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Meiotic recombination is the driving force of evolutionary development and an important

source of genetic variation. The meiotic recombination does not take place randomly in a

chromosome but occurs in some regions of the chromosome. A region in chromosomes

with higher rate of meiotic recombination events are considered as hotspots and a

region where frequencies of the recombination events are lower are called coldspots.

Prediction of meiotic recombination spots provides useful information about the basic

functionality of inheritance and genome diversity. This study proposes an intelligent

computational predictor called iRSpots-DNN for the identification of recombination spots.

The proposed predictor is based on a novel feature extraction method and an optimized

deep neural network (DNN). The DNN was employed as a classification engine whereas,

the novel features extraction method was developed to extract meaningful features for

the identification of hotspots and coldspots across the yeast genome. Unlike previous

algorithms, the proposed feature extraction avoids bias among different selected features

and preserved the sequence discriminant properties along with the sequence-structure

information simultaneously. This study also considered other effective classifiers named

support vector machine (SVM), K-nearest neighbor (KNN), and random forest (RF) to

predict recombination spots. Experimental results on a benchmark dataset with 10-fold

cross-validation showed that iRSpots-DNN achieved the highest accuracy, i.e., 95.81%.

Additionally, the performance of the proposed iRSpots-DNN is significantly better than

the existing predictors on a benchmark dataset. The relevant benchmark dataset and

source code are freely available at: https://github.com/Fatima-Khan12/iRspot_DNN/

tree/master/iRspot_DNN.
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INTRODUCTION

Meiotic recombination is the process of exchanging alleles
between homologous chromosomes, which take place during
meiosis (Lichten and Goldman, 1995; Petes, 2001; Liu et al.,
2012, 2016). It is a vital biological process that is carried
out in two phases; meiosis and recombination. In meiosis,
the genome is divided into two equivalent parts which are
known as daughter cells that take part in the production of a
new living organism. While in the recombination process, the
different gametes are joined to make new genetics combinations
(Kabir and Hayat, 2016). It is essential for cell division and an
important process to make heredity variances (Paul et al., 2016;
Zhang and Kong, 2018b). Hence, the meiotic recombination
gives opportunities for natural exchange of hereditary variations
(Chen et al., 2013; Zhang and Kong, 2018b), which causes the
genome to create more hereditary differences and speed up
the genetic progress. The meiotic recombination does not take
place randomly in a chromosome but occurs in some regions
of a chromosome. In general, the region that exhibits a high
frequency of recombination is considered as hotspots, whereas
the region that exhibits low frequency of recombination is
considered as coldspots (Liu et al., 2012; Dong et al., 2016).
The study of recombination spots provides useful information
about the basic functionality of inheritance and genome diversity.
Additionally, it gives valuable insights about variation in DNA
sequence and patterns, which may help to know the position of
alleles that cause different diseases (Abeysinghe et al., 2003; Hey,
2004).

Owning to the importance of meiotic recombination, several
predictors have been introduced in the literature using machine
learningmethods for identification of recombination spots (Zhou
et al., 2006; Jiang et al., 2007b; Liu et al., 2012, 2016, 2017a; Chen
et al., 2013; Li et al., 2014; Qiu et al., 2014; Dong et al., 2016;
Kabir and Hayat, 2016; Wang et al., 2016; Dwivedi, 2018). For
example, Liu et al. (2012) proposed a model for discrimination
of recombination spots using an increment of diversity with
quadratic discriminant analysis (IDQD) method and k-mer
approach. Jiang et al. (2007b) proposed RF-DYMH predictor
based on gapped dinucleotide composition (GDC) technique
for feature formulation and RF as a classification algorithm.
Chen et al. (2013) proposed iRSpot-PseDNC based on “pseudo
dinucleotide composition” (PseDNC) with SVM. The authors
employed PseDNC with physiochemical properties for feature
extraction and SVM as a classification engine. Liu et al. (2016)
proposed iRSpot-DACC based on dinucleotide-based autocross
covariance (DACC) with SVM as a learning algorithm. The
DACC incorporated global sequence order information along
with local DNA properties to construct a feature vector. Liu
et al. (2017a) proposed iRSpot-EL model for discrimination of
recombination spots. The proposed model applied PseKNC and
DACC along with ensemble classifier. Kabir and Hayat (2016)
proposed iRSpot-GAEnsC using different sequence formulation
methods, such as nucleotide, di-nucleotide, and tri-nucleotide
along with ensemble classifiers. Qiu et al. (2014) proposed
iRSpot-TNCPseAAC that combined TNC and PseAAC (pseudo
amino acid composition) techniques to formulate DNA samples.

The TNC method was used to integrate DNA local or short-
range sequence order information, whereas, the PseAACmethod
was applied to integrate DNA global and long-range sequence
order information. Zhang and Kong (2018b) proposed iRSpot-
PDI using PseAAC as a feature extraction technique along
with the BFS (best first search) method for feature selection.
Maruf and Shatabda (2018) proposed iRSpot-SF computational
model for the identification of hotspot using a sequence based
feature method with SVM. The author used different K-mer
composition approaches to extract optimum features. Zhang
and Kong (2018a) proposed iRSpot-ADPM using di-nucleotide
composition (DNC) as a sequence formulation technique and
SVM as a classification engine. Jani et al. (2018) proposed
iRecSpot-EF for the classification of recombination hotspots and
coldspots. The authors employed K-mer for feature extraction,
AdaBoost technique for feature selection, and logistic regression
as classification algorithms. The methods mentioned above have
applied single layer conventional machine learning methods that
are unable to discriminate hotspots and coldspots accurately.

Recently, Khan et al. (2019b) proposed iRSpot-SPI for
predictions of hotspots and coldspots based on multilayer deep
learning algorithm. The proposedmodel used sequence-structure
information along with deep learning as a discriminativemethod.
The proposed model achieved the highest accuracy; however, the
authors ignored optimization (i.e., tuning) of hyper-parameters
of the DNN model. We argue that with un-tuning parameters,
a model can generate unstable results, which affect the overall
performance of the model. In short, the existing models are
summarized in Table 1 according to applied feature extraction
methods and machine learning algorithms.

This paper proposes an intelligent computation model based
on a novel hybrid feature extraction method along with
optimized DNN for the prediction of recombination hotspots
and coldspots. Moreover, the proposed model employed SVM-
RFE (Guyon et al., 2002; Zhang et al., 2006) for discriminant
feature selection. The proposed model was designed to follow
Chou’s five-steps rule mentioned comprehensively in a series of
publications (Chou et al., 2011; He et al., 2015; Jia et al., 2015;
Khan et al., 2019a). The framework of the proposed iRSpot-
DNN is shown in Figure 1. Firstly, we selected a valid benchmark
dataset that contained recombination hotspots and coldspots
sequences. The benchmark dataset was split into training and
testing dataset. Secondly, different feature extraction methods
were employed to construct feature vectors. Thirdly, we obtained
discriminant features using feature selection method. Fourthly,
we proposed a novel method that considered the contribution of
different feature extraction methods in order to avoid biasness
and preserved sequence discriminative properties. Fifthly, the
proposed model applied a grid search approach for hyper-
parameters tuning. Sixthly, the DNN model with optimized
hyper-parameters was applied to predict recombination spots.
Finally, the performance of the proposed model was evaluated on
a selected benchmark dataset using a 10-fold cross-validation test.
Based on evaluation results, the iRSpot-DNN yielded the highest
success rate of 95.81%, sensitivity of 96.17%, specificity of 95.92%,
and Matthews correlation coefficient of 0.915. Furthermore,
the outcome of iRSpot-DNN was compared with the current
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TABLE 1 | Summery of exiting model according to feature extraction methods

and machine learning algorithms.

Model name Classification

algorithm

Feature extraction

method

RF-DYMHC (Jiang et al.,

2007b)

RF GDC

IDQD (Liu et al., 2012) IDQD K-mer

iRSpot-PseDNC (Chen

et al., 2013)

SVM PseDNC

iRSpot-TNCPseAAC (Qiu

et al., 2014)

SVM TNC and PseAAC

iRSpot-GAEnsc (Kabir

and Hayat, 2016)

KNN, SVM, RF DNC and TNC

iRSpot-DACC (Liu et al.,

2016)

SVM DACC

iRSpot-EL (Liu et al.,

2017a)

SVM DACC and PseKNC

iRSpot-ADPM (Zhang and

Kong, 2018a)

SVM DNC

iRSpot-SF (He et al.,

2018)

SVM K-mer Composition, TF-IDF,

gapped k-mer composition,

and reverse complement

k-mer composition (RCC)

iRecSpot-EF (Jani et al.,

2018)

Logistic regression RCC

iRSpot-SPI (Khan et al.,

2019b)

DNN GDC, RCC, and PseTNC

predictors, and the comparison results illustrated that the
proposed iRSpot-DNN outperformed the current predictors.

METHOD AND MATERIAL

Benchmark Dataset
The selection of a consistent and standard benchmark dataset is
the first step toward building an intelligent, accurate, and reliable
prediction model. In order to build a reliable prediction model,
this paper selected a standard benchmark dataset presented in
Jiang et al. (2007b), which is used in several papers (Liu et al.,
2012; Chen et al., 2013; Qiu et al., 2014; Yang et al., 2018;
Zhang and Kong, 2018b; Khan et al., 2019b). We formulated the
benchmark dataset as follows:

S = S+∪ S− (1)

Here S+ represents hotspots and S- represent coldspots. U is
the set theory operator representing a union of both the S+

and S−. Initially, the dataset contained 490 S+ sequences and
591 S− sequences. To eliminate redundant and homologous
sequences, we applied CD-HIT (Li and Godzik, 2006; Fu et al.,
2012) software that removed sequences having similarity more
than 75%. The updated dataset contained 478 S+ sequences and
572 S− sequences.

Sequence Formulation Methods
In the previous section, we discussed the construction of a
benchmark dataset that contained DNA hotspots and coldspots
sequences. In this section, we formulate biological sequences of
different lengths in a feature vector with the same length. Since
the statistical machine learning models deal only with numerical
descriptors of equal length (Chou, 2015; Noi and Kappas, 2018).
Therefore, the biological sequences are required to transform
(formulate) into a uniform discrete feature vector before they are
given to a computation model. However, the biological sequence
may lose pattern or order information at the time of the sequence
formulation process. Therefore, various methods in the area of
computational biology have been proposed for formulation of
DNA, RNA and protein sequences into a distinct feature vector
with preserved the sequence pattern and order information
(Chen et al., 2013; Qiu et al., 2014; Kabir and Hayat, 2016; Liu
et al., 2016; Wang et al., 2016; Yang et al., 2018; Zhang and Kong,
2018b). Besides, web servers have been developed that can be
used to convert DNA, RNA, and protein sequences into features
vectors according to user’s need (Liu et al., 2015, 2017b; Chen
et al., 2019).

In this paper, firstly, we applied different sequence
formulation/feature extraction methods, such as Gapped
di-nucleotide composition (GDC), Reverse complement
composition (RCC) and PseTri-Nucleotide Composition
(PseTNC) to transform biological sequences into feature vectors.
Secondly, we derive a novel formula that generated different
features groups based on contribution of the selected feature.

Let suppose D is a DNA sequence from dataset S with length
L, can be expressed in mathematical form as Equation (2).

D = D1, D2, D3, . . .DL (2)

Where D1 ǫ {A, C, G, T} and i ǫ (1, 2, 3. . . L). D1 is the nucleotide
at first residue position; D2 is the nucleotide at second residue
position and so no.

Gapped Di-nucleotide Composition
Di-nucleotide composition method is widely used for a sequence
formulation; however, this method is considered a correlation
between two nucleotides having the same properties. In order
to consider K intervals correlation, we used GDC that describes
the correlation of every two pairs of nucleotides with a total
number of K intervals in a sequence. Many research papers have
been applied to the GDC (Jiang et al., 2007b; Ghandi et al.,
2014; Tang et al., 2016; Maruf and Shatabda, 2018; Khan et al.,
2019b) as a feature extraction method. The GDC computes the
cumulative frequency of every two pairs of nucleotides with k
number of intervals in a sequence. The GDC can be formulated
using Equation (3).

gi(κ) =
Oi

(κ)

n(κ)
(3)
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FIGURE 1 | Framework of proposed iRSpot-DNN.

Where Oi

(κ)
is the number of ith observed in two nucleotides, k is

the intervals of bases and n(κ) is the entire population size of two
nucleotide with k interval bases (Tang et al., 2016).

Reverse Complement Composition
The reverse complement of a sequence can be achieved by
reversing the letters of a sequence, i.e., exchanging A and
T and exchanging C and G. A genome sequence obscures
valuable information in a hidden pattern as well as in a reverse
complement pattern, that provides most important regularity
information (Lopez et al., 1999). Rev(k-mer) composition can be
expressed as Equation (4):

RCComposition(Si) =
1

L
CountR(Si),∀k = 3, 4, 5 . . . (4)

PseTri-Nucleotide Composition
The PseTri-Nucleotide composition (PseTNC) method was
introduced by Chou’s et al. for a sequence formulation. The
PseTNC method considers three nucleotide compositions (NC)
during the sequence formulation and also considers preserving
sequence order information (Kabir and Yu, 2017; Khan et al.,
2020). In PseTNC, the occurrence frequency of three NC can be
computed using the method mentioned in Du et al. (2012) and Li
et al. (2016). The PseTNC method can be represented in general
form with K-tuple as Equation (5).

D =

[

f
K−tuple
1 f

K−tuple
2 . . . f

K−tuple
i . . . f

K−tuple

4k

]T
(5)

f
K−tupple
i is the normalized frequency of ith k-tuple nucleotide
in a DNA sequence. We can observe from Equation (5) that
increasing the value of K, increases the dimensionality of the
feature vector. In order to limit the feature vector dimension to
64 possible combinations, we re-write Equation (5) in the form of
3-tuple PseTNC as Equation (6):

D =

[

f
3−tuple
1 f

3−tuple
2 . . . f

3−tuple
64

]T
(6)

Where, f
3−tuple
1 = f (AAA), f

3−tuple
2 = f (AAC), . . . f

3−tuple
64 =

f (TTT)
Equation (6) can be written in terms of Equation (2)

D = [D1 D2 . . .D64 D64+1 . . .D64+λ]
T (7)

dv =











f
3−tuple
v

∑64
i=1 f

3−tuple
i +w

∑λ
j=1 θj

1 ≤ v ≤ 64

wθv−64
∑64

i=1 f
3−tuple
i +w

∑λ
j=1 θj

(64+ 1) ≤ v ≤ (64+ λ)
(8)
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TABLE 2 | Number of features generated by different feature extraction method.

Feature extraction method Number of features

Gapped dinucleotide composition 128

Reverse complement composition 680

PseTNC 66

TABLE 3 | Summary of selected features.

Feature extraction method Number of features Selected features

Gapped dinucleotide composition 128 5

Reverse complement composition 680 12

PseTNC 66 66

In Equation (8)w denotes weight factor and θ denotes correlation
factor, given as follows:

θj =
1

L∗ − j
6

L∗−j
i=1 θ

(

Ti;Ti+j

)

j = 1, 2, . . . λ < L∗ (9)

Discriminant Feature Selection
In the previous section we described different feature
extraction/formulation methods that generate various numbers
of features as shown in Table 2. Feature vector play a vital role
in a model prediction process, however, a feature vector with
a high dimension space may negatively effects the outcome
of a prediction model due to noisy, redundant, and irrelevant
features. A number of techniques have been proposed in the
literature to reduce feature vector dimensionality by removing
the redundant, noisy and irrelevant features. In this paper we
employed SVM-RFE (SVM-Recursive Feature Elimination)
(Guyon et al., 2002; Zhang et al., 2006) technique as a feature
selection method to reduce dimensionality of a feature vector
with minimum loss of discriminative features. As a result we
obtained selected features vectors summarized in Table 3. It is
to be noted that we employed SVM-RFE method on PseTNC
feature vector to eliminate noisy feature and to obtain selected
features, however, the selected features could not significantly
improved the performance of the model. Hence, we utilized all
the generated features, i.e., 66 of the PseTNC in prediction of
recombination spots.

Hybrid Feature and Feature Selection
In this section, we derived a novel formula based on
feature extract methods, such as GDC, RCC, PseTNC, and
feature extracted in iRecSpot-EF (Jani et al., 2018) and their
contributions. The novel formula can be written as Equation (10).

F = aG+ λ ( R+ PseTNC) + (1− λ)(H) (10)

In Equation (10) “a” and “λ” are two parameters having values
between (0,1), which represent the contribution of a method in
the feature vector. G represents GDC, R represents RCC, PseTNC

TABLE 4 | Number of features in each group computed using Equation (10).

Feature group A λ Total features

G1 0 0 425

G2 0 1 78

G3 1 0 430

G4 1 1 83

G5 0.5 0 428

G6 0 0.5 252

G7 0.5 0.5 255

G8 0.5 1 81

G9 1 0.5 257

represents PseTri-Nucleotide Composition and H represents 425
features generated by iRecSpot-EF (Jani et al., 2018). Further, G
represents five selected features, R represents 12 selected features
and PseTNC represents 66 features (Khan et al., 2019b). The
parameters “a” and “λ” are used to measure the contribution
of the feature extraction methods in the dimension of a hybrid
feature vector. A different combination of “a” and “λ” generates
various numbers of features, as shown in Table 4. For example,
using a combination of 0 (i.e., “a” = 0 and “λ” = 0), a total of
425 features are generated, which is represented by G1. Similarly,
a combination of 0 and 1 (i.e., “a” = 0 and “λ” = 1) generates
78 features, which is represented by G2 and so on. Hence, the
number of selected features are based on the values of “a” and “λ.”

Classification Algorithms
Deep Neural Network
Deep learning algorithms apply neural networks that learn
features from the data directly and thenmake decisions. Recently,
deep learning algorithms received significant attention in the
field of bioinformatics and computational biology (Lecun et al.,
2015; Angermueller et al., 2016; Kelley et al., 2016; Mamoshina
et al., 2016; Quang and Xie, 2016; Min et al., 2017; Cohn et al.,
2018; Miao and Miao, 2018; Telenti et al., 2018; Zhang et al.,
2019). A DNN model comprises an input layer, output layer,
and multiple hidden layers, as shown in Figure 2. The given
input data is passed through each layer, where the output of the
previous layer is presented as input to the next layer.

The performance (i.e., accuracy) of the DNN model depends
upon the number of hidden layers in a network. In general,
a network configures with a large number of hidden layers in
a training or testing phase can lead to excellent learning and
ultimately improve the accuracy of themodel (Khan et al., 2019a).
However, it may lead to major problems, such as the complexity
of the model, computation cost, and overfitting (Liu et al., 2015;
Chen et al., 2019).

Deep learning methods have been successfully employed in
several areas, including speech recognition (Deng et al., 2012;
Sainath et al., 2013), image processing (Krizhevsky et al., 2012;
Couprie et al., 2013; Tompson et al., 2014), natural language
processing (Mikolov et al., 2011; Bordes and Weston, 2014),
bio-Engineering (Acharya et al., 2018; Zhu et al., 2019) and
genomics (Khan et al., 2019b). In addition, different research
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FIGURE 2 | Architecture of deep neural network.

papers have proved that the deep learning methods performed
better than conventional machine learning techniques used for
various complex learning problems (Deng et al., 2012; Leung
et al., 2014; Ma et al., 2015). Due to the remarkable performance
of the deep neural network in different domains, in this paper,
we apply the DNN model as a classifier for the prediction of
recombination spots.

In this paper, the DNN model was configured with a small
number of hidden layers (i.e., five hidden layers) along with input
layer and output layer as shown in Figure 2 to keep the model
simple (i.e., less computationally costly) and avoid the model
overfitting problem. Each layer of the model was configured with
multiple processing nodes (i.e., neurons). Firstly, a given feature
vector X{x1x2x3. . . xn} was fed to the input layer and computed
output using Equation (11). Secondly, the output of the input
layer was fed as input to the first hidden layer and produced a new
output. Thirdly, the output of the first hidden layer was provided
as input to the second hidden layer and computed output again.
This process was continued till we reach to the output layer.
The output layer generated binary value, i.e., 0 and 1. The value
0 represents hotspot, and 1 represents coldspots. Furthermore,
different activation functions were employed at the input layer

and hidden layers, however, the DNN model with hyperbolic
tangent (Tanh) activation function generated promising results
compared with other activation functions (see Table 6). The
softmax function was applied at the output layer of the deep
neural network to map the output (non-normalized output) of
the last layer to a probability distribution to predict the output
class. Moreover, stochastic gradient descent and backpropagation
were used to optimize weight and bias value to minimize the
error. In addition, we employed regularization and dropped out
methods to overcome any possible occurrence of the model
overfitting issue. Mathematically, a single layer computation can
be expressed as Equation (11).

Y = g(

n
∑

i=1

Xwk
i + bi) (11)

Where g represents activation function, X represents feature
vector, n represents the number of features, k represents the
layers, and b represents bias value.
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Support Vector Machine
Support vector machine (SVM) is an effective supervised
machine learning technique mostly used for classification and
regression. SVM method was first introduced by Cortes and
Vapnik (1995) for binary classification problems; however, later
on, it was modified for multiclass problems (Ahmad et al.,
2015). SVM converts the input data into a high dimensional
features space based on transformation, and then define the
best possible separating hyper-plane (Qiu et al., 2014). The
key points of SVM are the ability to handle large and noisy
datasets while avoiding overfitting (Zavaljevski et al., 2002). SVM
algorithm can be applied with different kernels; however, SVM
with Gaussian Radial Basis Function (RBF) generally generated
promising results. Additionally, the SVM can be configured
with two other parameters, i.e., C, used for controlling the cost
of misclassifications, and γ, used for handling the non-linear
classification (Qian et al., 2015; Ballanti et al., 2016). Further
details on SVM and its parameter optimization are given in Chou
and Elrod (2002) and Cai et al. (2003).

K-nearest Neighbor
K-nearest neighbor (KNN) (or Lazy learning) algorithm is a
popular algorithm used for both classification and regression

TABLE 5 | List of hyper-parameters with optimized values.

S. No Parameter Optimum configuration value

01 Training iterations 1,000

02 Learning rates 0.1

03 Activation function at output layer Softmax

04 Activation function at hidden layer Tanh

05 Seed 6

06 Number of hidden layers 4

07 Number of neuron at hidden layers 430-413-318-251-182-96-2

08 Weight initialization function XAVIER function

09 Optimizer SGD method

10 Momentum 0.9

11 Updater ADAGRAD function

TABLE 6 | Impact of learning rates and activation functions on the accuracy of

DNN model.

Learning rates Tanh (%) ReLU (%) Sigmoid (%)

0.08 95.43 93.71 54.48

0.09 95.14 93.62 54.48

0.1 95.81 93.52 54.48

0.2 94.86 93.71 89.05

0.3 95.05 93.33 94.86

0.4 93.14 93.81 95.24

0.5 91.62 94.10 95.05

0.6 91.14 93.71 95.33

0.7 90.10 93.81 94.86

0.8 90.00 79.90 95.14

0.9 89.71 68.00 95.24

purposes (Hu et al., 2016). However, it is mostly used for
classification problems (Ali et al., 2015; Zuo et al., 2015;
Khan et al., 2017). KNN is an instance-based and non-
parametric learning algorithm and can be considered a simple
machine learning algorithm (Donaldson, 1967; Qin et al., 2013).
KNN algorithm applies Euclidian distance formula to compute
distance amongst the instances for classification. The principal
characteristic of the KNN is minimum computation times during
the training phase; however, it takes a long time during the testing
phase. In KNN algorithm, the value of K plays a significant
role and it is used to control the fine-tuning of the algorithm.
The model becomes less stable when the value of K decreases,
Inversely the model go toward more stability when the value
of K increases (Harrison, 2018). The KNN algorithm generates
promising performance on the dynamic type of data that changes
and updates quickly (Van Der Malsburg, 1986; Kondarasaiah and
Ananda, 2004). The KNN algorithm becomes slower when the
number of samples or examples increases.

Random Forest
Random Forest (RF) was proposed by Breiman (Lou et al., 2014;
Sitokonstantinou et al., 2018), is an ensemble learning method.
The RF algorithm generates a large number of decision trees, in
which every single tree produces classification results and then
merged all the results of all decision trees using the votingmethod
to generate the final result (Jiang et al., 2007a; Sitokonstantinou
et al., 2018). Feature selection in RF is random, i.e., it is not using
all the features; it divides the features into different trees and then
merges the final result of every tree (Jiang et al., 2007a). Two
parameters that are ntree and mtry are needed to be set up for
achieving better accuracy. The ntree is the number of trees, while
themtry is the number of samples/variables in each split (Noi and
Kappas, 2018). The RF algorithm produces better performance
on a large dataset; however, it experience with overfitting in case
the dataset is too noisy.

PERFORMANCE METRICS

The performance of a newly constructed predictor based
on statistical machine learning algorithms can be evaluated
through some procedures before it applies in a real production
environment (Baratloo et al., 2015). However, before moving
forward, we need to consider the following two questions: (a)
what measurement metrics should be adopted to evaluate the
performance of a new predictor? (b) what test approach should be
employed to compute the measurement metrics? Several metrics
have been proposed in the literature for performance evaluation
of a machine learning model (Chou, 2001a,b; Xu et al., 2013;
Lin et al., 2014; Zhang et al., 2016; Liu et al., 2017c, 2018; Feng
et al., 2019; Tahir et al., 2019). In all these metrics, accuracy
is considered as the most eminent metric for the performance
measurement of a model, however, only the accuracy cannot be
sufficient to assess the model significance (Guo et al., 2014; Akbar
and Hayat, 2018). Therefore, a set of four different measurement
metrics along with the accuracy were considered to evaluate
the performance of a predictor. These metrics are: (i) overall
accuracy (ACC), (ii) sensitivity (SN), (iii) specificity (SP), and (iv)
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Mathew’s correlation coefficient (MCC). The ACC determines a
ratio of number of corrected predictions made by the model to
the total number of input samples. The SN returns true positive
rate of a model whereas the SP is opposite of the SN and compute
true negative rate of a model. The MCC uses all positive and
negative instances and produces output in the range of +1 and
−1. Further, the details and meanings of these metrics are clearly
mentioned in series of publications (e.g., see Chen et al., 2007,
2013; Guo et al., 2008; Qiu et al., 2014; Kabir and Hayat, 2016;
Sabooh et al., 2018; Zhang and Kong, 2018b; Khan et al., 2019b;
Raza, 2019).

In this paper, we considered the aforementioned four metrics

to assess the outcomes of the proposed iRSpot-DNN for the
prediction of recombination spots. According to Chou’s symbol

studying in signal protein peptides (Chou, 2001a), the four

metrics can be represented in the following equations in order to

make them easily understandable tomost experimental scientists.

ACC = 1−
H+
− + H−

+

H+ + H−
; 0 ≤ ACC ≤ 1 (12)

SN = 1−
H+
−

H+
; 0 ≤ SN ≤ 1 (13)

SP = 1−
H−
+

H−
; 0 ≤ SP ≤ 1 (14)

MCC =

1−

(

H+
−+ H−

+

H++ H−

)

√

(

1+
H−
+− H+

−

H+

) (

1+
H+
−− H−

+

H−

)

; −1 ≤MCC≤ 1

(15)

FIGURE 3 | Impact of learning rates and activation function on the performance of DNN.

FIGURE 4 | Error losses of DNN model on different iterations using Tanh activation function.
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In the above equations, H+ represents the total number of
hotspots, H− represents the number of coldspots. Similarly H+

−

represents the number of hotspots wrongly predicted as coldspots
and H−

+ represents the number of coldspots that are incorrectly
predicted as hotspots.

The next challenge is how to assess the quality of a new
predictor using the metrics values. For this purpose, three
methods, such as jackknife, independent dataset, and K-fold
cross-validation are widely applied in the literature (Chen et al.,
2013; Liu et al., 2017a; Yang et al., 2018; Zhang and Kong,
2018a,b; Kong and Zhang, 2019) to examine the performance
and robustness of a predictor. It is to be noted that in the cited

TABLE 7 | Performance of DNN Model using different feature extraction methods.

Groups/Methods SN (%) SP (%) ACC (%) MCC

Gap 86.68 79.60 82.29 0.6458

Reverse 82.87 80.58 81.52 0.6270

PseTNC 75.78 77.17 76.57 0.5261

G1 94.39 95.78 95.14 0.9021

G2 83.73 85.08 84.48 0.6866

G3 96.17 95.52 95.81 0.9155

G4 86.65 86.17 86.38 0.7250

G5 94.15 95.27 94.76 0.8944

G6 91.18 92.33 91.81 0.8348

G7 93.25 94.08 93.70 0.8729

G8 87.58 86.14 86.76 0.7328

G9 90.85 92.79 91.90 0.8369

literature, there is no independent dataset is available so for,
that is why we are unable to apply independent dataset method
whereas the jackknife method is computationally expensive
because of its working mechanism. Hence, In this study, we
employed K-fold cross-validation (i.e., K = 10) method as it has
been adopted by several investigators to assess the quality of their
predictors (Zhou et al., 2006; He et al., 2018; Kong and Zhang,
2019) and comparatively less time consuming technique compare
with jackknife method.

EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, we discuss the efficiency and significance of the
proposed iRSpot-DNN. Firstly, we discuss the hyper-parameter
optimization using a grid search technique. Secondly, we assess
the performance of the DNN algorithm using various sequence
formulation techniques along with the hybrid features. Thirdly,
the performance of the DNN is compared with other machine
learning algorithms. Finally, the outcome of the proposed
iRSpot-DNN is compared with recently published models.

Hyper-Parameter Optimization
Deep learning algorithms consider a number of hyper-
parameters during model configuration. The configurations of
these parameters have a significant impact on the performance
of a learning algorithm. Unlink regular parameters, the hyper-
parameters are specified by user during the model setup.
Typically, it is a challenging task to know what value to be
configured for the hyper-parameters of a learning model on

FIGURE 5 | ROC of DNN model using different feature group.
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a given dataset. Therefore, different approaches, i.e., manual
trail, grid search (Fowler, 2000), and random search are
commonly used for hyper-parameter tuning. The manual trail
and random search approaches for hyper-parameter tuning
are laborious, time-consuming and un-methodical. Hence, we
apply a grid search technique to find optimal hyper-parameters
for the proposed model. In order to apply the grid search
approach, we build a model for different combinations of hyper-
parameters, evaluate the model for every combination and store
the results. The set of hyper-parameters that gives the best
result amongst all combinations is selected and considered as
the optimal parameter set for the proposed model. During the
hyper-parameter optimization, we consider the most influential
parameters, such as activation function, learning rate, and a
number of iterations. We examined the model hyper-parameter
on all groups of features using grid search approach, however,
the promising results were obtained on G3 group features.
The optimal hyper-parameters obtained through the grid search
method for the proposed model are presented in Table 5.

The learning rate in machine learning algorithms is a vital
component and determines the step size a model takes at each
iteration. The step size is the amount that weights updated during

TABLE 8 | Performance comparison of DNN with other classifiers.

Classification

algorithm

Feature method ACC (%) SN (%) SP (%) MCC

SVM Gapped di-nucleotide

composition

82.67 72.80 90.91 0.6534

Reverse complement

composition

54.48 – – –

PseTri-nucleotide composition 80.19 70.08 88.64 0.6022

H 93.05 92.68 93.36 0.860

G3 92.95 92.68 93.18 0.858

KNN Gapped di-nucleotide

composition

74.67 47.91 94.03 0.5283

Reverse complement

composition

69.90 35.98 95.25 0.4504

PseTri-nucleotide composition 74.86 48.12 95.20 0.5329

H 75.24 71.13 78.67 0.499

G3 75.43 71.34 78.85 0.5035

RF Gapped di-nucleotide

composition

80.19 74.69 84.79 0.5996

Reverse complement

composition

80.29 75.94 83.92 0.6015

PseTri-nucleotide composition 81.71 75.73 86.71 0.6307

H 84.57 80.75 87.76 0.688

G3 84.57 78.87 89.34 0.6888

DNN Gapped di-nucleotide

composition

82.29 86.68 79.60 0.6458

Reverse complement

composition

81.52 82.87 80.58 0.6270

PseTri-nucleotide composition 76.57 75.78 77.17 0.5261

H 95.14 94.39 95.52 0.9021

G3 95.81 96.17 95.78 0.9155

the model training phase. The value of the learning rate can be a
small positive value in the range between 0.0 and 1.0. A small
value of the learning rate may lead to overfitting and takes a
longer time to train the model, whereas a large value can quickly
train the model. However, it may ignore some best characteristics
of features being used during the model training.

The activation function is a significant component of a deep
learning algorithm. It is a non-linear function employed at
a neuron and computes the output of a hidden layer. The
activation function decides either a neuron should be fired or
ignored based on the information computed at a hidden layer.
Different activation functions can be applied in deep learning
algorithms, however, the commonly applied activation functions
are: sigmoid, Tanh, and Rectified Linear Unit (ReLU). The impact
of both the learning rate and activation functions are reported in
Table 6 and illustrated in Figure 3.

Table 6 shows that the DNN model achieved a highest
accuracy, i.e., 95.81% using Tanh with a combination of learning
rate 0.1. The second highest accuracy, i.e., 95.33% reported
the sigmoid with a combination of learning rate 0.6. The
ReLU yielded the third-highest success rate, i.e., 94.10% with a
combination of learning rate 0.5. Furthermore, it can be noted
from Figure 3, the un-tune parameter can significantly affect the
performance and stability of the model. Moreover, the model
shows a stable performance using Tanh compared with other
activation functions. Hence, the Tanh can be considered an
optimum value for the activation function parameter.

The number of iteration is another optimization parameter
and significantly impacts the performance of a learning model.
Increasing the number of iterations can significantly minimize
the loss function of a model; however, it may increases the
model training time considerably. The error loss of the DNN
model on different iterations is shown in Figure 4. It can be
observed from the figure that increasing the number of iterations
significantly reduced loss function. The minimum error loss, i.e.,
0.0002176 was reported at iteration 1,000 as shown in the figure.
We further increased the number of iterations; however, it did
not significantly affect the loss function.

Performance of DNN Model Using Different
Feature Extraction Methods
The performance of the proposed DNN model was analyzed
using different feature extraction methods along with the hybrid
features, as discussed in section Sequence Formulation Methods.
The analysis results are presented in Table 7. From Table 7,
we can observe that the DNN model accomplished a highest
accuracy of 95.81% using features represented in the G3 group
whereas, the lowest accuracy achieved using PseTNC method.

ROC (Receiver Operating characteristic)/AUC (Area Under
ROC) curve is another effective method that measure the quality
of a predictionmodel.We evaluated the performance of the DNN
model on different feature extraction groups using ROC curve
as shown in Figure 5. The figure shows that the DNN model
generated a highest value, i.e., 0.965 of ROC/AUC using G3 group
features compared with others groups features.
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FIGURE 6 | ROC of different classifiers.

TABLE 9 | Comparison of the proposed model with existing predictors.

Methods SN (%) SP (%) MCC ACC (%)

RF-DYMHC (Jiang et al.,

2007b)

73.01 86.56 0.6049 80.40

IDQD (Liu et al., 2012) 79.52 81.82 0.6160 80.77

iRSpot-PseDNC (Chen

et al., 2013)

71.75 85.84 0.5830 79.33

iRSpot-TNCPseAAC (Qiu

et al., 2014)

76.56 70.99 0.4737 73.52

iRSpot-DACC (Liu et al.,

2016)

75.71 88.16 0.6470 82.52

iRSpot-EL (Liu et al.,

2017a)

75.29 88.81 0.6510 82.65

iRSpot-ADPM (Zhang and

Kong, 2018a)

77.19 90.73 0.6905 84.57

iRSpot-SPI (Khan et al.,

2019b)

92.21 92.11 0.8101 90.04

iRecSpot-EF (Jani et al.,

2018)

95.14 95.80 0.9037 95.14

Proposed iRSpot-DNN 96.17 95.89 0.9155 95.81

Comparison of DNN Model With Different
Machine Learning Algorithms
The outcome of the DNN in comparison with different learning
classifiers, including SVM (Yue et al., 2003), KNN (Cheng et al.,
2014), and RF (Fawagreh et al., 2014) is presented in this section.
We employed 10-fold cross-validation tests to assess the outcome
of the classifiers using different sequence formulation methods.

The results of this comparison are shown in Table 8. The table
shows that the DNN model achieved a highest accuracy, i.e.,
95.81% compared with other machine learning algorithms. The
second highest accuracy (i.e., 93.05) reported by the SVM and
third-ranking accuracy (i.e., 84.57) obtained by the RF algorithm.
The KNN classifier achieved the lowest accuracy (i.e., 75.43).
Additionally, we evaluated the performance of the classifiers in
more comprehensive way using ROC curve. For the ROC curve,
we used only G3 group features for all the classifiers because they
generated promising results using G3 group features as shown in
Table 8. The ROC curve of the classifiers is shown in Figure 6.
From the figure we can observe that the proposed DNN model
generated a highest ROC/AUC value, i.e., 0.965 compared with
the ROC/AUC values of the other classifiers.

Comparison of the Proposed Predictor
With Existing Predictors
This section presents a performance comparison of the proposed
predictor with the existing predictors. For the comparison, we
selected 9 recently published predictors from the literature. These
predictors are: RF-DYMHC (Jiang et al., 2007b), IDQD (Liu et al.,
2012), iRSpot-PseDNC (Chen et al., 2013), iRSpotTNCPseAAC
(Qiu et al., 2014), iRSpot-DACC (Liu et al., 2016), iRSpot-EL
(Liu et al., 2017a), iRSpot-ADPM (Zhang and Kong, 2018a),
iRSpot-SPI (Khan et al., 2019b), and iRecSpot-EF (Jani et al.,
2018). For this comparison, the proposed model utilized G3
group features. Results of this comparison in terms of accuracy,
sensitivity, specificity, and MMC are listed in Table 9. It
is evidently presented in Table 9 that the proposed model
outperformed the existing models in terms of all four metrics.
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For example, consider the MCC metric, the proposed model
achieved the highest value, i.e., 0.9155, the second highest value,
i.e., 0.9037 reported by the iRecSpot-EF and the third highest
value, i.e., 0.8101 generated by the iRSpot-SPI. Similarly, in
case of the accuracy metric, the iRecSpot-EF generated 95.14%
accuracy whereas, the proposed iRSpot-DNN reported 95.81%
accuracy and the iRSpot-SPI produced 90.04% accuracy. These
results confirmed that the proposed model outperformed the
existing models and can predict the recombination spots with
high precision.

CONCLUSION AND FUTURE WORK

This study presented an intelligent computation model for the
identification of recombination spots. In the proposed model,
hybrid features were extracted from the benchmark dataset.
A novel formula was derived for feature selection and it has
2-fold advantages. Firstly, it avoids biasness among different
selected feature extraction algorithms. Secondly, it preserved
the sequence discriminant properties along with the sequence-
structure information. The performance of the proposed model
was investigated on different classifiers. The results exhibit that
the optimized deep neural network obtained higher performance
having accuracy of 95.81%. As compared to the existing
methods the proposed model performance on the prediction of
recombination spots is clearly improved. It is realized that the
proposed predictor can be considered a handy identification tool
and potentially apply to basic research and drug discovery. In
future work, we will design a public web server for the proposed
iRSpot-DNN so that every experimental scientist can easily access
and use for identification of recombination spots.
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