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Abstract: The German cockroach, Blattella germanica, and the American cockroach, Periplaneta ameri-
cana are the most common and synanthropic household pests of interest to public health. While they
have increasingly served as model systems in hemimetabolous insects for studying many biological
issues, there is still a lack of stable reference gene evaluation for reliable quantitative real-time PCR
(qPCR) outputs and functional genomics. Here, we evaluated the expression variation of common
insect reference genes, including the historically used actin, across various tissues and developmental
stages, and also under experimental treatment conditions in these two species by using three individ-
ual algorithms (geNorm, BestKeeper, and NormFinder) and a comprehensive program (RefFinder).
RPL32 in B. germanica and EF1α in P. americana showed the overall lowest variation among all exam-
ined samples. Based on the stability rankings by RefFinder, the optimal but varied reference genes
under specific conditions were selected for qPCR normalization. In addition, the combination of
RPL32 and EF1α was recommended for all the tested tissues and stages in B. germanica, whereas
the combination of multiple reference genes was unfavorable in P. americana. This study provides
a condition-specific resource of reference gene selection for accurate gene expression profiling and
facilitating functional genomics in these two important cockroaches.

Keywords: cockroaches; reference genes; qPCR normalization; gene expression; functional genomics

1. Introduction

The Blattaria cockroaches have evolved as an ancient and highly successful form
of insect life. Some species (less than 1%) in this group serve as public health pests, of
which the German cockroach, Blattella germanica, and the American cockroach, Periplaneta
americana, are the most common and troublesome household pests worldwide [1]. These
two species are strictly synanthropic and usually infest human-built structures, including
homes, apartments, restaurants, hospitals, and other places where food is available. They
harbor and mechanically transmit various pathogens and trigger asthma and allergic
diseases [2,3]. During the last decades, an increasing number of studies on B. germanica and
P. americana have shown them to be valuable organisms for exploring a variety of biological
issues. In particular, they serve as model systems for studies of developmental biology
and endocrinology in hemimetabolous insects [4–10] and nutrition and reproduction
physiology [11–14]. As excellent chemical communicators, they have long served as
important models for studying chemical ecology, especially in the aspects of sex and
aggregation pheromones [15–20]. These omnivorous cockroach species are also wildly
used for examining host-gut microbiota interactions with regard to their development and
behavior [21–24].
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Quantitative real-time polymerase chain reaction (qPCR) is a powerful molecular tool
that allows the detection and measurement of messenger RNA (mRNA) at the transcrip-
tional level. Being a faster and more sensitive method over the traditional northern blotting
and semi-quantitative PCR, qPCR has developed as the most widely used approach for
gene expression profiling and validation of transcriptome data [25–28]. The accuracy and
reliability of qPCR outputs strongly depend on many biological and technical factors, such
as sample quality, RNA integrity, cDNA synthesis efficiency, and laboratory procedures in-
volved. Therefore, normalization of the data with appropriate reference genes, also known
as housekeeping genes, is needed for minimizing variability [29]. Ideal reference genes are
assumed to have constant and stable expression across biotic and abiotic factors. However,
it is hard and almost impossible to use universal reference genes under all conditions (e.g.,
developmental stages, tissues, and experimental treatments). Evaluation and identification
of appropriate reference genes prior to qPCR analyses is hence crucial for normalization.
Importantly, this is also an indispensable step of the MIQE guideline that currently serves
as the golden criteria of qPCR experiments [29].

With the advent of next-generation sequencing technology, many research fields in
entomology have been profoundly developed into the Genomic Era. In 2018, the genomes
of both B. germanica and P. americana were published [9,30]. Depending on the genome
availability, functional genomic studies could provide an in-depth understanding of cock-
roaches and novel insights into old issues at the molecular level and on a genome-wide
scale. Assessment of gene function by silencing gene expression (e.g., highly efficient RNAi
in cockroaches) and accurate measurement of gene expression are needed for successful
functional genomics. Hitherto, only actin has been used historically and extensively as a
reference gene for qPCR normalization in these two species [6–14,28,31–33]. However, its
stability under specific experimental conditions was not empirically validated, yet there is
no stable reference gene quantification system for B. germanica and P. americana.

The goals of this study were to evaluate the stability of candidate reference genes and
determine the optima for the accurate quantification of genes of interest across various
tissues and developmental stages, as well as under different experimental treatments in
B. germanica and P. americana. We also determined the combination of multiple reference
genes in a given tissue and at a specific developmental stage. Our data overall provide
condition-specific recommendations as to which reference genes should be selected for
expression profiling and functional genomics in these two synanthropic cockroaches.

2. Materials and Methods
2.1. Cockroach Rearing and Sample Preparation

The lines of B. germanica and P. americana used in this study have been previously
described [9,28]. Both colonies were kept in plastic jars or boxes with in-built egg cartons
at ~70% relative humidity under a 12:12 h light/dark photoperiod. B. germanica and
P. americana colonies were separately cultured at 27 ◦C and 30 ◦C, respectively. They were
provided with commercial rat chow and water ad libitum. For harvesting cockroaches
with synchronized development, newly hatched progenies during a 2-day period were
transferred into new containers. Freshly emerged nymphs and adults were separated by
sex from the colony on the day of molting (day 0) and cultured in groups.

We adopted a sampling strategy involving two nymphal stages and four developmen-
tal stages in adulthood, each of which was sampled with various tissues. Note that P. ameri-
cana contains as many as 14 nymphal instars, and the last three instars (N12–14) serve as
a key period for metamorphosis, resembling the last nymphal instar (N6) in B. germanica.
Therefore, mixed specimens of N12–14 (last nymphal instars, LN), as well as the non-
metamorphic N9–11 (middle nymphal instars, MN), were sampled for nymphs of P. amer-
icana. For B. germanica, the N5 and N6 stages were selected for the pre-metamorphosis
and metamorphosis periods, respectively. For both B. germanica and P. americana adults,
the antenna, head, wing, leg, abdominal integument, gut, and ovary were dissected from
female cockroaches on days 1, 3, 5, and 7 (FD1–7, the first vitellogenic cycle), whereas
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for nymphs the wing and ovary were not sampled. Internal tissues were collected under
the protection of RNAlater Solution (Thermo Fisher Scientific, Vilnius, Lithuania). Four
biological replicates were sampled for each tissue at a given developmental stage, and at
least five cockroach individuals were used for each sample.

2.2. Candidate Reference Genes and Primer Design

Depending on the availability of sequence and genome annotation, six and five
commonly used reference genes in other insect species were selected as candidate reference
genes for B. germanica and P. americana, respectively, including the previously reported
actin gene. Specifically, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, PSN54931.1),
elongation factor-1-alpha (EF1α, KX228232.1), actin 5c (Actin, AJ862721.1), ribosomal protein
L32 (RPL32, C0J52_12160), ribosomal protein S23 (RPS23, PSN46372.1), and 28S ribosomal
RNA (DQ874201.1) were selected for B. germanica (Table S1), and GAPDH (JN411914.1),
EF1α (PaOGS02446), actin (AY116670.1), RPS23 (KJ472479.1), and 18S ribosomal RNA (18S,
AF370792.1) were selected for P. americana (Table S2). For each candidate gene, three to five
pairs of gene-specific primers were designed for amplification of 80–120 bp fragments from
the coding region using the Primer-BLAST online tool.

2.3. RNA Isolation, cDNA Synthesis, and qPCR

Total RNA was extracted from different tissues with RNAiso Plus reagents (Takara,
Dalian, China) according to the supplier’s instructions. The quantity and integrity of
RNA samples were assessed by a NanoDrop One spectrophotometer (Thermo Fisher
Scientific, Madison, WI, USA) and agarose gel electrophoresis. An aliquot of 2 µg of the
RNA extracts was reverse-transcribed to first-strand cDNA using oligo(dT)s and Reverse
Transcription M-MLV (RNase H-) (Takara, Dalian, China). All qPCR experiments were
conducted in accordance with the MIQE guidelines [29]. For each reference candidate,
a specific primer pair with an optimal amplification efficiency was firstly screened by
establishing standard curves with a 4-fold diluted cDNA series, which was derived from a
whole-body RNA sample. The length and sequence of each PCR fragment were further
validated by 1.2% agarose gel electrophoresis and Sanger-based DNA sequencing (Tsingke
Biotech., Guangzhou, China). For expression profiling of the reference candidates, qPCR
was performed with biological replicates, each with technical triplicates, on a QuantStudio
6 Flex Real-Time PCR System (Life Technologies Holdings Pte Ltd., Singapore). Each
reaction was in 20 µL containing 10 µL of Hieff qPCR SYBR Green Master Mix (Yeasen,
Shanghai, China), 8 µL of 20-fold diluted cDNA template, and 1 µL of each forward and
reverse primer (10 µM). The thermocycling was under the control of a two-step program
from 94 ◦C for 3 min, followed by 40 cycles of 94 ◦C for 10 s and 56 ◦C for 30 s.

2.4. Juvenile Hormone (JH) Treatment and RNAi Experiment in B. germanica

JH III (Cayman Chemical, Ann Arbor, MI, USA) solution was prepared in acetone
with a final concentration of 20 µg/µL [7]. Adult females were briefly anesthetized with
carbon dioxide, and 1 µL of the solution was applied to the prosternum with a syringe on
day 3. Acetone was used as a negative control for JH III treatment. After 24 h, the antennae
were sampled for qPCR analysis, and the expression of Kr-h1, a JH primary response gene,
was investigated to validate the effect of JH application.

For knockdown of fruitless (fru), a master gene controlling male courtship in B. ger-
manica, a 303 bp fragment was selected as a DNA template for dsRNA synthesis [31]. The
fragment was PCR amplified and cloned into a pGEM-T Easy vector (Promega, Madi-
son, WI, USA), followed by validation of the insertion by DNA sequencing. The Mus
musculus lymphotoxin A gene (Muslta) not found in B. germanica served as an unrelated
control for RNAi [28]. DsRNA synthesis and purification were performed using a T7 Ribo-
MAX Express RNAi System (Promega, Madison, WI, USA) as described in our previous
study [28,33]. Cockroaches were anesthetized with carbon dioxide, and 2 µL of dsRNA was
injected into the hemocoel at a dose of 6 µg per cockroach. The microinjection of dsRNA
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was implemented by using a NanoFil syringe (35 G beveled needle) coupled with an ALC-
IP600 precision syringe pump (Alcott Biotech., Shanghai, China). Cockroaches received
two injections of dsRNA, each on day 0 and day 3, and the head (without antennae) was
dissected for qPCR analysis of fru expression on day 5.

2.5. Inhibitor and Antibiotic Treatment in P. americana

Two inhibitors, including LY294002 and rapamycin (both from MedChemExpress,
Monmouth Junction, NJ, USA), were used for inhibiting the activities of phosphoinositide
3-kinase (PI3K) and target of rapamycin (TOR), respectively, via artificial feeding. For
both sterile tap water and artificial diet (70% corn flour, 15% wheat bran, 10% bean pulp,
and 5% fish meal), either LY294002 or rapamycin was added at a final concentration of
50 or 100 µg/mL(g), respectively. In a separate experiment, a mixture of antibiotics was
added into both the water and diet for the establishment of a germ-free strain. The final
concentration was 0.25 mg/mL(g) for rifampicin and norfloxacin, and 0.5 mg/mL(g) for
gentamicin, doxycycline, ciprofloxacin, streptomycin sulfate, and metronidazole. Newly
hatched cockroaches were allowed to feed on the prepared water and food containing
either an inhibitor or a mixture of antibiotics for 60 days, during which the water and food
were replaced every two days. The heads and guts were dissected for the inhibitor and
antibiotic treatments, respectively.

2.6. Data Analysis and Statistics

The expression stability of candidate reference genes was evaluated by a panel of
different algorithms, including geNorm, BestKeeper, NormFinder, and the comprehensive
RefFinder program. GeNorm determines the gene expression stability value, M, by calcu-
lating the average pairwise variation of a reference gene to all the other genes included
in the same analysis [34]. BestKeeper estimates the stability of a candidate gene based on
the standard deviation of Ct values and the repeated correlation coefficient of variation
(CV) [35]. Despite measuring the overall stability, NormFinder introduces an ANOVA-
derived model to calculate both intra- and inter-group variation and ranks reference genes
by stability value (SV) [36]. The final composite ranking of stability was determined by a
comprehensive web-based analytic tool, RefFinder, which integrates the results obtained
by geNorm, BestKeeper, NormFinder, and the comparative delta Ct method [37], and then
ranks the candidate reference genes based on the geometric mean values (GM) [38]. In all
of the mentioned algorithms, a lower value of M, CV, SV, or GM indicates a higher stability
or lower variation, and thus, a better reference gene. For recommendation of the optimal
number of reference genes required for a robust normalization, geNorm also estimates the
pairwise variations (Vn/n+1, n indicates the number of reference genes) after introducing
an additional reference gene, with a cutoff value of M = 0.15. The significant difference in
gene expression level between the two groups was determined by Student’s t-test using
the IBM SPSS 19.0.

3. Results
3.1. Validation of Primer Sets

As a first step towards the evaluation of expression stability, we screened and verified
appropriate primer pairs by performing melting curve and standard curve analyses. Each
of the obtained primer pairs for qPCR amplification yielded a single peak from the melting
fluorescence and a single band of the expected size in agarose gel (Figure S1), suggesting
the absence of any non-specific product. Meanwhile, a standard curve was established
for each primer pair. All the linear correlation coefficients (R2) exceeded 0.99, with an
amplification efficiency (E%) that varied from 91% to 95% for B. germanica and 87% to 98%
for P. americana (Tables S1 and S2). These data suggest a successful screening of highly
specific and efficient primers.
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3.2. Transcriptional Profiles of Candidate Reference Genes

For B. germanica, regarding various different tissues and stages, all calculated Ct
values of the six candidate genes ranged from 12.3 to 21.5, with 28S showing the overall
highest expression, whereas RPS23 was the lowest (Figure 1A). Based on the results of
four individual algorithms and a comprehensive program, RPL32 was most stable with
the lowest variations among all the samples (Table 1). In the P. americana system, the
five candidate genes resulted in Ct values varying from 10.6 to 27.6. Among them, 18S
showed the highest expression level, and RPS23 showed the lowest expression (Figure 1B).
Evaluation of their stability by geNorm, NormFinder, and RefFinder resulted in EF1α
being ranked as the most stable reference gene, while RPS23 showed the lowest variation
according to the BestKeeper result (Table 2).
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Table 1. Expression variation and stability ranking of the candidate reference genes using geNorm, BestKeeper, NormFinder,
and the comprehensive RefFinder algorithm in B. germanica.

Rank

Delta Ct geNorm BestKeeper NormFinder RefFinder

Gene
Name

Average
Ct

SD Gene
Name M Gene

Name CV Gene
Name SV Gene

Name GM

1 RPL32 18.00 0.57 RPL32 0.24 RPL32 4.03 RPL32 0.12 RPL32 1.00
2 EF1α 16.62 0.60 EF1α 0.24 GAPDH 4.39 EF1α 0.22 EF1α 2.00
3 RPS23 18.87 0.64 RPS23 0.31 RPS23 4.69 RPS23 0.31 RPS23 3.57
4 Actin 17.28 0.67 Actin 0.36 EF1α 4.73 Actin 0.37 Actin 4.23
5 28S 13.94 1.06 28S 0.61 Actin 4.74 28S 0.94 28S 4.40
6 GAPDH 17.58 1.10 GAPDH 0.77 28S 5.55 GAPDH 0.98 GAPDH 4.56

Table 2. Expression variation and stability ranking of the candidate reference genes using geNorm, BestKeeper, NormFinder,
and the comprehensive RefFinder algorithm in P. americana.

Rank

Delta Ct geNorm BestKeeper NormFinder RefFinder

Gene
Name

Average
Ct

SD Gene
Name M Gene

Name CV Gene
Name SV Gene

Name GM

1 EF1α 20.79 1.54 EF1α 0.98 RPS23 10.38 EF1α 0.44 EF1α 1.41
2 Actin 21.10 1.64 Actin 0.98 Actin 10.58 Actin 0.74 Actin 1.68
3 RPS23 21.76 1.77 RPS23 1.25 18S 11.74 RPS23 1.10 RPS23 3.00
4 GAPDH 21.64 1.84 GAPDH 1.34 EF1α 12.00 GAPDH 1.32 18S 3.34
5 18S 14.07 2.75 18S 1.91 GAPDH 12.62 18S 2.59 GAPDH 4.23

3.3. Expression Stability of Candidate Reference Genes throughout Various Stages in Specific Tissues

Instead of examining the overall expression variation, we also evaluated the expression
stability of these candidate gene expressions under specific conditions. The expression
variations throughout various developmental stages were first analyzed in specific tissues
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by four algorithms. In B. germanica, geNorm analysis showed that RPL32 and EF1α were
ranked as the most stably expressed genes in most of the examined tissues except for the
gut, in which RPL32 and RPS23 were the two best choices (Figure 2A–G, left). This is not
the case for the BestKeeper algorithm, from which RPL32 was only recommended in the
head, whereas GAPDH and 28S were the best in the other tissues. As for NormFinder,
RPL32 was also preferred in most of the tissues but not the wing, in which RPS23 was the
best (Figure S2A–G). According to the comprehensive ranking by the RefFinder algorithm,
RPL32 was recommended as the most appropriate reference gene in the antennae, head,
wing, leg, abdominal integument, and gut of B. germanica, whereas EF1α was recommended
in the ovary (Figure 2A–G, right).
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Figure 2. Expression stability rankings of candidate reference genes across different developmental
stages in specific tissue types. The M and GM values were calculated by the geNorm and RefFinder
algorithms, respectively, for candidate reference genes across different stages in the tissue of antenna,
head, wing, abdominal integument, gut, and ovary in either B. germanica (A–G) or P. americana (H–N).

In the case of P. americana, geNorm analysis showed that the expression of actin
throughout different developmental stages was most stable in all the examined tissues,
exhibiting a quite similar variation with EF1α in the ovary (Figure 2H–N, left). Similarly,
either actin or EF1α was favored by NormFinder in most tissues but not the ovary, in which
GAPDH was optimal. However, actin was preferred by BestKeeper only in the wing and
leg, and this algorithm resulted in varied rankings of these genes for the other tissues
(Figure S2H–N). A comprehensive ranking by RefFinder showed that actin was the optimal
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reference gene for qPCR normalization in the antennae, head, wing, abdominal integument,
and gut of P. americana, whereas EF1α and GAPDH were the best choices for the leg and
ovary, respectively (Figure 2H–N, right).

3.4. Expression Stability of Candidate Reference Genes across Various Tissues at Given Stages

We also investigated the expression variations of the candidate reference genes among
different tissues at specific developmental stages. In the B. germanica system, geNorm
analysis resulted in RPS23 being most stable across various tissues at N5, N6, FD1, FD3,
and FD7, while RPL32 was preferred only at FD5 (Figure 3A–F, left). By contrast, both
BestKeeper and NormFinder algorithms obtained varied results, from which either RPL32,
RPS23, GAPDH, EF1α, or 28S could be selected at a specific stage (Figure S3A–F). Com-
prehensive rankings by the RefFinder algorithm selected RPL32 as the most appropriate
reference gene at N5, N6, FD1, FD3, and FD7, while EF1α was the best choice at FD5
(Figure 3A–F, right).
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Figure 3. Expression stability rankings of candidate reference genes across various tissues at given de-
velopmental stages. The M and GM values were calculated by the geNorm and RefFinder algorithms,
respectively, for candidate reference genes across various tissue types at the developmental stages of
nymphs N5 (A) and N6 (B), and adults FD1 (C), FD3 (D), FD5 (E), and FD7 (F) in B. germanica. In
P. americana, gene expression stability was calculated at the developmental stages of nymphs MN (G)
and LN (H), and also adults FD1 (I), FD3 (J), FD5 (K), and FD7 (L).

As for P. americana, geNorm ranked GAPDH most frequently at specific stages, with
18S showing the lowest stability at all stages (Figure 3G–L, left). Based on the BestKeeper
algorithm, RPS23 and 18S were ranked as the best, while EF1α was most frequently favored
by NormFinder (Figure S3G–L). According to the summarized ranking of these candidate
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genes by RefFinder, EF1α was the most appropriate at LN, FD3, FD5, and FD7, and RPS23
was the best at both MN and FD1 stages (Figure 3G–L, right).

3.5. Expression Stability of Candidate Reference Genes under Experimental Treatment Conditions

To investigate whether the expression of reference genes varies with specific experi-
mental treatments, we next evaluated their stability under specific conditions, including
hormone and dsRNA treatments in B. germanica, and inhibitor and antibiotic treatments in
P. americana. For B. germanica with JH treatment (Figure 4C), the four algorithms resulted in
varied rankings of candidate genes, among which GAPDH was favored by the comprehen-
sive RefFinder analysis (Figures 4A and S4A). Under RNAi conditions (Figure 4D), how-
ever, all four analyses obtained consistent results showing EF1α was the best Figures 4B
and S4B). As for P. americana, RPS23 showed the highest stability among inhibitor treat-
ments according to all four algorithms (Figures 4E and S4C). Differently, 18S was among
the most frequently selected genes under antibiotic treatment (Figures 4F and S4D).
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3.6. Optimization of Gene Numbers Needed for qPCR Normalization

The combination of multiple reference genes is increasingly encouraged to reduce
biased normalization, and importantly, this is also required in the MIQE guidelines [29]. To
evaluate the optimal number of genes for accurate normalization, we further performed
geNorm analyses to calculate the pairwise variations between ranked genes (Vn/n+1) by
successively adding reference genes derived from the RefFinder results in Figures 2 and 3.
In all the examined tissues of B. germanica, the V2/3 values among different stages were
lower than 0.15, whereas the inclusion of the least stable gene (GAPDH) in the ovary re-
sulted in the V5/6 being higher than 0.15 (Figure 5A). These data suggest that the utilization
of two reference genes was sufficient for standardizing these samples. Based on the ranking
from Figure 2, the combination of RPL32 and actin was recommended for qPCR analysis
in the antennae and head, using RPL32 and GAPDH was the optimal combination for the
wing, and the combination of RPL32 and EF1α was ideal for the other tissues.
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Similarly, at all the examined developmental stages, the V2/3 values from different
tissues were apparently lower than 0.15. In addition, the inclusion of the fifth reference at
most of the stages (e.g., GAPDH at FD1) caused significantly higher V4/5 values (Figure 5B).
Therefore, using two reference genes would standardize these samples well. According to
the RefFinder ranking from Figure 3, it is suggested that the combination of RPL32 and
RPS23 was appropriate for qPCR normalization at N5, FD1, and FD3, using RPL32 and
EF1α was the optimal combination at N6 and FD7, and the combination of EF1α and actin
was ideal at FD5. For P. americana samples from specific tissues or developmental stages,
all Vn/n+1 values were higher than or very close to 0.15 (Figure 5C,D), suggesting that no
appropriate, tested combinations of reference genes can be used in P. americana.

Overall, using two reference genes together was efficient for normalizing samples
from different tissues and stages in B. germanica, and the combination of RPL32 and EF1α
was ideal for most tissues and stages. Beyond this case, it is of note that additional
inclusion of EF1α in the antennae, head, and wing, or at N5, FD1, and FD3, caused
insignificant changes in the corresponding variations, nor did the inclusion of RPL32 at
FD5 (Figure 5A,B). Therefore, the combination of RPL32 and EF1α was recommended for
all tested spatiotemporal conditions in B. germanica.

4. Discussion

Many qPCR studies have reached a consensus that it is unrealistic to find a ‘uni-
versal’ reference gene showing constant expression across all species and experimental
conditions [25]. Identification of appropriate reference genes under different conditions
(spatiotemporal and experimental treatments) is therefore mandatory for reliable qPCR
analysis in a given species [29]. Hitherto, a stable reference gene system has been estab-
lished in a variety of insect orders but not the Blattaria cockroaches. In the present study,
we evaluated the stability of several reference genes in B. germanica and P. americana, which
are important model systems in hemimetabolous insects. We sampled several tissues
and developmental stages that have their own advantages against others on studying
biological issues of interest. For example, the antennae should be preferred for exploring
chemosensory mechanisms, as with legs for limb regeneration, and the last nymphal instar
for metamorphosis. We found that the obtained Ct values from either different tissues,
stages, or experimental treatments showed a much higher variation in P. americana than
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those in B. germanica (Figures 1–3). A possible explanation is that the mixed specimens at
MN (N9–11) and LN (N12–14) might introduce higher sample variations since P. americana
harbors a much longer molting cycle at each instar. Previous studies have demonstrated
significant impacts of tissue types and developmental stages on reference gene expres-
sion, in some cases, even greater than the experimental treatments [39–41]. Based on the
comprehensive RefFinder ranking that integrates the results of four individual algorithms,
RPL32 showed the lowest variation in most tissues or at most developmental stages in
B. germanica. By contrast, actin was most frequently preferred in P. americana tissue types,
whereas EF1α performed well at most stages (Figures 2 and 3). It is of note that actin was
most stably expressed across various developmental stages in the P. americana gut but was
the least stable gene in the ovary (Figure 2M,N). Nevertheless, these varied data highlight
the importance of screening condition-specific reference genes in a given species.

While the actin gene has been extensively and empirically used in both B. germanica and
P. americana, regardless of tissue types, developmental stages, and experimental treatments,
its stability under specific conditions has never been evaluated. Our data showed that
actin was rarely selected as the most stable reference gene by all four algorithms (only
preferred by NormFinder under JH treatment) (Figure S4A) in B. germanica. However, it
showed the highest stability in several tissue types, but not at various examined stages
in P. americana (Figures 2 and S2). Therefore, we conclude that actin was not appropriate
for gene expression analyses, at least in B. germanica, for all the examined tissue types and
developmental stages, nor under hormone treatment and RNAi conditions.

Overall, the present study has identified appropriate reference genes across different
tissue types, developmental stages, and experimental treatments, including hormone
application and dsRNA injection in B. germanica, and inhibitor and antibiotic feeding in
P. americana. In B. germanica, we recommend RPL32 as an appropriate internal control for
most spatiotemporal conditions, and the combination of RPL32 and EF1α might be ideal
for all the tested tissue types and developmental stages. In addition, GAPDH and EF1α
were recommended for the quantification of gene expression under JH treatment and RNAi
conditions, respectively. In P. americana, actin and EF1α were appropriate in most tissue
types and developmental stages, respectively, while no efficient reference gene combination
was sufficient for spatiotemporal normalization. RPS23 and 18S was the best choice under
inhibitor and antibiotic treatment, respectively. Clearly, more investigations are needed
for qPCR analysis under other experimental conditions not tested at this time. This study
is the first step toward facilitating functional genomics and an in-depth understanding of
cockroaches from aspects of interest at the molecular level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12121880/s1, Figure S1. Evaluation of the specificity and amplification efficiency of the
primer pairs; Figure S2. Expression stability rankings of candidate reference genes across different
developmental stages in specific tissue types; Figure S3. Expression stability rankings of candidate
reference genes across various tissues at given developmental stages; Figure S4. Expression stability
rankings of candidate reference genes under experimental treatments; Table S1. Primers used for
evaluation of candidate reference genes in B. germanica; Table S2. Primers used for evaluation of
candidate reference genes in P. americana.
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