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Background: Esophageal squamous cell carcinoma (ESCC) has a poor early detection rate, prognosis, and 
survival rate. Effective prognostic markers are urgently needed to assist in the prediction of ESCC treatment 
outcomes. There is accumulating evidence of a strong relationship between cancer cell growth and amino 
acid metabolism. This study aims to determine the relationship between amino acid metabolism and ESCC 
prognosis.
Methods: This study comprehensively evaluates the association between amino acid metabolism-related 
gene (AAMRG) expression profiles and the prognosis of ESCC patients based on data from The Cancer 
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Real-time quantitative 
polymerase chain reaction (RT-qPCR) was used to verify the expression of prognosis-related genes.
Results: A univariate Cox regression analysis of TCGA data identified 18 prognosis-related AAMRGs. 
The gene expression profiles of 90 ESCC tumor and normal tissues were obtained from the GSE20347 
and GSE67269 datasets. Two differently expressed genes (DEGs) were considered as ESCC prognosis-
related genes; and they were branched-chain amino acid transaminase 1 (BCAT1) and methylmalonic 
aciduria and homocystinuria type C protein (MMACHC). These two AAMRGs were used to develop a novel 
AAMRG-related gene signature to predict 1- and 2-year prognostic risk in ESCC patients. Both BCAT1 and 
MMACHC expression were verified by RT-qPCR. A prognostic nomogram that incorporated clinical factors 
and BCAT1 and MMACHC gene expression was constructed, and the calibration plots showed that it had 
good prognostic performance.
Conclusions: The AAMRG signature established in our study is efficient and could be used in clinical 

settings to predict the early prognosis of ESCC patients.
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Introduction

Esophageal carcinoma (EC) has a high incidence rate 
worldwide. With an overall 5-year survival rate ranging 
from 15% to 25% worldwide, EC is characterized with a 
high malignancy and poor prognosis (1). As the main type of 
EC, esophageal squamous cell carcinoma (ESCC) is known 
for having a low early diagnosis rate, a poor prognosis, 
and a low survival rate. The poor outcomes of ESCC are 
closely related to inconspicuous clinical symptoms in the 
early stage, early metastasis, and easy recurrence (2). Thus, 
effective prognostic markers are urgently needed to be 
identified to predict ESCC treatment outcomes.

Cellular metabolism reprogramming is a common feature 
in the progress of tumorigenesis (3-5). Besides glucose 
metabolism disorder, the deregulated uptake of amino 
acids is also a hallmark of cancer-associated metabolic 
changes (6,7). Amino acids are vital to support the survival 
and biosynthesis of mammalian cancer cells (8,9). There 
is accumulating evidence of a strong relationship among 
cancer cell growth and glutamine, serine, and glycine (7). 
Increased glutamine metabolism is a common metabolic 
alteration in cancer (10). As a potential nutrient, glutamine 
is considered second only to glucose in cancer in terms of it 
being a source of nitrogen and carbon (11). The oncogenic 
transcription factor (TF) Myc activates glutaminase and 
further regulates glutamine metabolism, and energy and 
reactive oxygen species homeostasis in lymphoma cells 
and prostate cancer cells (12). Research has also shown 

that proline metabolism is involved in the significant 
tumorigenicity and poor differentiation of ESCC (13). 
However, the relationship between amino acid metabolism 
and the prognostic outcomes of ESCC patients requires 
further investigation.

In this study, we explored the association between 
amino acid metabolism-related genes (AAMRGs) and 
the prognosis of ESCC patients based on data from The 
Cancer Genome Atlas (TCGA) database. Two differentially 
expressed AAMRGs [i.e., branched-chain amino acid 
transaminase 1 (BCAT1) and methylmalonic aciduria 
and homocystinuria type C protein (MMACHC)] were 
identified using data from TCGA and the Gene Expression 
Omnibus (GEO) databases, and ESCC transcriptome data 
from our previous research, and validated using the real-
time quantitative polymerase chain reaction (RT-qPCR) 
method (14). The tumor subtypes of the two AAMRGs 
(i.e., BCAT1 and MMACHC) were evaluated by a survival 
analysis using Kaplan-Meier (K-M) curves. A nomogram 
based on the two AAMRGs (BCAT1 and MMACHC) and 
clinical information was further developed to predict ESCC 
patient survival at 1 and 2 years. A decision curve analysis 
(DCA) was used to evaluate the predictive efficacy of the 
nomogram model. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-24-818/rc).

Methods

Data acquisition and processing

TCGA-ESCC expression matrix dataset was downloaded 
from TCGA dataset (https://www.cancer.gov/ccg/research/
genome-sequencing/tcga), and samples with incomplete 
overall survival (OS) prognostic information were excluded. 
In total, 88 ESCC samples were included in the analysis. In 
addition, the expression matrix and clinical data of 653 cases 
of normal samples of Genotype-Tissue Expression (GTEx) 
esophageal tissue from the UCSC Xena database (http://
Genome.ucsc.edu) were obtained and normalized into the 
format of fragments per kilobase per million. The count 
sequencing data of TCGA-ESCC dataset were normalized 
using the limma R package. As Table 1 shows, the GSE20347 
dataset comprised the gene expression profile data of 17 
ESCC tissues and adjacent tissues, while the GSE67269 
dataset comprised the data of 73 ESCC tissues and adjacent 
tissues (15,16). The sva R package was used to standardize 
the GSE20347 and GSE67269 ESCC datasets, which 
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served as the verification dataset. The expression profile 
data of 6 ESCC tissues and adjacent tissues from previous 
study by our laboratory team were used as an ESCC  
dataset (14).

The GeneCards database (http://www.ncbi.nlm.nih.gov/
geo) provides comprehensive information about human 
genes (17). We used the term “amino acid metabolism” as 
the search keyword to collect epigenetic-related genes in 
the GeneCards database, and based on a relevance score >5, 
identified 90 AAMRGs. We used “amino acid metabolism” 
as the search keyword in the Molecular Signatures Database 
(MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/) (18), 
and identified 258 AAMRGs from 11 related reference 
gene sets. In addition, we searched the relevant literature in 
the PubMed database (https://pubmed.ncbi.nlm.nih.gov/) 
and identified 374 genes related to amino acid metabolism. 
The AAMRGs from the three sources were merged to 
obtain the 629 AAMRGs analyzed in this study (19). The 
specific genes list is shown in table available at https://cdn.
amegroups.cn/static/public/JTD-24-818-1.xls.

Single-factor prognostic screening

To evaluate the ability of the AAMRGs to predict the survival of 
patients with ESCC, we used TCGA-ESCC dataset as the test 
set, and we conducted a single-factor Cox regression analysis 
to screen the prognostic-related genes with the threshold set 
at a P value <0.05. The prognostic-related genes that met the 
screening threshold were included in the follow-up analysis.

Protein-protein interaction (PPI) network

A PPI network is comprised of individual proteins that 

interact with each other. In this study, we used the Search 
Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database (https://string-db.org/) to construct a 
PPI network from the identified AAMRGs, and the required 
minimum interaction score was set at 0.4. We visualized the 
PPI network model with Cytoscape software (version 3.9.1). 
The GeneMANIA website (http://genemania.org/) has the 
ability to predict the functionally similar genes of a target 
gene and was used to predict the AAMRGs and construct 
the PPI network in our study (20).

RNA-microRNA (miRNA) and messenger RNA (mRNA)-
TF prediction networks

The ENCORI database (https://rnasysu.com/encori/) was 
used to search for miRNA targets through high-throughput 
CLIP-Seq experimental data and degradome experimental 
data, and it provided a variety of visual interfaces for 
exploring miRNA targets. The database contains a wealth of 
data of miRNA-long noncoding RNA (lncRNA), miRNA-
mRNA, miRNA-RNA, and RNA-lncRNA. We used the 
ENCORI database to predict the miRNAs interacting with 
the AAMRGs, and then screened the miRNAs with more 
than four supporting databases in the results (21). Cytoscape 
software was used to establish the mRNA-miRNA 
interaction network. Next, CHIPBase database (version 3.0) 
(https://rna.sysu.wsu.cn/chipbase/) identified thousands of 
binding motif matrices and their binding sites from ChIP-
seq data of DNA-binding proteins, and predicted the 
transcriptional regulatory relationship between millions 
of TFs and genes. Then CHIPBase database was used to 
predict the TFs interacting with the AAMRGs and the 
TFs with more than 10 supporting documents were then 
screened out (22). Cytoscape software was used to establish 
the mRNA-TF network.

Consistency clustering and differential expression analysis

The differently expressed genes (DEGs) that were 
identified in both the ESCC group and adjacent normal 
group of TCGA_GTEx-ESCC dataset, ESCC dataset, and 
GEO_ESCC dataset were considered important genes and 
included in the further analysis. The DEGs were screened 
according to the following filter criteria: (log2|fold change| 
>0, P value <0.05). Genes with log2fold change >0 and P 
value <0.05 were upregulated differentially expressed genes 
(upregulated genes), and genes with log2fold change <0 and 
P value <0.05 were downregulated differentially expressed 

Table 1 Information about datasets

Items GSE20347 GSE67269

Platform Gpl571 Gpl571

Sequencing type Expression profiling  

by array

Expression profiling 

by array

Species Homo sapiens Homo sapiens

Disease ESCC ESCC

Tissue Esophageal Esophageal

Samples in disease group 17 73

Samples in control group 17 73

Reference 20955586 32375686

ESCC, esophageal squamous cell carcinoma.
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genes (downregulated genes). We used the consensus 
clustering method of the ConsensusClusterPlus R package 
to identify different ESCC disease subtypes based on the 
AAMRGs. In the process, the number of clusters was 
set between 2 and 8, and 80% of the total samples were 
extracted for 1,000 repetitions. We selected “km” for the 
clusterAlg parameter and “Euclidean” for the distance 
parameter. We then divided the count expression profile 
data processed by TCGA-ESCC dataset into cluster 1 
group and cluster 2 group for the differential analysis. 
The DEGs were screened from cluster 1 and cluster 2 and 
displayed in a volcano map.

Functional analysis of the DEGs

To further explore the biological function, a Gene Ontology 
(GO) analysis and a Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis were performed with the DEGs 
in the cluster 1 and cluster 2 groups. A gene set enrichment 
analysis (GSEA) was performed using the GSEA online 
tool (http://software.broadinstitute.org/gsea/index.jsp). A 
gene set variation analysis (GSVA) was performed using the 
GSVA R package (version 1.30.0).

Cox prediction model

To examine the clinical prognostic value of the identified 
AAMRGs on ESCC, we performed a univariate Cox 
regression analysis of the expression levels of the AAMRGs 
in TCGA-ESCC dataset and clinical variables, such as 
age and gender. We also drew a forest diagram to display 
the result. Genes with a P value <0.1 were selected for 
inclusion in the multivariate Cox regression analysis, and a 
multivariate Cox regression model was constructed. Based 
on the results of the multivariate Cox regression analysis, 
we established a nomogram to predict the 1- and 2-year 
probability of no disease progression in ESCC patients. 
Finally, we used calibration curves to evaluate the accuracy 
and resolution of the nomogram. A DCA is a simple 
method for evaluating clinical predictive models, diagnostic 
tests, and molecular markers. We used the ggDCA R 
package to draw a DCA diagram and evaluate the predictive 
effect of the nomogram model on the 1- and 2-year survival 
outcomes of the ESCC patients.

RNA isolation and quantitative RT-qPCR assays

Twenty-one ESCC tissues and adjacent tissues from ESCC 

patients were obtained from Fujian Cancer Hospital July 
2020 to August 2023. The clinical information of ESCC 
patients is presented in Table S1. The expression of BCAT1 
and MMACHC of 21 ESCC and adjacent tissues was 
detected by RT-qPCR. Total RNA was isolated using TRIzol 
reagent (Thermo Fisher Scientific, Waltham, MA, USA). 
The complementary DNA (cDNA) was synthesized using 
the RevertAidTM First Strand cDNA Synthesis Kit (Thermo 
Fisher Scientific). RT-qPCR was performed on a StepOne 
Real-Time PCR system (Thermo Fisher Scientific). The 
relative gene expression levels were quantified using the  
2−ΔΔCT method. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). This study 
was approved by the Ethics Committee of Fujian Cancer 
Hospital (No. K2021-027-01). Individual consent for this 
retrospective analysis was waived.

Statistical analysis

All the data processing and analyses were completed using 
R software (version 4.2.2). The continuous variables were 
presented as the mean ± standard deviation. The t-test was used 
to compare the differences between the normally distributed 
variables in the two groups, and the Wilcoxon rank-sum test 
was used to compare the differences between the continuous 
variables. The prognostic K-M curve and Cox regression model 
were constructed using the survival R package.

Results

Technical roadmap

The technical roadmap is shown in Figure 1 .  The 
GSE20347 and GSE67269 ESCC datasets were merged 
to obtain the GEO_ESCC dataset, and the data were 
processed to remove the batch effect. After the removal of 
the batch effect, the dataset was compared by a distribution 
boxplot and principal component analysis (PCA) graph 
(Figure 2A-2D). To evaluate the ability of the AAMRGs 
to predict the survival of ESCC patients, TCGA-ESCC 
dataset was used as the test set. The 18 prognosis-related 
genes screened by the univariate Cox regression analysis 
were included in a subsequent analysis. A PPI network, 
mRNA-miRNA interaction network, and mRNA-TF 
interaction network of the 18 prognosis-related genes were 
constructed to evaluate the internal connection with other 
molecule and predict function.

Among the 18 prognosis-related genes, two DEGs from 

http://software.broadinstitute.org/gsea/index.jsp
https://cdn.amegroups.cn/static/public/JTD-24-818-Supplementary.pdf
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the ESCC group and the normal group in TCGA_GTEx-
ESCC, ESCC, and GEO_GEO datasets were selected and 
screened for the subsequent analysis. Consensus clustering 
was performed based on the expression matrix of the two 
prognosis-related DEGs in TCGA-ESCC dataset, and 
finally, two ESCC disease subtypes (k=2) (cluster 1 and 
cluster 2) were identified. A difference analysis of TCGA-
ESCC dataset between the cluster 1 and cluster 2 groups 
was performed. Next, a GSEA, GSVA, GO analysis, and 
KEGG analysis were performed. Finally, the expression of 
the two prognosis-related DEGs and clinical variables, such 
as age and gender, from TCGA-ESCC dataset were used to 
construct a Cox model.

PPI, mRNA-miRNA, and mRNA-TF networks

To evaluate the ability of the AAMRGs to predict the 

survival of ESCC patients, we used TCGA-ESCC dataset 
as the test set, and performed a single-factor Cox regression 
analysis to screen the prognosis-related genes. The 18 
prognosis-related genes (i.e., ASMT, ATF3, BCAT1, 
BECN1, EEFSEC, GLUL, HGD, KYAT1, MMACHC, PAH, 
PKHD1, PSMC6, RPL17, RPL37, RRAGB, SAT1, SLC6A15, 
and TARS2) were selected and analyzed based on the PPIs. 
The required minimum interaction score of the STRING 
database was set at 0.400, and eight AAMRGs [i.e., BCAT1, 
GLUL, HGD, KYAT1 (CCBL1), PAH, RPL17, RPL37, and 
SLC6A15] were included in the PPI network (Figure 3A).

To identify the functionally similar genes through the 
GeneMANIA website, an interaction network of these 
18 AAMRGs was constructed; the co-expression, co-
localization, predicted relationship, gene interaction 
relationship, pathway connection, were represented by the 
different colored lines (Figure 3B). The mRNA-miRNA 

GEO_ESCC-dataset TCGA-ESCC (GTEx)

Univariate Cox

18 AAMRGs

3 AAMRGs

Consensus clustering K-M curve

GSVA

GO and KEGG Univariate and 
multivariate Cox

ESCC-dataset

AAMRGs

Differential expression

GSEA

PPI network

mRNA-miRNA

 mRNA-TF

GSE20347

GSE67269

Figure 1 Flow chart. GEO, Gene Expression Omnibus; ESCC, esophageal squamous cell carcinoma; TCGA, The Cancer Genome Atlas; 
GTEx, Genotype-Tissue Expression; AAMRGs, amino acid metabolism-related genes; PPI, protein-protein interaction; mRNA, messenger 
RNA; miRNA, microRNA; TF, transcription factor; K-M, Kaplan-Meier; GSEA, gene set enrichment analysis; GSVA, gene set variation 
analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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prediction network of AAMRGs is shown in Figure 4A, 
and the list is presented in Table 2. To predict the TFs that 
interacted with the AAMRGs, a mRNA-TF interaction 
network was visualized (Figure 4B). The interaction network 
comprised 14 mRNAs (i.e., BCAT1, BECN1, GLUL, 
HGD, MMACHC, PAH, PKHD1, PSMC6, RPL17, RPL37, 
RRAGB, SAT1, SLC6A15, and TARS2) and 36 TFs (Table 3).

Gene expression verification and prognostic analysis

Among the 18 AAMRGs, the DEGs of the ESCC group 
and the normal group in TCGA_GTEx-ESCC, ESCC, and 
GEO_GEO datasets were explored. A total of two genes 
(i.e., BCAT1 and MMACHC) were differentially expressed 
in the two groups (Figure 5A-5C). Both the BCAT1 and 
MMACHC genes were more upregulated in the ESCC 

Figure 2 A sample distribution boxplot and PCA diagram of the GEO_ESCC dataset before and after merging. The sample distribution 
boxplot of the GEO_ESCC dataset before (A) and after (B) merging. (C,D) PCA plot of the GEO_ESCC dataset before (C) and after 
(D) merging. GEO, Gene Expression Omnibus; ESCC, esophageal squamous cell carcinoma; PC, principal component; PCA, principal 
component analysis.
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A
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Pathway
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Figure 3 PPI network. (A) PPI network of AAMRGs. (B) The GeneMANIA website of AAMRGs predicts the interaction network of 
functionally similar genes. PPI, protein-protein interaction; AAMRGs, amino acid metabolism-related genes.
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A

B

Figure 4 AAMRG-miRNA-TF prediction networks. (A) The mRNA-miRNA prediction network of AAMRGs. The blue rectangles in 
the prediction network represent mRNAs, the red ovals represent miRNAs, and the interaction data comes from the ENCORI database. 
(B) The mRNA-TF prediction network of AAMRGs. The blue rectangles in the prediction network represent mRNAs, and the yellow 
diamonds represent TFs, and the interaction data comes from the ChIPBase3.0 database. AAMRGs, amino acid metabolism-related genes; 
miRNA, microRNA; TF, transcription factor; mRNA, messenger RNA.
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Table 2 mRNA-miRNA interactions

mRNA miRNA

ATF3 hsa-let-7a-5p, hsa-let-7d-5p, hsa-miR-98-5p, hsa-miR-10a-5p, hsa-let-7i-5p, hsa-miR-485-3p, hsa-miR-526b-5p, hsa-
miR-641, hsa-miR-361-3p, hsa-miR-450b-5p, hsa-miR-1224-5p

BCAT1 hsa-miR-19a-3p, hsa-miR-32-5p, hsa-miR-92a-3p, hsa-miR-105-5p, hsa-miR-106a-5p, hsa-miR-196a-5p, hsa-miR-7-5p, 
hsa-miR-199b-5p, hsa-miR-215-5p, hsa-miR-124-3p, hsa-miR-141-3p, hsa-miR-186-5p, hsa-miR-381-3p, hsa-miR-335-
5p, hsa-miR-495-3p, hsa-miR-498, hsa-miR-520d-5p, hsa-miR-499a-5p, hsa-miR-493-3p, hsa-miR-92b-3p, hsa-miR-579-
3p, hsa-miR-620, hsa-miR-140-3p, hsa-miR-340-5p, hsa-miR-501-3p, hsa-miR-888-5p, hsa-miR-873-5p, hsa-miR-942-5p, 
hsa-miR-1224-5p, hsa-miR-513b-5p, hsa-miR-1276, hsa-miR-3163, hsa-miR-500b-5p, hsa-miR-4429, hsa-miR-506-5p

BECN1 hsa-miR-136-5p, hsa-miR-302c-3p, hsa-miR-520e, hsa-miR-130a-5p, hsa-miR-23c

EEFSEC hsa-miR-3619-5p

GLUL hsa-let-7b-5p, hsa-miR-24-3p, hsa-miR-7-5p, hsa-miR-429, hsa-miR-515-5p, hsa-miR-193a-5p, hsa-miR-582-3p, hsa-
miR-1323, hsa-miR-1321, hsa-miR-1911-5p, hsa-miR-4784, hsa-miR-5194

HGD hsa-miR-513c-5p

MMACHC hsa-miR-139-5p, hsa-miR-194-5p, hsa-miR-577, hsa-miR-769-5p, hsa-miR-665, hsa-miR-4731-5p

PSMC6 hsa-miR-382-3p

RPL37 hsa-miR-92a-3p, hsa-miR-205-5p, hsa-miR-150-5p, hsa-miR-526b-3p, hsa-miR-450b-5p, hsa-miR-513c-5p, hsa-miR-1913, 
hsa-miR-670-5p, hsa-miR-3064-5p

SLC6A15 hsa-let-7i-5p, hsa-miR-125b-5p, hsa-miR-372-3p, hsa-miR-409-3p, hsa-miR-497-5p, hsa-miR-505-3p

TARS2 hsa-miR-195-5p

mRNA, messenger RNA; miRNA, microRNA.

Table 3 mRNA-TF interactions

mRNA TF

BCAT1 ATF4, CEBPB, CTCF, GATA1, GATA2, MAX, MYC, RAD21, RELA, SMC3, SPI1, STAG1, TAL1, USF1

BECN1 CREB1, CTCF, ELF1, ETS1, GABPA, MAX, MYC, NR3C1, NRF1, RAD21, SMC3, SPI1, STAG1

GLUL CTCF, FOXA1, FOXA2, RAD21, AR, SMC3, STAG1

HGD FOXA1, FOXA2, HNF4A, HOXB13, JUN, NR3C1, AR, CEBPB, EP300

MMACHC ELF1, ERG

PAH NANOG

PKHD1 CTCF, FOXA1, RAD21

PSMC6 ERG, GABPA, GATA1, GATA2, GATA6, POLR2A, STAT3

RPL17 CEBPA, CEBPB, CTCF, ELF1, ERG, GABPA, KMT2A, NRF1, RAD21, SMC3, STAG1

RPL37 ELF1, ERG, ETS1, FOXA1, GABPA, SPI1, CEBPB

RRAGB CEBPA, CEBPB, CTCF, MAX, USF1, USF2

SAT1 ELF1, ERG, GABPA, RAD21, CTCF

SLC6A15 CEBPB

TARS2 CTCF, ELF1, GABPA, YY1

mRNA, messenger RNA; TF, transcription factor.
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Figure 5 Differences in the expression and prognosis of AAMRGs in the ESCC datasets. (A-C) AAMRGs in TCGA_GTEx-ESCC dataset 
(A), ESCC dataset (B), GEO_ESCC dataset (C) showing the group expression comparisons between the ESCC group and normal group. 
(D,E) K-M curve displaying the high and low expression groups of the BCAT1 (D) and MMACHC (E) genes in TCGA-ESCC dataset. 
ns, no significance; *, P value <0.05; **, P value <0.01; ***, P value <0.001. TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue 
Expression; ESCC, esophageal squamous cell carcinoma; GEO, Gene Expression Omnibus; AAMRGs, amino acid metabolism-related 
genes; K-M, Kaplan-Meier.
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tissues than the normal tissues in the three databases. 
However, the expression of SAT1 was inconsistent across 
the three databases, and was thus not included in the 
follow-up analysis. In the survival analysis, the expression 
of MMACHC was found to be positively associated with 
the survival time of the ESCC patients (P=0.02). A high 
expression of BCAT1 appeared to be associated with longer 
OS in the ESCC patients although this was not statistically 
significant (P=0.17) (Figure 5D,5E).

Consensus clustering to construct the disease subtypes of 
ESCC

To explore the expression differences of the two AAMRGs 
(i.e., BCAT1 and MMACHC) in the ESCC patients in 
TCGA-ESCC dataset, the “ConsensusClusterPlus” R 

package was used to identify the different disease subtypes 
related to ESCC. Two ESCC disease subtypes (cluster 1 
and cluster 2) were identified (Figure 6A). ESCC disease 
subtype 1 (cluster 1) comprised 53 samples, while ESCC 
disease subtype 2 (cluster 2) comprised 35 samples. The 
results showed the consistent cluster cumulative distribution 
function (CDF) and different clusters (Figure 6B). A delta 
plot was generated of the area under the CDF curve for 
the number of classes (Figure 6C). The K-M curve of 
TCGA-ESCC dataset for ESCC disease subtypes (cluster 
1 and cluster 2) was plotted (Figure 6D). It showed that the 
difference in the survival time between cluster 1 and cluster 
2 was statistically significant (P=0.043), and the prognosis 
of cluster 1 was worse than that of cluster 2. A heatmap 
was generated to display the expression levels of these 
two AAMRGs in cluster 1 and cluster 2 in TCGA-ESCC 
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Figure 6 Consensus clustering to construct disease subtypes of ESCC. (A) Consensus clustering (k=2) result plot of ESCC disease groups. 
(B,C) Consensus cluster CDF plot (B) and area under the CDF curve delta plot (C) for different numbers of ESCC disease subtypes. (D) 
K-M curve displaying TCGA-ESCC dataset on ESCC disease subtypes (cluster 1 and cluster 2). (E) Heatmap displaying the genes (BCAT1 
and MMACHC) between the two ESCC disease subtypes (cluster 1 and cluster 2) in TCGA-ESCC dataset. CDF, cumulative distribution 
function; TCGA, The Cancer Genome Atlas; ESCC, esophageal squamous cell carcinoma; K-M, Kaplan-Meier.
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dataset (Figure 6E).

GSEA and GSVA of the ESCC disease subtypes

A total of 1,246 DEGs were identified in the ESCC and 
normal groups using TCGA-ESCC dataset, of which 506 

DEGs were significantly upregulated and 740 DEGs were 
significantly downregulated (Figure 7A). A GSEA was 
performed, and the results showed that the genes in TCGA-
ESCC dataset were significantly enriched in the PI3K/
AKT signaling pathway (P<0.001), pre-Notch expression 
and processing (P=0.004), the TGF-β signaling pathway 
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Figure 7 GSEA analysis. (A) Volcano map displaying the differential expression analysis results between the cluster 1 group and the cluster 
2 group of TCGA-ESCC dataset. (B) The GSEA of TCGA-ESCC dataset had five main biological characteristics. (C-G) PI3K/AKT 
signaling pathway (C), pre-Notch expression and processing (D), TGF-β signaling pathway (E), Hippo signaling regulation pathway (F), 
MAPK family signaling cascades, and other pathways (G). TCGA, The Cancer Genome Atlas; ESCC, esophageal squamous cell carcinoma; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; NES, normalized enrichment score; GSEA, gene set enrichment analysis.
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Table 4 GSEA results

ID Enrichment score NES P value

Wp PI3K/AKT signaling pathway 0.48 2.38 <0.001

Wp focal adhesion PI3K/AKT/mTOR signaling pathway 0.47 2.3 <0.001

Reactome signaling by TGF-β family members 0.59 1.95 <0.001

Reactome pre-Notch expression and processing 0.53 2.01 <0.001

KEGG TGF-β signaling pathway 0.59 1.89 0.01

Wp Hippo-merlin signaling dysregulation 0.57 1.76 0.01

Wp Hippo signaling regulation pathways 0.55 1.63 0.03

Reactome MAPK family signaling cascades 0.37 1.6 0.03

Wp TGF-β receptor signaling in skeletal dysplasia 0.62 1.59 0.04

GSEA, gene set enrichment analysis; NES, normalized enrichment score; KEGG, Kyoto Encyclopedia of Genes and Genomes analysis.

(P=0.005), the Hippo signaling regulation pathway (P=0.03), 
the MAPK family signaling cascades (P=0.03), and other 
pathways (Figure 7B-7G and Table 4).

To explore the difference in the hallmark gene set 
between the ESCC disease subtypes, a GSVA was 
performed using TCGA-ESCC dataset. In total, five 
hallmark gene sets were found to differ between the cluster 
1 and cluster 2 groups (Figure 8A and Table 5). Figure 8B 
shows a group comparison chart of the five hallmark gene 
sets, including the pathway of angiogenesis, epithelial-
mesenchymal transition, peroxisome, coagulation, and 
ultraviolet (UV) response DNA damage (DN).

GO and KEGG analyses

To explore the potential biological function of the DEGs 
between the cluster 1 and cluster 2 groups in TCGA-
ESCC dataset, GO and KEGG analyses were performed. 
Separate GO gene functional enrichment analyses for the 
cluster 1 and cluster 2 groups of TCGA-ESCC dataset 
were conducted (Table 6), as well as KEGG functional 
enrichment analyses (Table 7). The top 20 pathways with 
the smallest p values for both GO and KEGG, representing 
their respective up- and downregulation, are presented in 
Figure 9A,9B.

Cox model construction

We also performed a statistical analysis of the clinical 
information of the ESCC patients in TCGA-ESCC dataset 

(Table 8). We then performed univariate and multivariate 
Cox regression analyses of TCGA-ESCC dataset to 
analyze the expression level of the two AAMRGs (i.e., 
BCAT1 and MMACHC) and clinical variables, such as age, 
gender, pathological stage, clinical T, N, and M stage, and 
clinical variables. For survival analysis, we first performed 
a univariate Cox regression analysis (Table 9) to examine 
the expression of these two AAMRGs and the clinical 
variables, and we drew a forest plot (Figure 10A). Factors 
with a P value <0.10 in the univariate Cox regression were 
then included in the multivariate Cox regression analysis. 
In the regression analysis, a multi-factor Cox regression 
model was constructed (Table 9), a nomogram analysis 
of the genes included in the multi-factor Cox regression 
model was then performed to examine the predictive ability 
of the model, and a nomogram was drawn (Figure 10B). In 
addition, a 1- and 2-year prognostic calibration analysis 
was performed of the nomogram of the multivariate 
Cox regression model and a calibration curve was drawn  
(Figure  10C,10D ) .  Notably,  the blue l ine,  which 
corresponded to 1-year survival, was closer to the gray 
ideal situation line, indicating that the prediction effect of 
the 1-year model was slightly better than that of the 2-year 
model. We performed a DCA to evaluate the ability of the 
constructed Cox regression prognostic model to predict 
1- and 2-year survival (Figure 10E,10F). The blue line of 
the 2-year representative model was generally higher than 
the “all positive” red line and the “all negative” gray line, 
indicating that the model had a good prediction effect at 1 
and 2 years.
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Figure 8 GSVA analysis. (A) Heat map displaying the gene set function scores in the GSVA between the cluster 1 group and the cluster  
2 group in TCGA-ESCC dataset. (B) The representative enrichment pathways in the difference analysis in the GSVA of TCGA-ESCC 
dataset are shown in the group comparison chart between the cluster 1 group and the cluster 2 group. ns, no significance; *, P value <0.05; 
**, P value <0.01. TCGA, The Cancer Genome Atlas; ESCC, esophageal squamous cell carcinoma; UV, ultraviolet; DN, DNA damage; 
GSVA, gene set variation analysis.

The genes involved in the risk signature

To explore the potential ESCC cancer risk-related genes, 
the expression of the BCAT1 and MMACHC risk signature 
genes were further validated. As Figure 11 shows, the 

expression of both BCAT1 and MMACHC was upregulated 

in tumors. This finding aligned with our bioinformatics 

results, which suggests that these genes might serve as 

innovative biomarkers for ESCC prognosis.
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Table 5 GSVA results

Ontology Log2fold change P value

Hallmark angiogenesis 0.24 <0.001

Hallmark epithelial-mesenchymal transition 0.23 <0.001

Hallmark peroxisome 0.15 <0.001

Hallmark coagulation 0.15 0.01

Hallmark UV response DN 0.14 0.02

GSVA, gene set variation analysis; UV, ultraviolet; DN, DNA damage.

Table 6 GO enrichment analysis results

Ontology Log2fold change P value

GO BP apoptotic process involved in heart morphogenesis −0.32 <0.001

GO BP atrial cardiac muscle tissue development −0.26 <0.001

GO BP endocardial cushion development −0.19 <0.001

GO BP endocardial cushion morphogenesis −0.2 <0.001

GO BP histone H3 K14 acetylation 0.14 <0.001

GO BP indole containing compound biosynthetic process 0.22 <0.001

GO BP indole containing compound metabolic process 0.15 <0.001

GO BP L arginine transmembrane transport −0.18 <0.001

GO BP maintenance of protein location in extracellular region −0.29 <0.001

GO BP muscle cell fate commitment −0.2 <0.001

GO BP N terminal protein amino acid acetylation 0.18 <0.001

GO BP norepinephrine transport −0.2 <0.001

GO BP pharyngeal arch artery morphogenesis −0.25 <0.001

GO BP pharyngeal system development −0.18 <0.001

GO BP positive regulation of bmp signaling pathway −0.19 <0.001

GO BP positive regulation of cytoplasmic translational initiation 0.23 <0.001

GO BP positive regulation of Golgi to plasma membrane protein transport 0.21 <0.001

GO BP preassembly of GPI anchor in ER membrane 0.26 <0.001

GO BP protein linear polyubiquitination 0.19 0.01

GO BP regulation of chondrocyte development −0.38 <0.001

GO BP regulation of glomerulus development −0.29 <0.001

GO BP regulation of lymphangiogenesis −0.3 <0.001

GO BP regulation of mitotic spindle assembly 0.17 <0.001

GO BP regulation of type I interferon mediated signaling pathway 0.14 <0.001

GO BP righting reflex −0.22 <0.001

GO BP serotonin metabolic process 0.16 0.01

Table 6 (continued)
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Table 7 KEGG enrichment analysis results

Ontology Log2fold change P value

KEGG glycosaminoglycan biosynthesis chondroitin sulfate −0.19 0.01

KEGG nicotinate and nicotinamide metabolism −0.1 0.02

KEGG peroxisome 0.10 0.03

KEGG valine leucine and isoleucine biosynthesis −0.14 0.03

KEGG GPI anchor biosynthesis 0.11 0.03

KEGG ECM receptor interaction −0.15 0.04

KEGG ubiquitin mediated proteolysis 0.08 0.04

KEGG glycosphingolipid biosynthesis globo series −0.12 0.04

KEGG non-small cell lung cancer 0.08 0.05

KEGG O glycan biosynthesis −0.11 0.05

KEGG, Kyoto Encyclopedia of Genes and Genomes; GPI, glycosylphosphatidylinositol; ECM, extracellular matrix.

Table 6 (continued)

Ontology Log2fold change P value

GO BP sinoatrial node development −0.24 <0.001

GO CC alveolar lamellar body 0.26 <0.001

GO CC facit collagen trimer −0.33 <0.001

GO CC FHF complex 0.28 <0.001

GO CC protein phosphatase type 1 complex 0.15 0.01

GO CC ripoptosome 0.25 0.01

GO CC ubiquitin conjugating enzyme complex 0.19 0.01

GO MF basic amino acid transmembrane transporter activity −0.16 <0.001

GO MF connexin binding 0.19 0.01

GO MF delta catenin binding −0.23 <0.001

GO MF G quadruplex RNA binding 0.22 <0.001

GO MF L arginine transmembrane transporter activity −0.19 <0.001

GO MF P type calcium transporter activity 0.24 <0.001

GO MF retinyl palmitate esterase activity 0.29 <0.001

GO, Gene Ontology; BP, biological progress; CC, cellular component; MF, molecular function.

Discussion

ESCC remains a significant public health challenge 
globally and is characterized by an aggressive nature and 
a high mortality rate. Despite advancements in diagnostic 
techniques and treatment modalities, the prognosis of 
ESCC patients remains poor, and patients have a 5-year 

survival rate ranging from 15% to 25% (1). Metabolic 
reprogramming, which is a crucial hallmark of malignancy, 
undergoes changes in metabolic patterns to meet energy 
demands during tumor progression, and heterogeneous 
metabolic subtypes can be observed in local invasive lesions 
(7,23). Several recent studies have shed light on the intricate 
connection between amino acid metabolism and EC, 
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Figure 9 Function enrichment analysis (GO) and pathway enrichment analysis (KEGG). (A) Histogram displaying the GO enrichment 
analysis results of TCGA-ESCC dataset. (B) Histogram displaying the KEGG enrichment analysis results of TCGA-ESCC dataset. The 
gray bars represent insignificant pathways. The blue bar indicates pathway with the smallest P values and respective downregulation. The 
grey bar means pathway with P>0.05. The red bar indicates pathway with the smallest P values and respective upregulation. GO, Gene 
Ontology; MF, molecular function; CC, cellular component; BP, biological progress; GSVA, gene set variation analysis; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas; ESCC, esophageal squamous cell carcinoma.
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particularly the pivotal role of amino acid metabolism in 
tumor growth and progression (24-26). This study sought 
to develop a comprehensive prognostic model of ESCC 
based on the prognostic expression of AAMRGs. Our 
model combined clinical variables, histopathological data, 
and BCAT1 and MMACHC expression levels, and advanced 
statistical methods were used to enhance its predictive 
accuracy.

This study focused on AAMRGs, and the prognosis of 
ESCC patients was screened by a univariate Cox regression 
analysis. In the GEO training set, we first identified 18 
prognostic AAMRGs and then built a predictor model 

comprising two AAMRGs (i.e., BCAT1 and MMACHC) 
through the integration of least absolute shrinkage and 
selection operator regression and Cox regression analyses. 
Moreover, a nomogram was established and calibration 
plots were used to evaluate whether the nomogram was 
accurate in the prediction of 1- and 2-year OS. The 
expression of BCAT1 and MMACHC was higher in the 
ESCC tissues than the normal control tissues. These results 
were further confirmed by the RT-qPCR analysis.

We performed consensus clustering (k=2) based on the 
expression matrix from TCGA-ESCC data set, and finally 
identified two ESCC disease subtypes that were closely 
correlated with clinical prognosis (cluster 1 and cluster 2). 
Patients in the ESCC disease subtype of cluster 1 had a 
worse prognosis than that of those in cluster 2. In total, 
1,246 DEGs between the ESCC disease subtypes were 
identified and were highly enriched in the PI3K/AKT 
signaling pathway, TGF-β signaling pathway, and Hippo 
signaling regulation pathway. Research has shown that the 
PI3K/AKT signaling pathway is involved in ESCC cell 
proliferation and survival and is closely related with the 
progression of chemoresistance in ESCC (27,28). It has 
been reported that PI3K inhibitors improve responses to 
chemotherapy in ESCC (29). The Hippo signaling pathway 
has been shown to preserve the equilibrium between cell 
proliferation and apoptosis through the meticulous control 
of factors, including metabolic signals, cell-cell interactions, 
and mechanical stimuli (30). Thus, any disruption in the 
Hippo signaling pathway could lead to the onset and 
advancement of tumors (31). Hippo pathway dysfunction 
is highly correlated with a poor-prognosis subtype of 
EC (32). The over-activation of Hippo/YAP signaling 
might play an important role in the carcinogenic process 
and progression of ESCC (33). The profound role of 
TGF-β in early embryonic development, organ formation, 
immune regulation, tissue repair, and maintaining adult 
homeostasis has been extensively recognized (34). In healthy 
and early-stage cancer cells, the TGF-β signaling pathway 
engages in tumor-suppressing activities, such as inducing 
cell-cycle arrest and promoting apoptosis. Conversely, 
when activated in advanced-stage cancers, TGF-β signaling 
pathway encourages tumor growth, including metastasis 
and resistance to chemotherapy (35).

In our study, the expression of BCAT1 and MMACHC 
was upregulated in the ESCC subtype cases (cluster 2), 
which had a longer survival time. This finding shows 
the importance of the genes in predicting ESCC clinical 
outcomes. BCAT1, which is primarily involved in amino 

Table 8 Characteristics of ESCC patients in TCGA-ESCC data set

Characteristics Overall (n=88)

OS event

Dead 27 (30.68)

Alive 61 (69.32)

Age (years)

≥65 22 (25.00)

<65 66 (75.00)

Sex

Male 76 (86.36)

Female 12 (13.64)

Pathology stage

Stage I & II 55 (62.50)

Stage III & IV 31 (35.23)

T stage

T1 7 (7.95)

T2 29 (32.95)

T3 46 (52.27)

T4 4 (4.55)

M stage

M0 78 (88.64)

M1 4 (4.55)

N stage

N0 & N1 76 (86.36)

N2 & N3 9 (10.23)

Data are presented as n (%). ESCC, esophageal squamous 
cell carcinoma; TCGA, The Cancer Genome Atlas; OS, overall 
survival.
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Table 9 Univariate and multivariate Cox regression analyses to calculate HRs of ESCC

Characteristics
Univariate Cox Multivariate Cox

HR (95% CI) P HR (95% CI) P

Age (years)

≥65 1.5 (0.617–3.67) 0.37 2.12 (0.7–6.43) 0.18

<65

Sex

Male 6.17 (0.833–45.7) 0.07

Female

Pathology stage

Stage III & IV 2.97 (1.33–6.66) 0.008 2.73 (0.975–7.65) 0.06

Stage I & II

T stage

T2 0.973 (0.204–4.64) 0.97

T3 0.926 (0.205–4.19) 0.92

T4 3.86 (0.629–23.6) 0.15

T1

M stage

M1 2.29 (0.667–7.88) 0.19

M0

N stage

N2 & N3 3.68 (1.43–9.46) 0.007 2.5 (0.82–7.65) 0.11

N0 & N1

BCAT1 0.465 (0.232–0.93) 0.03 0.645 (0.293–1.42) 0.28

MMACHC 0.159 (0.0334–0.762) 0.02 0.144 (0.02–1.04) 0.05

HR, hazard ratio; ESCC, esophageal squamous cell carcinoma; CI, confidence interval.

acid metabolism, has been identified as a key player in 
the metabolic reprogramming of cancer cells (36). Recent 
studies have provided valuable insights into the function of 
BCAT1 in various malignant tumors. For example, it has 
been reported that the overexpression of BCAT1 in breast 
cancer cells leads to enhanced tumor growth and resistance 
to chemotherapy (37). Similarly, BCAT1 also plays a 
significant role in the metabolic alterations associated with 
glioblastoma, influencing tumor aggressiveness, and patient 
prognosis (38,39). In gastric cancer, the BCAT1 mutation 
enhances BCAT1 enzymatic activity and accelerates cell 
growth, motility, and tumor development (36). Previous 
studies have shown that BCAT1 could serve as a biomarker 
for the early detection of malignant tumors and a target for 

therapeutic interventions.
A previous study demonstrated that MMACHC 

mutations might lead to inherited metabolic disorders. 
Emerging evidence suggests that MMACHC is a critical 
player in cancer biology, which has implications for tumor 
metabolism, growth, and response to treatment. Changes in 
MMACHC expression and hormone receptor status in breast 
cancer indicate its potential role in hormone-driven breast 
cancer pathogenesis. The methylation of the MMACHC gene 
induces the inactivation of the MMACHC gene and further 
results in increased tumorigenicity (40). High methylation 
levels in MMACHC have also been observed in melanoma 
and medulloblastoma (41). No study has explored the role 
of MMACHC in ESCC disease; however, the bioinformatics 



Chen et al. OS predictor of ESCC3986

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(6):3967-3989 | https://dx.doi.org/10.21037/jtd-24-818

Figure 10 Single- and multi-factor Cox model construction. (A) Forest plot of the univariate Cox regression analysis. (B) Nomogram of 
the multivariate Cox regression analysis. (C,D) Calibration plots of the 1-year (C) and 2-year (D) nomogram analyses of the multivariate 
Cox regression model. (E,F) 1-year (E) and 2-year (F) DCA plots of the Cox regression prognostic model. HR, hazard ratio; CI, confidence 
interval; OS, overall survival; DCA, decision curve analysis.
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analysis and RT-qPCR results of this study both validated 
the high expression of MMACHC in ESCC tissues. 
Our results also showed a positive relationship between 
MMACHC and ESCC.

There are several limitations in this study. First, 
besides the ESCC data set, the data analyzed in this study 
were obtained from public databases. Second, this study 
only examined a small number of ESCC samples, which 
represents this study’s main limitation. In addition, the 
5-year prognostic model needs to be supplemented in 
future on the premise of sufficient ESCC cases. Third, the 
functional mechanisms of the signature need to be explored 
by in vivo and in vitro experiments.

Conclusions

Generally, this work identified a prognostic signature 
comprising two AAMRGs (i.e., BCAT1 and MMACHC) 
for the prediction of the 1- and 2-year OS of ESCC 
patients. This constructed signature will provide aids for 
individualized treatment.

Acknowledgments

We are very grateful to databases such as TCGA and the 
GEO for the data provided. We would also like to thank 
reviewers and editors for their insightful comments.
Funding: This work was supported in part by grants from 

the Fujian Natural Science Foundation of Fujian Province 
(#2023J01178), the Fujian Cancer Hospital High-Level 
Personnel Project, China (#2022YNG-11), the Fujian 
Clinical Research Center for Radiation and Therapy of 
Digestive, Respiratory and Genitourinary Malignancies 
(#2021Y2014), and the National Clinical Key Specialty 
Construction Program.

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD reporting checklist. Available at https://jtd.
amegroups.com/article/view/10.21037/jtd-24-818/rc

Data Sharing Statement: Available at https://jtd.amegroups.
com/article/view/10.21037/jtd-24-818/dss

Peer Review File: Available at https://jtd.amegroups.com/
article/view/10.21037/jtd-24-818/prf

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://jtd.amegroups.
com/article/view/10.21037/jtd-24-818/coif). The authors 
have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This study was approved by the Ethics 
Committee of Fujian Cancer Hospital (No. K2021-027-
01). Individual consent for this retrospective analysis was 
waived.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Chen W, Zheng R, Baade PD, et al. Cancer statistics in 

100

80

60

40

20

0

10

8

6

4

2

0

R
el

at
iv

e 
B
C
A
T1

 e
xp

re
ss

io
n

Eso
pha

ge
al 

ca
nc

er

Eso
pha

ge
al 

ca
nc

er

Adjac
en

t t
iss

ue
s

Adjac
en

t t
iss

ue
s

R
el

at
iv

e 
M
M
A
C
H
C

 e
xp

re
ss

io
n

* *
A B

Figure 11 The expression of BCAT1 and MMACHC by RT-qPCR 
in ESCC tissue and adjacent tissue. The t-test was used to compare 
the expression of the genes between the tumor and adjacent tissues. 
*, P<0.05. RT-qPCR, real-time quantitative polymerase chain 
reaction; ESCC, esophageal squamous cell carcinoma.

https://jtd.amegroups.com/article/view/10.21037/jtd-24-818/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-818/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-24-818/dss
https://jtd.amegroups.com/article/view/10.21037/jtd-24-818/dss
https://jtd.amegroups.com/article/view/10.21037/jtd-24-818/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-24-818/prf
https://jtd.amegroups.com/article/view/10.21037/jtd-24-818/coif
https://jtd.amegroups.com/article/view/10.21037/jtd-24-818/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Chen et al. OS predictor of ESCC3988

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(6):3967-3989 | https://dx.doi.org/10.21037/jtd-24-818

China, 2015. CA Cancer J Clin 2016;66:115-32.
2.	 Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal 

carcinoma. Lancet 2013;381:400-12.
3.	 Jin HR, Wang J, Wang ZJ, et al. Lipid metabolic 

reprogramming in tumor microenvironment: from 
mechanisms to therapeutics. J Hematol Oncol 
2023;16:103.

4.	 Yang Y, Huangfu L, Li H, et al. Research progress of 
hyperthermia in tumor therapy by influencing metabolic 
reprogramming of tumor cells. Int J Hyperthermia 
2023;40:2270654.

5.	 Koundouros N, Poulogiannis G. Reprogramming of fatty 
acid metabolism in cancer. Br J Cancer 2020;122:4-22.

6.	 Pavlova NN, Thompson CB. The Emerging Hallmarks of 
Cancer Metabolism. Cell Metab 2016;23:27-47.

7.	 Li Z, Zhang H. Reprogramming of glucose, fatty acid and 
amino acid metabolism for cancer progression. Cell Mol 
Life Sci 2016;73:377-92.

8.	 Lieu EL, Nguyen T, Rhyne S, et al. Amino acids in cancer. 
Exp Mol Med 2020;52:15-30.

9.	 Geeraerts SL, Heylen E, De Keersmaecker K, et al. The 
ins and outs of serine and glycine metabolism in cancer. 
Nat Metab 2021;3:131-41.

10.	 Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: 
glutamine metabolism to cancer therapy. Nat Rev Cancer 
2016;16:619-34.

11.	 Kodama M, Nakayama KI. A second Warburg-like effect 
in cancer metabolism: The metabolic shift of glutamine-
derived nitrogen: A shift in glutamine-derived nitrogen 
metabolism from glutaminolysis to de novo nucleotide 
biosynthesis contributes to malignant evolution of cancer. 
Bioessays 2020;42:e2000169.

12.	 Gao P, Tchernyshyov I, Chang TC, et al. c-Myc 
suppression of miR-23a/b enhances mitochondrial 
glutaminase expression and glutamine metabolism. Nature 
2009;458:762-5.

13.	 Togashi Y, Arao T, Kato H, et al. Frequent amplification 
of ORAOV1 gene in esophageal squamous cell cancer 
promotes an aggressive phenotype via proline metabolism 
and ROS production. Oncotarget 2014;5:2962-73.

14.	 Lin Z, Chen L, Wu T, et al. Prognostic Value of 
SPOCD1 in Esophageal Squamous Cell Carcinoma: 
A Comprehensive Study Based on Bioinformatics and 
Validation. Front Genet 2022;13:872026.

15.	 Hu N, Clifford RJ, Yang HH, et al. Genome wide analysis 
of DNA copy number neutral loss of heterozygosity 
(CNNLOH) and its relation to gene expression in 
esophageal squamous cell carcinoma. BMC Genomics 

2010;11:576.
16.	 Yang H, Su H, Hu N, et al. Integrated analysis of genome-

wide miRNAs and targeted gene expression in esophageal 
squamous cell carcinoma (ESCC) and relation to 
prognosis. BMC Cancer 2020;20:388.

17.	 Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards 
Suite: From Gene Data Mining to Disease Genome 
Sequence Analyses. Curr Protoc Bioinformatics 
2016;54:1.30.1-1.30.33.

18.	 Liberzon A, Birger C, Thorvaldsdóttir H, et al. The 
Molecular Signatures Database (MSigDB) hallmark gene 
set collection. Cell Syst 2015;1:417-25.

19.	 Su J, Tian X, Zhang Z, et al. A novel amino acid 
metabolism-related gene risk signature for predicting 
prognosis in clear cell renal cell carcinoma. Front Oncol 
2022;12:1019949.

20.	 Franz M, Rodriguez H, Lopes C, et al. GeneMANIA 
update 2018. Nucleic Acids Res 2018;46:W60-4.

21.	 Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding 
miRNA-ceRNA, miRNA-ncRNA and protein-RNA 
interaction networks from large-scale CLIP-Seq data. 
Nucleic Acids Res 2014;42:D92-7.

22.	 Zhou KR, Liu S, Sun WJ, et al. ChIPBase v2.0: decoding 
transcriptional regulatory networks of non-coding RNAs 
and protein-coding genes from ChIP-seq data. Nucleic 
Acids Res 2017;45:D43-50.

23.	 Wang J, Zhang W, Liu C, et al. Reprogramming of 
Lipid Metabolism Mediates Crosstalk, Remodeling, and 
Intervention of Microenvironment Components in Breast 
Cancer. Int J Biol Sci 2024;20:1884-904.

24.	 Li X, Zhao L, Wei M, et al. Serum metabolomics analysis 
for the progression of esophageal squamous cell carcinoma. 
J Cancer 2021;12:3190-7.

25.	 Taherizadeh M, Khoshnia M, Shams S, et al. Plasma 
Changes of Branched-Chain Amino Acid in Patients with 
Esophageal Cancer. Middle East J Dig Dis 2021;13:49-53.

26.	 Yang XL, Wang P, Ye H, et al. Untargeted serum 
metabolomics reveals potential biomarkers and metabolic 
pathways associated with esophageal cancer. Front Oncol 
2022;12:938234.

27.	 Luo Q, Du R, Liu W, et al. PI3K/Akt/mTOR Signaling 
Pathway: Role in Esophageal Squamous Cell Carcinoma, 
Regulatory Mechanisms and Opportunities for Targeted 
Therapy. Front Oncol 2022;12:852383.

28.	 Wang L, Zhang Z, Yu X, et al. SOX9/miR-203a axis 
drives PI3K/AKT signaling to promote esophageal cancer 
progression. Cancer Lett 2020;468:14-26.

29.	 Duan SF, Zhang MM, Zhang X, et al. HA-ADT suppresses 



Journal of Thoracic Disease, Vol 16, No 6 June 2024 3989

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2024;16(6):3967-3989 | https://dx.doi.org/10.21037/jtd-24-818

Cite this article as: Chen K, Lin Z, Shen Y, Lin Y, Chen J,  
Eslick GD, Chen Y, Xu Y, Xin Y. A novel amino acid 
metabolism-related gene signature to predict the overall survival 
of esophageal squamous cell carcinoma patients. J Thorac Dis 
2024;16(6):3967-3989. doi: 10.21037/jtd-24-818

esophageal squamous cell carcinoma progression via 
apoptosis promotion and autophagy inhibition. Exp Cell 
Res 2022;420:113341.

30.	 Lee U, Cho EY, Jho EH. Regulation of Hippo signaling 
by metabolic pathways in cancer. Biochim Biophys Acta 
Mol Cell Res 2022;1869:119201.

31.	 Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the 
Roots of Cancer. Cancer Cell 2016;29:783-803.

32.	 Mai Z, Yuan J, Yang H, et al. Inactivation of Hippo 
pathway characterizes a poor-prognosis subtype of 
esophageal cancer. JCI Insight 2022;7:e155218.

33.	 Zhou X, Li Y, Wang W, et al. Regulation of Hippo/
YAP signaling and Esophageal Squamous Carcinoma 
progression by an E3 ubiquitin ligase PARK2. 
Theranostics 2020;10:9443-57.

34.	 Peng D, Fu M, Wang M, et al. Targeting TGF-β signal 
transduction for fibrosis and cancer therapy. Mol Cancer 
2022;21:104.

35.	 Colak S, Ten Dijke P. Targeting TGF-β Signaling in 
Cancer. Trends Cancer 2017;3:56-71.

36.	 Qian L, Li N, Lu XC, et al. Enhanced BCAT1 activity 
and BCAA metabolism promotes RhoC activity in cancer 

progression. Nat Metab 2023;5:1159-73.
37.	 Thewes V, Simon R, Hlevnjak M, et al. The branched-

chain amino acid transaminase 1 sustains growth of 
antiestrogen-resistant and ERα-negative breast cancer. 
Oncogene 2017;36:4124-34.

38.	 Panosyan EH, Lasky JL, Lin HJ, et al. Clinical 
aggressiveness of malignant gliomas is linked to augmented 
metabolism of amino acids. J Neurooncol 2016;128:57-66.

39.	 Cho HR, Jeon H, Park CK, et al. BCAT1 is a New MR 
Imaging-related Biomarker for Prognosis Prediction 
in IDH1-wildtype Glioblastoma Patients. Sci Rep 
2017;7:17740.

40.	 Loewy AD, Niles KM, Anastasio N, et al. Epigenetic 
modification of the gene for the vitamin B(12) 
chaperone MMACHC can result in increased 
tumorigenicity and methionine dependence. Mol Genet 
Metab 2009;96:261-7.

41.	 Barretina J, Caponigro G, Stransky N, et al. The Cancer 
Cell Line Encyclopedia enables predictive modelling of 
anticancer drug sensitivity. Nature 2012;483:603-7.

(English Language Editor: L. Huleatt)


