Chem. 19, 866—875.

Strobel, C., Oehring, H., Herrmann, R., Forster, M., Reller, A., Hilger, 1., 2015. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis.
J. Nanopart. Res. 17.

Suchomel, P., Kvitek, L., Panacek, A., Prucek, R., Hrbac, J., Vecerova, R., Zboril, R., 2015. Comparative study of antimicrobial activity of AgBr and Ag
nanoparticles (NPs). PLoS One 10.

Sun, S., Lyu, S.-W., Li, Y.-Q., Guo, Y.-Y., Yan, X., Xie, P.-Y., Li, Y.-J., 2015. Pharmacokinetic analysis of quercetin-PLGA block copolymer nano-
particles lyophilized powder in rats. Chin. J. Exp. Tradit. Med. Formulae 4, 84—88.

Swanner, J., Mims, J., Carroll, D.L., Akman, S.A., Furdui, C.M., Torti, S.V., Singh, R.N., 2015. Differential cytotoxic and radiosensitizing effects of
silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells. Int. J. Nanomed. 10, 3937—3953.

Taki, A., Smooker, P., 2015. Small wonders-the use of nanoparticles for delivering antigen. Vaccines (Basel) 3, 638—661.

Tang, T., Jiang, H., Yu, Y., He, F., Ji, S.Z., Liu, Y.Y., Wang, Z.S., Xiao, S.C., Tang, C., Wang, G.Y., Xia, Z.F., 2015. A new method of wound treatment:
targeted therapy of skin wounds with reactive oxygen species-responsive nanoparticles containing SDF-1alpha. Int. J. Nanomed. 10, 6571—6585.

Tauran, Y., Brioude, A., Coleman, A.W., Rhimi, M., Kim, B., 2013. Molecular recognition by gold, silver and copper nanoparticles. World J. Biol. Chem.
4, 35—63.

Tautzenberger, A., Kovtun, A., Ignatius, A., 2012. Nanoparticles and their potential for application in bone. Int. J. Nanomed. 7, 4545—4557.

Taylor, M.P., Enquist, L.W., 2015. Axonal spread of neuroinvasive viral infections. Trends Microbiol. 23, 283—288.

Tebas, P., Stein, D., Tang, W.W., Frank, 1., Wang, S.Q., Lee, G., Spratt, S.K., Surosky, R.T., Giedlin, M.A., Nichol, G., Holmes, M.C., Gregory, P.D.,
Ando, D.G., Kalos, M., Collman, R.G., Binder-Scholl, G., Plesa, G., Hwang, W.T., Levine, B.L., June, C.H., 2014. Gene editing of CCRS in
autologous CDy4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901—910.

Thakur, K., Zunt, J., 2015. Tropical neuroinfectious diseases. Continuum (Minneap. Minn.) 21, 1639—1661.

Theil, E.C., 2013. Ferritin: the protein nanocage and iron biomineral in health and in disease. Inorg. Chem. 52.

Tian, A., Qin, X., Wu, A., Zhang, H., Xu, Q., Xing, D., Yang, H., Qiu, B., Xue, X., Zhang, D., Dong, C., 2015. Nanoscale TiO; nanotubes govern the
biological behavior of human glioma and osteosarcoma cells. Int. J. Nanomed. 10, 2423—2439.

Tilmaciu, C.M., Morris, M.C., 2015. Carbon nanotube biosensors. Front. Chem. 3.

Torrecilla, J., Rodriguez-Gascén, A., Solinis, M., Del Pozo-Rodriguez, A., 2014. Lipid nanoparticles as carriers for RNAi against viral infections: current
status and future perspectives. Biomed. Res. Int. 2014.

Tseng, Y.Y., Kao, Y.C,, Liao, J.Y., Chen, W.A., Liu, S.J., 2013. Biodegradable drug-eluting poly[lactic-co-glycol acid] nanofibers for the sustainable
delivery of vancomycin to brain tissue: in vitro and in vivo studies. ACS Chem. Neurosci. 4, 1314—1321.

Tseng, Y.Y., Wang, Y.C., Su, C.H., Liu, S.J., 2015. Biodegradable vancomycin-eluting poly[(d,])-lactide-co-glycolide] nanofibres for the treatment of
postoperative central nervous system infection. Sci. Rep. 5.

Tsunoda, I., 2008. Axonal degeneration as a self-destructive defense mechanism against neurotropic virus infection. Future Virol. 3, 579—593.

Turner, M., Galloway, A., Vigorito, E., 2014. Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nat. Immunol.
15, 484—491.



166 Nanostructures for Antimicrobial Therapy

Tyssen, D., Henderson, S.A., Johnson, A., Sterjovski, J., Moore, K., La, J., Zanin, M., Sonza, S., Karellas, P., Giannis, M.P., Krippner, G., Wesselingh, S.,
Mccarthy, T., Gorry, P.R., Ramsland, P.A., Cone, R., Paull, J.R.A., Lewis, G.R., Tachedjian, G., 2010. Structure activity relationship of dendrimer
microbicides with dual action antiviral activity. PLoS One 5.

Uner, M., Yener, G., 2007. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomed. 2,
289—-300.

Upadhyay, R.K., 2014. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed. Res. Int. 2014.

Upadya, M., Shrestha, A., Kishen, A., 2011. Role of efflux pump inhibitors on the antibiofilm efficacy of calcium hydroxide, chitosan nanoparticles, and
light-activated disinfection. J. Endod. 37, 1422—1426.

Valencia, P.M., Farokhzad, O.C., Karnik, R., Langer, R., 2012. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat.
Nanotechnol. 7, 623—629.

Valetti, S., Mura, S., Stella, B., Couvreur, P., 2013. Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management:
theory to practice. J. Nanobiotechnol. 11, S6.

Vatansever, F., de Melo, W.C., Avci, P., Vecchio, D., Sadasivam, M., Gupta, A., Chandran, R., Karimi, M., Parizotto, N.A., Yin, R., Tegos, G.P.,
Hamblin, M.R., 2013. Antimicrobial strategies centered around reactive oxygen species — bactericidal antibiotics, photodynamic therapy and beyond.
FEMS Microbiol. Rev. 37, 955—9809.

Ventola, C.L., 2012. The nanomedicine revolution: part 2: current and future clinical applications. Phys. Ther. 37, 582—591.

Villanueva, 1., Alva-Sanchez, C., Pacheco-Rosado, J., 2013. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxid.
Med. Cell Longev. 2013.

Voss, M., Bryceson, Y.T., 2015. Natural killer cell biology illuminated by primary immunodeficiency syndromes in humans. Clin. Immunol. S1521-6616,
30061—30069.

Wada, S., Haginomori, S., Mori, A., Ichihara, T., Kanazawa, A., Kawata, R., Takubo, T., Yorifuji, S., 2013. The midline electroneurography method for
facial palsy reflects total nerve degeneration. Acta Otolaryngol. 133, 327—333.

Wade, R.J., Bassin, E.J., Rodell, C.B., Burdick, J.A., 2015. Protease-degradable electrospun fibrous hydrogels. Nat. Commun. 6, 6639.

Wahajuddin, Arora, S., 2012. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomed. 7, 3445—3471.

Walters, C.R., Pool, E.J., Somerset, V.S., 2014. Ecotoxicity of silver nanomaterials in the aquatic environment: a review of literature and gaps in nano-
toxicological research. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 49, 1588—1601.

Wang, E.C., Wang, A.Z., 2014. Nanoparticles and their applications in cell and molecular biology. Integr. Biol. 6, 9—26.

Wang, J.J., Zeng, Z.W., Xiao, R.Z., Xie, T., Zhou, G.L., Zhan, X.R., Wang, S.L., 2011a. Recent advances of chitosan nanoparticles as drug carriers. Int. J.
Nanomed. 6, 765—774.

Wang, Y., Zheng, D., Tan, Q., Wang, M.X., Gu, L.Q., 2011b. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat.
Nanotechnol. 6, 668—674.

Wang, H., Wu, L., Reinhard, B.M., 2012a. Scavenger receptor mediated endocytosis of silver nanoparticles into J774A.1 macrophages is heterogeneous.
ACS Nano 6, 7122—7132.

Wang, J.T., Medress, Z.A., Barres, B.A., 2012b. Axon degeneration: molecular mechanisms of a self-destruction pathway. J. Cell Biol. 196, 7—18.

Wang, X., Pakdel, A., Zhang, J., Weng, Q., Zhai, T., Zhi, C., Golberg, D., Bando, Y., 2012c. Large-surface-area BN nanosheets and their utilization in
polymeric composites with improved thermal and dielectric properties. Nanoscale Res. Lett. 7, 662.

Wang, X., Reece, S.P., Brown, J.M., 2013a. Immunotoxicological impact of engineered nanomaterial exposure: mechanisms of immune cell modulation.
Toxicol. Mech. Methods 23, 168—177.

Wang, Y.X.J., Xuan, S., Port, M., Idee, J.M., 2013b. Recent advances in superparamagnetic iron oxide nanoparticles for cellular imaging and targeted
therapy research. Curr. Pharm. Des. 19, 6575—6593.

Wang, W., Xu, D., Wei, X., Chen, K., 2014a. Magnetic-luminescent YbPO,:Er,Dy microspheres designed for tumor theranostics with synergistic effect of
photodynamic therapy and chemotherapy. Int. J. Nanomed. 9, 4879—4891.

Wang, Z., Liu, G., Zheng, H., Chen, X., 2014b. Rigid nanoparticle-baseddelivery of anti-cancer siRNA: challenges and opportunities. Biotechnol. Adv.
32, 831—843.

Wang, S., Liu, H., Zhang, X., Qian, F., 2015. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation
strategies. Protein Cell 6, 480—503.

Wanunu, M., 2012. Nanopores: a journey towards DNA sequencing. Phys. Life Rev. 9, 125—158.

Watkins, R., Wu, L., Zhang, C., Davis, RM., Xu, B., 2015. Natural product-based nanomedicine: recent advances and issues. Int. J. Nanomed. 10,
6055—6074.

Weingart, J., Vabbilisetty, P., Sun, X.L., 2013. Membrane mimetic surface functionalization of nanoparticles: methods and applications. Adv. Colloid
Interface Sci. 68—84.

Wells, M.A., Abid, A., Kennedy, .M., Barakat, A.L,, 2012. Serum proteins prevent aggregation of Fe;O3 and ZnO nanoparticles. Nanotoxicology 6,
837—846.

Whittenton, J., Pitchumani, R., Thevananther, S., Mohanty, K., 2013. Evaluation of asymmetric immunoliposomal nanoparticles for cellular uptake.
J. Microencapsul. 30, 55—63.

Willhite, C.C., Karyakina, N.A., Yokel, R.A., Yenugadhati, N., Wisniewski, T.M., Arnold, .M., Momoli, F., Krewski, D., 2014. Systematic review of
potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides,
aluminum hydroxide and its soluble salts. Crit. Rev. Toxicol. 44 (Suppl. 4), 1—80.



Antimicrobial Nanostructures for Neurodegenerative Infections: Present and Future Perspectives Chapter | 6 167

Wolfram, J., Zhu, M., Yang, Y., Shen, J., Gentile, E., Paolino, D., Fresta, M., Nie, G., Chen, C., Shen, H., Ferrari, M., Zhao, Y., 2015. Safety of
nanoparticles in medicine. Curr. Drug Targets 16, 1671—1681.

Woo, H.N., Chung, H.K., Ju, EJ., Jung, J., Kang, H.W., Lee, S.W., Seo, M.H., Lee, J.S., Park, H.J., Song, S.Y., Jeong, S.Y., Choi, E.K., 2012. Preclinical
evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy. Int. J. Nanomed. 7, 2197—2208.

Wau, J., Huang, W., He, Z., 2013. Dendrimers as carriers for siRNA delivery and gene silencing: a review. Sci. World J. 2013.

Wau, S., Zuber, F., Brugger, J., Maniura-Weber, K., Ren, Q., 2016. Antibacterial Au nanostructured surfaces. Nanoscale 8, 2620—2625.

Wu, S.Y., An, S.S.A., Hulme, J., 2015a. Current applications of graphene oxide in nanomedicine. Int. J. Nanomed. 10, 9—24.

Wu, W.Y., Kang, K.H., Chen, S.L., Chiu, S.Y., Yen, AM., Fann, J.C., Su, C.W., Liu, H.C,, Lee, C.Z., Fu, W.M., Chen, H.H., Liou, H.H., 2015b.
Hepatitis C virus infection: a risk factor for Parkinson’s disease. J. Viral Hepat. 22, 784—791.

Xing, Y., Zhao, J., Conti, P.S., Chen, K., 2014. Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4, 290—306.

Xu, X., Guo, G., Fan, Y., 2010. Fabrication and characterization of dense zirconia and zirconia-silica ceramic nanofibers. J. Nanosci. Nanotechnol. 10,
5672—5679.

Xu, S., Olenyuk, B.Z., Okamoto, C.T., Hamm-Alvarez, S.F., 2013. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and
advances. Adv. Drug Deliv. Rev. 65, 121—138.

Xu, L., Zhang, H., Wu, Y., 2014. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem. Neurosci. 5, 2—13.

Yah, C.S., Simate, G.S., 2015. Nanoparticles as potential new generation broad spectrum antimicrobial agents. Daru 23, 43.

Yameen, B., Choi, W.I., Vilos, C., Swami, A., Shi, J., Farokhzad, O.C., 2014. Insight into nanoparticle cellular uptake and intracellular targeting.
J. Control Release 190, 485—499.

Yang, Z., Liu, Z.W., Allaker, R.P., Reip, P., Oxford, J., Ahmad, Z., Ren, G., 2010. A review of nanoparticle functionality and toxicity on the central
nervous system. J. R. Soc. Interface 7 (Suppl. 4), S411—S422.

Yang, K.N., Zhang, C.Q., Wang, W., Wang, P.C., Zhou, J.P., Liang, X.J., 2014. pH-responsive mesoporous silica nanoparticles employed in controlled
drug delivery systems for cancer treatment. Cancer Biol. Med. 11, 34—43.

Yavuz, B., Bozdag Pehlivan, S., Unlii, N., 2013. Dendrimeric systems and their applications in ocular drug delivery. Sci. World J. 2013.

Yen, S.K., Padmanabhan, P., Selvan, S.T., 2013. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery.
Theranostics 3, 986—1003.

Yin, T., Bader, A.R., Hou, T.K., Maron, B.A., Kao, D.D., Qian, R., Kohane, D.S., Handy, D.E., Loscalzo, J., Zhang, Y.Y., 2013. SDF-1a in glycan
nanoparticles exhibits full activity and reduces pulmonary hypertension in rats. Biomacromolecules 14.

Yohan, D., Chithrani, B.D., 2014. Applications of nanoparticles in nanomedicine. J. Biomed. Nanotechnol. 10, 2371—2392.

Yu, M.K., Park, J., Jon, S., 2012. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2, 3—44.

Zaman, M., Ahmad, E., Qadeer, A., Rabbani, G., Khan, R.H., 2014. Nanoparticles in relation to peptide and protein aggregation. Int. J. Nanomed. 9,
899—-912.

Zhang, L., Pornpattananangkul, D., Hu, C.-M., Huang, C.-M., 2010. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem. 17,
585—594.

Zhang, X., Tsukada, M., Morikawa, H., Aojima, K., Zhang, G., Miura, M., 2011. Production of silk sericin/silk fibroin blend nanofibers. Nanoscale Res.
Lett. 6, 510.

Zhang, C., Awasthi, N., Schwarz, M.A., Hinz, S., Schwarz, R.E., 2013a. Superior antitumor activity of nanoparticle albumin-bound paclitaxel in
experimental gastric cancer. PLoS One 8.

Zhang, L., Hu, R., Li, M., Li, F., Meng, H., Zhu, G., Lin, J., Feng, H., 2013b. Deferoxamine attenuates iron-induced long-term neurotoxicity in rats with
traumatic brain injury. Neurol. Sci. 34, 639—645.

Zhao, B., Wang, X.Q., Wang, X.Y., Zhang, H., Dai, W.B., Wang, J., Zhong, Z.L., Wu, H.N., Zhang, Q., 2013. Nanotoxicity comparison of four
amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure. Part Fibre Toxicol. 10, 47.

Zhao, Y., Pan, R, Li, S., Luo, Y., Yan, F., Yin, J., Qi, Z,, Yan, Y., Ji, X., Liu, K.J., 2014a. Chelating intracellularly accumulated zinc decreased ischemic
brain injury through reducing neuronal apoptotic death. Stroke 45, 1139—1147.

Zhao, Y., Ye, Y., Zhou, X., Chen, J., Jin, Y., Hanson, A., Zhao, J.X., Wu, M., 2014b. Photosensitive fluorescent dye contributes to phototoxicity and
inflammatory responses of dye-doped silica NPs in cells and mice. Theranostics 4, 445—459.

Zhen, Z., Tang, W., Chen, H., Lin, X., Todd, T., Wang, G., Cowger, T., Chen, X., Xie, J., 2013a. RGD modified apoferritin nanoparticles for efficient
drug delivery to tumors. ACS Nano 7, 4830—4837.

Zhen, Z., Tang, W., Guo, C., Chen, H., Lin, X., Liu, G., Fei, B., Chen, X., Xu, B., Xie, J., 2013b. Ferritin nanocages to encapsulate and deliver pho-
tosensitizers for efficient photodynamic therapy against cancer. ACS Nano 7.

Zhou, L., Miranda-Saksena, M., Saksena, N.K., 2013. Viruses and neurodegeneration. Virol. J. 10, 172.

Zhu, C., Yang, G., Li, H,, Du, D., Lin, Y., 2015. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87,
230—249.

Zimering, J.H., Williams, M.R., Eiras, M.E., Fallon, B.A., Logigian, E.L., Dworkin, R.H., 2014. Acute and chronic pain associated with Lyme borreliosis:
clinical characteristics and pathophysiologic mechanisms. Pain 155, 1435—1438.



