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The importance of neoantigens for cancer immunity is now well-acknowledged.

However, there are diverse strategies for predicting and prioritizing candidate

neoantigens, and thus reported neoantigen loads vary a great deal. To clarify this

issue, we compared the numbers of neoantigen candidates predicted by four cur-

rently utilized strategies. Whole-exome sequencing and RNA sequencing (RNA-

Seq) of four non-small-cell lung cancer patients was carried out. We identified

361 somatic missense mutations from which 224 candidate neoantigens were pre-

dicted using MHC class I binding affinity prediction software (strategy I). Of

these, 207 exceeded the set threshold of gene expression (fragments per kilobase

of transcript per million fragments mapped ≥1), resulting in 124 candidate

neoantigens (strategy II). To verify mutant mRNA expression, sequencing of

amplicons from tumor cDNA including each mutation was undertaken; 204 of the

207 mutations were successfully sequenced, yielding 121 mutant mRNA

sequences, resulting in 75 candidate neoantigens (strategy III). Sequence informa-

tion was extracted from RNA-Seq to confirm the presence of mutated mRNA.

Variant allele frequencies ≥0.04 in RNA-Seq were found for 117 of the 207 muta-

tions and regarded as expressed in the tumor, and finally, 72 candidate neoanti-

gens were predicted (strategy IV). Without additional amplicon sequencing of

cDNA, strategy IV was comparable to strategy III. We therefore propose strategy

IV as a practical and appropriate strategy to predict candidate neoantigens fully

utilizing currently available information. It is of note that different neoantigen

loads were deduced from the same tumors depending on the strategies applied.

S omatic mutations accumulate in cancer cells during cancer
progression. Recent studies reported that T cells recognize

antigens derived from tumor-specific mutated genes, so-called
neoantigens, and mediate immune responses against tumor
cells.(1–11) The widespread use of next-generation sequencing
(NGS) in the clinic now makes possible the identification of
neoantigen candidates as potential biomarkers or therapeutic
targets for the individual patient. However, reliable practical
methods to identify neoantigens are not well-established; thus,
the numbers of neoantigen candidates detected in tumors and
the accuracy of predicting their immunogenicity vary a great
deal depending on the strategies used. Most commonly, detec-
tion of somatic mutations by high-throughput NGS combined
with computational algorithms for MHC–peptide binding affin-
ity prediction is used to identify candidate neoantigens.(1–12)

Although confirmation of actual antigenicity eliciting antitumor
responses by cytotoxic T cells requires biological assays, an
important role of in silico prediction of neoantigen candidates
is to narrow down and prioritize those with the highest proba-
bility of inducing tumor-specific T-cell responses, prior to
undertaking labor- and cost-intensive, and time-consuming,
biological assays.

Currently, a standard strategy to identify neoantigen candi-
dates is based on analysis of whole-exome sequencing (WES)
data comparing tumor and normal tissue.(1) In addition, gene
expression analysis by RNA sequencing (RNA-Seq) or
microarray has been used to predict candidate neoantigens
derived from the somatic mutations detected by WES
(Fig. 1).(7,8,13) However, it must be noted that the expression
analysis by RNA-Seq or microarray does not necessarily imply
the presence of mutated mRNA actually in the cancer cells.
This is because gene expression levels are determined irrespec-
tive of the position of the mutations. In addition, the tumor
consists of both normal and cancer cells, and the latter may
well also contain both mutated and wild-type sequences, one
on each chromosome. Therefore, strictly speaking, target frag-
ments containing each mutation should be amplified from
tumor cDNA and sequenced to verify the presence of mutated
mRNA sequences within the cancer cells themselves. Inspect-
ing RNA-Seq data more closely reveals that they encompass
both the expression level of gene products as well as the read
counts of sequences with or without each mutation. The read
counts of mutated sequences identified by RNA-Seq could be
used for the verification of mutant mRNA expression.
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In the present study, we compared different strategies for
predicting and prioritizing candidate neoantigens starting from
the same list of identified mutations and patient HLA alleles
based on WES. Candidate neoantigens were defined: (strat-
egy I) solely on the basis of missense mutations detected by
WES; (strategy II) WES and fragments per kilobase of tran-
script per million fragments mapped (FPKM) ≥1 of RNA-Seq
taken together; (strategy III) WES, FPKM ≥1 of RNA-Seq,
and detection of mutated sequences by amplicon sequencing of
tumor cDNA in addition; and (strategy IV) WES combined
with FPKM ≥1 and variant allele frequency (VAF) ≥0.04 of
RNA-Seq. We found that numbers of neoantigen candidates
differed substantially depending on which strategy was used
and that integration of both expression data and sequence data
from RNA-Seq with WES enabled us to predict and prioritize
candidate neoantigens efficiently and appropriately.

Materials and Methods

Patients. Four patients with non-small-cell lung cancer who
underwent lung resection were included in the study. Two

patients had adenocarcinoma and two had squamous cell carci-
noma. Median age was 67 years (range, 41–78 years). All four
patients were men and had a current- or former-smoker his-
tory. Median cigarette consumption was 50 pack-years (range,
21–71 pack-years). None of the patients had received any pre-
operative treatment. The clinical characteristics of the patients
are shown in Table 1. The study was approved by the Human
Genome, Gene Analysis Research Ethics Committee of the
Faculty of Medicine and Graduate School of Medicine of the
University of Tokyo, and the University of Tokyo Hospital
(G3545) (Tokyo, Japan).

Whole-exome sequencing and RNA-Seq. Tumor and adjacent
normal lung tissue samples were obtained immediately after
lung resection and stored in RNAlater RNA Stabilization
Reagent (Qiagen, Hilden, Germany). DNA and RNA samples
were prepared using either AllPrep DNA/RNA Mini Kit or
AllPrep DNA/RNA/miRNA Universal Kits (Qiagen) according
to the manufacturer’s instructions. Genomic DNA was
converted to DNA libraries for DNA sequencing using the
SureSelect XT Kit (Agilent Technologies, Santa Clara, CA,
USA). The SureSelect Human All Exon V5 kit (Agilent Tech-
nologies) was used to specify targeted regions for hybridiza-
tion-based enrichment. Poly-A-selected RNA libraries were
prepared using the SureSelect Strand-Specific RNA Library
Preparation Kit for Illumina (Agilent Technologies). The
sequencing libraries of DNA and RNA were sequenced at 100-
bp paired-end mode on a HiSeq 1500 (Illumina, San Diego,
CA, USA). Exome sequencing reads were mapped on the
human genome sequence (GRCh37) using Burrows-Wheeler
Aligner software (version 0.7.12).(14) Picard (version 2.1.1)
was used to remove duplicate reads. The Genome Analysis
Tool kit (version 3.5) was used for realignment of reads
around indels.(15) Average of total mapped reads in WES was

Fig. 1. In silico prediction of candidate
neoantigens. Tumor-specific mutations were called
from whole-exome sequencing data (a). Of these,
somatic missense mutations were considered as
expressed in the tumor on the basis of fragments
per kilobase of transcript per million fragments
mapped (FPKM) ≥1 by RNA sequencing (RNA-Seq)
(b). The actual expression of mutant mRNAs was
confirmed using amplicon sequencing (amplicon-
seq) with Sanger sequencing or next-generation
sequencing (NGS) (c). Frequency of variant reads
from RNA-Seq of the tumor can be used for the
determination of mutant mRNA in the tumor (d).
List of missense mutations obtained together with
individual patient HLA data analyzed by
computational algorithms predicting MHC–peptide
binding affinity, such as NetMHCpan, to screen for
candidate neoantigens.

Table 1. Characteristics of four patients with non-small-cell lung

carcinoma who participated in this study

Patient Age, years Sex Pack-years Histology P stage

LK029 78 M 60 SQ T1bN0M0-IA

LK047 41 M 21 AD T1bN2M0-IIIA

LK070 67 M 71 SQ T3N0M0-IIB

LK073 67 M 40 AD T2aN0M0-IB

AD, adenocarcinoma; M, male; SQ, squamous cell carcinoma.
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59.5 M for the tumor samples and 57.7 M for normal samples.
Putative somatic variants in tumor DNA were called against
DNA taken from normal lung tissue using VarScan2 (version
2.3.7) and/or MuTect (version 1.1.7).(16,17) Default parameters
were used for variant calling except for –tumor-purity 0.1
(somatic) and –min-tumor-freq 0.015 (processSomatic) in
VarScan2. RNA sequencing reads were aligned using TopHat
(version 1.3.2).(18) Average sequenced reads and total mapped
reads in RNA-Seq were 76.0 M and 62.6 M, respectively.
Expression values were calculated as FPKM using Cufflinks
(version 2.0.2).(19) The RNA read count at each mutation site
was obtained by bam-readcount (https://github.com/genome/ba
m-readcount).

Sanger sequencing of amplified tumor cDNA (amplicon-seq

[Sanger]). Tumor RNA samples were reverse-transcribed with
ReverTra Ace qPCR RT Master Mix with gDNA Remover
(Toyobo, Osaka, Japan) according to the manufacturer’s
instructions. Primer3Plus (http://primer3plus.com/) was used to
design the primer pairs to amplify the region ranging from 200
to 600 bp in size containing each mutation (Table S1). All pri-
mers were synthesized by Sigma-Aldrich Japan (Tokyo,
Japan). TaKaRa Ex Taq Hot Start Version (TaKaRa Bio,
Kusatsu, Japan) was used for PCR amplification according to
the manufacturer’s protocol. The following steps were carried
out using a TaKaRa PCR Thermal Cycler Dice (TaKaRa Bio):
94°C for 3 min, 40 cycles of 94°C for 30 s, and 60°C for 30 s
and 72°C for 1 min, followed by incubation at 72°C for
3 min. The PCR products were electrophoresed and amplicons
of the expected size excised from NuSieve GTG agarose gels
(Lonza, Basel, Switzerland), and then purified using High Pure
PCR Product Purification Kits (Roche, Basel, Switzerland).
Amplicons were Sanger sequenced with the primer used for
PCR amplification (FASMAC, Atsugi, Japan).

High-throughput amplicon sequencing of tumor cDNA

(amplicon-seq [NGS]). Primer pairs were designed to amplify the
200- to 300-bp fragment containing each mutation using Pri-
mer3Plus (Table S1). M13FW (50-TGTAAAACGACGGCC-30)
and M13RV (50- GGAAACAGCTATGAC-30) were added at the
50-end of each forward and reverse primer, respectively. First
PCR amplification was carried out in a final volume of 50 lL,
with 25 lL of 29 Multiplex PCR Buffer (Mg2+, dNTP plus)
(Multiplex PCR Assay Kit version 2; TaKaRa Bio), 0.25 lL
Multiplex PCR Enzyme Mix, 0.05 lM each gene-specific pri-
mer pool, and 1 lg template cDNA. The following steps were
carried out: 94°C for 1 min, 14 cycles of 94°C for 30 s, and
60°C for 1 min, followed by incubation at 72°C for 10 min. The
resultant PCR products were twice purified with AMPureXP
beads (Beckman Coulter, Inc. Brea, CA, USA). Secondary PCR
amplification was undertaken in a final volume of 50 lL, with
25 lL of 29 Multiplex PCR Buffer, 0.25 lL Multiplex PCR
Enzyme Mix, 10 lM each Index primer, and 10 ng purified
first-PCR product. The following steps were carried out: 94°C
for 1 min, five cycles of 94°C for 30 s, 55°C for 10 s and 72°C
for 30 s, followed by incubation at 72°C for 10 min. After the
purified second-PCR product was quantified, typically equal
molarities of PCR product were mixed, applied to MiSeq (Illu-
mina) at 150-bp paired-end mode using the MiSeq Reagent kit
version 3 600 cycles (Illumina) according to the manufacturer’s
instructions. Sequencing reads were mapped on each mRNA
sequence using the Burrows–Wheeler Aligner.(14) Read counts
at each mutation site were obtained by bam-readcount.

Selection of candidate neoantigens by peptide–MHC class I

binding prediction algorithms. The MHC class I binding
affinity of each peptide to the patients’ individual HLA-A, -B,

or -C alleles was estimated as previously described.(20) In
brief, four-digit-typed HLA class I alleles of each patient were
identified from WES data of their normal lung tissue using
Omixon Target HLA Typing (http://www.omixon.com).(21)

The Immune Epitope Database analysis resource NetMHCpan
(version 2.8) was used to predict MHC class I binding of
8–11 mer mutant peptides to the patients’ HLA-A, -B, and -C
alleles.(22,23) Peptides with an IC50 value ≤500 nM were con-
sidered high binders. Tumor-specific variant proteins contain-
ing mutant peptide sequences with an IC50 value ≤500 nM
were regarded as candidate neoantigens.

Statistical analysis. Variant allele frequency was calculated
by VAF = (ALT-read count) / depth. All statistical analyses
were carried out using R 3.3.0 (http://www.r-project.org).

Results

Detection of somatic mutations by WES. Whole-exome
sequencing was carried out on four pairs of lung cancer and
normal tissues; the results were compared to exclude differ-
ences due to SNPs and to identify tumor-specific somatic
mutations in each patient. We focused on missense mutations
for the detection of neoantigens in this study. Total numbers
of missense mutations in these four patients as detected by
MuTect and VarScan were 344 and 233, respectively
(Table S2). The number of missense mutations called by both
detectors was 216, while the sum of those called by either pro-
gram alone was 361. Detailed information on all detected
somatic missense mutations is shown in Table S3.

Mutated gene expression in tumor. Of all tumor-specific
genetic alterations, only the expression of mutated gene prod-
ucts in the tumor itself should be considered for the prediction
of neoantigens. To this end, transcriptome sequencing (RNA-
Seq) of lung cancer tissue was undertaken. The gene products
were regarded as “expressed in the tumor” when their corre-
sponding FPKM was ≥1. Of the total 361 genes with missense
mutations detected by either or both MuTect or VarScan, 207
could be regarded as expressed in the tumor (Fig. 2). Detailed
information about these 207 mutations is shown in Table S4.

Detection of mutated gene sequences in tumor RNA by ampli-

con-seq of tumor cDNA. To verify the expression of mutant
mRNA, fragments containing each mutated nucleotide were
amplified from tumor cDNA (Fig. 2). Of the 207 candidates
for expressed mutant genes, optimal primer pairs could be gen-
erated for all but three. These 204 PCR products corresponding
to each missense mutation were subjected to amplicon-seq
using Sanger sequencing. Of these, 13 samples were not evalu-
able due to the poor resolution of Sanger sequencing, and
among the remaining 191, 116 (60.7%) mutations could be
confirmed.
High-throughput amplicon-seq was also carried out for

these 204 PCR products using NGS. Median depth per ampli-
con was 2732 (range, 0–325 174) (Table S4). In NGS,
sequences with and without mutations are simultaneously
detected; VAF can be calculated at each mutation position
(Fig. 2). Variant allele frequency obtained by amplicon-seq
using NGS and the results by amplicon-seq using Sanger
sequencing were compared (Fig. 3). Although most samples
not showing mutations by amplicon-seq (Sanger) did have a
low VAF by amplicon-seq (NGS) (Fig. 3a), it is critical to
determine the appropriate VAF cut-off value for determining
bona fide mutations by amplicon-seq (NGS). Therefore, a
receiver operating characteristic (ROC) curve was drawn to
obtain the optimal cut-off value for VAF by amplicon-seq

© 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
on behalf of Japanese Cancer Association.

Cancer Sci | February 2017 | vol. 108 | no. 2 | 172

Original Article
Neoantigen prediction with NGS www.wileyonlinelibrary.com/journal/cas

https://github.com/genome/bam-readcount
https://github.com/genome/bam-readcount
http://primer3plus.com/
http://www.omixon.com
http://www.r-project.org


(NGS) for detecting mutations determined by amplicon-seq
(Sanger) (Fig. 3b). Sequencing results for the 191 genes that
were evaluated by amplicon-seq (Sanger) were subjected to
ROC curve analysis. The area under the ROC curve was
0.985, and the cut-off value of VAF in amplicon-seq (NGS)
was set at 0.039 with a Youden index of 0.926 (sensitivity,
0.966; specificity, 0.96). Thus, we defined VAF ≥0.04 as a
criterion for identifying bona fide mutations by amplicon-seq
(NGS). Using this criterion, we re-evaluated the amplicon-seq
(NGS) data for the 204 PCR products. Of these, 121 had a
VAF ≥0.04; we thus concluded that they were positive for
mutant mRNA sequences (Fig. 2). It is of note that NGS
could evaluate several gene products that could not be ana-
lyzed by Sanger sequencing due to poor resolution.

RNA-Seq of tumor delivers information on nucleotide

sequences in addition to the level of expression in tumor. As
discussed above, it is valuable to amplify fragments that con-
tain missense mutations from tumor cDNA and carry out
amplicon sequencing for confirmation of the presence of
mutated mRNA in the tumor. However, it would be faster and
more cost-effective if we could avoid having to prepare ampli-
cons and just use RNA-Seq data of whole tumor RNA for
evaluating the presence of mutant mRNA sequences.

Accordingly, we investigated whether the VAF of each
mutation derived from the RNA-Seq raw data or the mapped
data could be used for evaluation of mutant mRNA expression.
As shown in Table 2, we determined the predictive values for
mutant mRNA detection at various different cut-offs for VAFs
of RNA-Seq data. Here, positive and negative mutant mRNA
expression was compared with amplicon-seq (NGS) data, 121
positive and 83 negative for mutations. When the cut-off for
RNA-Seq VAF was set at the same value as for the amplicon-
seq (NGS) VAF (i.e., VAF = 0.04), a total of 115 mutant
mRNAs was determined, of which 106 were also detected by
amplicon-seq (NGS), indicating 9 false positives. While 89
mutations were regarded as not expressed in the tumor, 74
were also not detected by amplicon-seq (NGS); the remaining
15 were detected by amplicon-seq (NGS) but missed by RNA-
Seq (false negatives). Thus, when the cut-off value was set at
VAF = 0.04, positive and negative predictive values were
92.2% (106 of 115) and 83.1% (74 of 89), respectively. When
the RNA-Seq VAF cut-off was set at 0.02, the positive predic-
tive value decreased to 90.7% while the negative predictive
value increased to 83.7%. When RNA-Seq VAF cut-offs were
set at 0.06, 0.08, and 0.10, the positive predictive values
increased to 92.9%, 94.0%, and 94.7%, respectively, and the

Fig. 2. Evaluation of tumor-specific mutant
transcripts. Three hundred and sixty-one mutations
detected by whole-exome sequencing in four
patients with non-small-cell lung cancer, of which
207 somatic mutations had a fragments per
kilobase of transcript per million fragments
mapped (FPKM) ≥1. Of these 207 candidates for
expressed mutant mRNA, 204 were confirmed by
amplicon sequencing (amplicon-seq); 3 were
excluded because primers for cDNA amplification
could not be designed. Each amplified cDNA region
was sequenced by both Sanger sequencing and
next-generation sequencing (NGS). ALT, alternative
read; REF, reference read; VAF, variant allele
frequency.
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negative predictive values decreased to 82.4%, 74.0% and
70.9%, respectively. A cut-off value of VAF ≥0.04 for RNA-
Seq data yielded acceptably high positive and negative predic-
tive values for mutant mRNA expression; therefore, for further
analysis, we chose this value as the cut-off for determining the
presence of mutated mRNA in tumor.
If RNA-Seq could be undertaken at the same depth as

amplicon-seq using NGS, theoretically the results should be
identical. Even under the current conditions, the VAFs of
mutations identified by RNA-Seq versus amplicon-seq (NGS)
were significantly correlated (Pearson’s R = 0.72, P < 0.0001;
Fig. S1). These results support the utilization of RNA-Seq data
without the necessity for generating another set of amplicon-
seq data for detecting mutated mRNA in tumors. In the cases
investigated here, 117 of 207 mutant mRNAs were regarded as
expressed in the tumor (Fig. 4a); of these, 106 were validated
by amplicon-seq using NGS (Fig. 4b).

Prediction of appropriate neoantigen candidates using Exome

and RNA-Seq. Commonly, the final step of in silico screening
for potential neoantigens depends on an algorithm for predict-
ing the binding affinity of mutated peptides to the patients’
individual HLA-A, -B, and -C molecules. Tumor-specific vari-
ant proteins that harbor mutant peptides with an IC50 ≤500 nM
are generally regarded as candidate neoantigens. To develop
immunotherapies targeting neoantigens, the detection of mutant
mRNA in the tumor is preferable over the mere counts of
neoantigens (neoantigen load) as biomarkers. A set of actually
expressed mutant transcripts rather than only mutated genes,
some of which might not give rise to transcripts at all, should
preferably be used for MHC class I binding affinity prediction.
As shown in Figure 4(a), in our four patients, we detected a

total of 361 somatic missense mutations. The numbers of
mutations and candidate neoantigens for each individual
patient are shown in Table S5. These 361 somatic mutations
were analyzed by NetMHCpan epitope prediction, which iden-
tified 224 candidate neoantigens with IC50 ≤500 nM (Fig. 4a,
strategy I). When FPKM of RNA-Seq was incorporated into
the WES data, a list of 207 mutated genes expressed in the
tumors with FPKM ≥1 was generated. Of these, NetMHCpan
predicted that 124 could represent candidate neoantigens with
an IC50 ≤500 nM (Fig. 4a, strategy II). When expression of
mutant mRNA sequences was confirmed by amplicon-seq, a
more precise list of expressed mutant mRNA could be
obtained. Thus, of the 207 mutations with FPKM ≥1, ampli-
con-seq could be performed for 204, yielding 121 with a VAF
≥0.04 by amplicon-seq (NGS). Accordingly, they were consid-
ered to represent expressed mutant mRNAs. Of these, 75 with
an IC50 ≤500 nM may be regarded as candidate neoantigens
(Fig. 4a, strategy III). Additionally, of 361 mutated genes
detected by WES, RNA-Seq of the tumor selected 117 mis-
sense mutant RNA sequences with FPKM ≥1 and VAF ≥0.04

Fig. 3. Sequencing of amplified tumor cDNA (amplicon-seq) by San-
ger sequencing as well as next-generation sequencing (NGS) to deter-
mine the presence of mutation sequences in the tumor RNA. (a)
Variant allele frequencies (VAF) at each mutation site obtained by
amplicon-seq (NGS) were categorized as positive or negative by ampli-
con-seq (Sanger) and shown in a beeswarm plot. (b) A receiver opera-
tor characteristic curve was drawn to determine the cut-off value of
the VAF obtained by amplicon-seq (NGS) for the detection of mutant
mRNA expression. The results of Sanger sequencing for detection of
mutant mRNA expression were accurately paralleled by NGS when the
cut-off value of VAF was set at ≥0.039 (sensitivity, 0.966; specificity,
0.96). AUC, area under the curve.

Table 2. Predictive values for mutant mRNA detection using

different variant allele frequency (VAF) cut-offs in RNA sequencing

(RNA-Seq) data

RNA-Seq

VAF cut-off

Expression of mutant

mRNA: validated by

amplicon-seq (NGS)

VAF ≥0.04
Total

(n = 204)

Predictive

value, %

Positive

(n = 121)

Negative

(n = 83)

≥0.02

Positive 107 11 118 90.7

Negative 14 72 86 83.7

≥0.04

Positive 106 9 115 92.2

Negative 15 74 89 83.1

≥0.06

Positive 105 8 113 92.9

Negative 16 75 91 82.4

≥0.08

Positive 94 6 100 94.0

Negative 27 77 104 74.0

≥0.10

Positive 89 5 94 94.7

Negative 32 78 110 70.9

Amplicon-seq, amplicon sequencing; NGS, next-generation
sequencing.

© 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
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(Fig. 4a, strategy IV). From these data, 72 candidate neoanti-
gens were identified.
Returning to strategy I, among the 224 predicted candidate

neoantigens, only 75 were likely to be expressed in tumor.
This would yield as positive predictive value of only 33.5%
(75 of 224) using strategy I. For strategy II, the positive pre-
dictive value would be better but still only 60.5% (75 of 124).
The number of candidate neoantigens determined by strategies
III and IV was 75 and 72, respectively, with 68 identified by
both strategies (Fig. 4c), leaving 7 identified by strategy III
alone, and 4 by strategy IV alone. Therefore, positive

predictive values for strategy IV rose to 94.4% (68 of 72).
Thus, it can be concluded that, even without additional PCR
amplification and sequencing, utilization of raw or mapped
data of tumor RNA-Seq combined with WES enables us to
predict neoantigens efficiently and accurately.

Discussion

The assessment of neoantigen load, such as initially the num-
ber of candidate neoantigens, has attracted a great deal of
attention as a potential biomarker for immunotherapy.

Fig. 4. Prediction of candidate neoantigens by different strategies. (a) To predict potential neoantigens, detection of somatic mutations by
whole-exome sequencing (WES) was followed by confirmation of gene expression on the basis of fragments per kilobase of transcript per million
fragments mapped (FPKM) ≥1 of RNA-Seq of the tumor, validation of mutant RNA expression in the tumor, and prediction of peptide–MHC
binding affinities by NetMHCpan. Strategy I: if the available data are WES only, there is no way to verify the expression of mutant mRNA. Here,
361 somatic missense mutations detected by WES alone were submitted to NetMHCpan, and 224 candidate neoantigens were predicted. Strategy
II: if gene expression data are also available, the list of somatic mutations detected by WES can be narrowed down (here, to 207 mutations with
FPKM ≥1 of RNA sequencing [RNA-Seq]), resulting in 124 candidate neoantigens. Strategy III: when amplicon-seq data are available, expression
of mutant mRNA can be validated. Except for three mutations for which primers for cDNA amplification were not available, amplicon-seq using
next-generation sequencing (NGS) could be undertaken for all (*) mutations. Expression of 121 mutant mRNA was validated, resulting in 75 pre-
dicted candidate neoantigens. Strategy IV: evaluating the expression of mutant mRNA examined by RNA-Seq mapped data only, instead of per-
forming amplicon-seq. Selecting a variant allele frequency (VAF) ≥0.04 resulted in 117 of 207 mutant mRNA predicted to be significantly
expressed in the tumor, yielding 72 candidate neoantigens. (b) Intratumoral expression of 121 (by strategy III) or 117 (by strategy IV) mutations
was confirmed by amplicon-seq (NGS) or RNA-Seq, respectively. Of these, 106 were validated by both amplicon-seq (NGS) and RNA-Seq, with 15
detected only by amplicon-seq (NGS). Of the 11 mutations detected by RNA-Seq but not by amplicon-seq (NGS), 9 were false positives where
mutant mRNA expression could not be detected by amplicon-seq (NGS). The remaining two (✝) were not evaluable because primers for ampli-
con-seq could not be generated. (c) Of the 72 candidate neoantigens predicted using strategy IV, 68 were also predicted by strategy III.
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Accurate prediction of neoantigens as therapeutic targets is fur-
ther required for the development of individualized cancer vac-
cines. For these reasons, precise and efficient prediction of
candidate neoantigens is important.
Approaches using WES data only (that we here designated

strategy I) or together with gene expression data (strategy II)
have been used in clinical trials of checkpoint inhibitors to
evaluate neoantigen load as a biomarker of the therapy, but
assessment of mutant mRNA expression in the tumor itself has
not been taken into consideration.(24,25) However, mutant gene
expression in the tumor is crucial if neoantigen load as a bio-
marker is to reflect relevant immune responses to the tumor. In
this respect, strategy II is superior to strategy I, and strategy
III (WES + FPKM ≥1 of RNA-Seq + detection of mutated
sequences by amplicon sequencing of tumor cDNA) is more
rational than strategy II. Here, we showed that strategy IV
(WES + FPKM ≥1 + VAF ≥0.04 by RNA-Seq) was compara-
ble to strategy III. Therefore, we consider strategy IV is the
practical and appropriate strategy to predict candidate neoanti-
gens fully utilizing currently available information without the
necessity for additional cDNA sequencing. Actually, RNA-Seq
or cDNA capture sequencing data have been used for valida-
tion of mutant mRNA expression,(7,10,12,26) although the meth-
ods differ from one research to another.
The commonly used strategy of combining WES data and

FPKM values of RNA-Seq (i.e. strategy II) cannot formally con-
firm the existence of mutated mRNA in the cancer cells them-
selves. Tumor samples contain both cancer cells and normal
cells; mutated and non-mutated sequences coexist in the sample
at different ratios for the genes concerned. The FPKM values of
RNA-Seq reflect the amount of mRNA including sequences
encompassing normal as well as mutated positions. Even if par-
ticular reads cover the mutated position, sequences with or with-
out mutation are counted without distinguishing between the
two. Thus, a high FPKM does not necessarily reflect the expres-
sion of the mutated gene product. In cases where tumor cells
contain mutated DNA that is not expressed, and normal cells
express that mRNA without any mutation, genes with a high
FPKM will nonetheless not represent a source of neoantigen.
Therefore, assessment of the actual expression of mutated
sequences by cDNA sequencing is required. However, ampli-
con-seq requires the preparation of cDNA samples and primers,
which is expensive and time-consuming. To avoid these steps,
RNA-Seq of the tumor could be used not only to evaluate
FPKM but to carry out variant reads at each mutation site. The
fact that data from RNA-Seq include information on gene
expression levels as well as nucleotide sequences is one of the
advantages of this method over microarray analysis. In fact, we
show that a cut-off value of VAF ≥0.04 for RNA-Seq data
yields a sufficiently high positive predictive rate for mutant
mRNA expression in this study (Table 2).
Importantly, because of the trade-off between obtaining too

many false negatives and false positives, if we lower the cut-
off value of VAF, false negatives will decrease but false posi-
tives will increase. Conversely, increasing the VAF cut-off and
setting another cut-off with variant-read count would yield a
lower false positive rate but with higher false negative rates
for predicting candidates of expressed mutant mRNA
(Table 2). Therefore, VAF filters can be used in a flexible
manner to prioritize candidate neoantigens, depending on the
required accuracy. For example, Yadav et al. used RNA-Seq
VAF 0.04 as a cut-off, whereas Cohen et al. used 0.1.(7,26)

Taken together, we conclude that integrating RNA-Seq data
with WES is very useful in in silico candidate neoantigen

prediction, yielding acceptable accuracy with no additional
costs or time. Although assessments of immunogenicity of
these neoantigens using tumor cells and autologous PBMCs or
tumor infiltrating lymphocytes are ideally required to confirm
bona fide neoantigens, the reactivity was evaluated with three
HLA-A2 donors (Fig. S2), because no PBMC from patients
were available in this study. c-Interferon production was
detected with two HLA-A2-restricted neoantigen peptides in
one donor. These results suggest that immunogenic neoanti-
gens can actually be predicted by strategy IV. Recently, Strø-
nen et al. have reported that neoantigen-reactive T cells are
detected in healthy donors and show that adoptive T-cell ther-
apy targeting neoantigens is feasible by transferring neoanti-
gen-reactive T-cell receptor genes obtained from healthy
donors into patients’ T cells.(27) Therefore, prediction of candi-
date neoantigens can broaden the patients’ opportunities for
cancer immunotherapy.
There are, however, several limitations to this approach.

First, an adequate number of sequencing reads are required for
strategy IV. In the present study, the average number of initial
RNA-Seq reads was 76.0 M (7.6 G bases). To examine the
required depth of RNA-Seq for mutant mRNA detection, muta-
tions were reevaluated with 1/16, 1/8, 1/4, 3/8, 1/2, and 3/4 of
total reads in each patient (Fig. S3). As expected, many muta-
tions were missed and the detection rate of mutant mRNA
decreased with fewer RNA-Seq reads. The detection rate of
mutant mRNA saturated at 70–80% of total reads: that is,
50–60 M reads (5–6 G bases). Therefore, RNA-Seq data of
≥5 G bases is preferable for strategy IV. Second, the quality of
NGS data depends on several factors including the quality of
each DNA and RNA sample, the number of total sequencing
reads, and quality control of the primary sequence data. These
encompass several biological obstacles; not only the degrada-
tion of RNA in tumor samples or errors due to reverse tran-
scription and sequencing,(2) but also intratumoral heterogeneity
and contamination with normal tissues such as blood cells and
stromal cells in the tumor samples make it difficult to identify
the tumor-specific mutations with a high degree of certainty.
Finally, variant call results differ a great deal depending on
which software is used. Further study is needed to determine
the optimal software combination. This same limitation also
applies to the MHC binding affinity prediction software.
Although sequencing technologies and bioinformatics have
made remarkable advances of late, they are certainly still not
perfect.
Nevertheless, knowing the advantages and disadvantages of

different approaches, we could accommodate most of these
advanced technologies. As described here, a combination of
WES data and RNA-Seq data offers many advantages for iden-
tifying those mutant transcripts that are actually expressed in
order to predict candidate neoantigens for each individual
patient’s tumor. RNA-Seq data can be used for different types
of analyses such as gene expression profiling and gene set/
pathway enrichment analyses; it is in increasing demand and it
is now becoming more feasible to access both WES and
RNA-Seq data in the clinical setting. Using strategy IV, the
additional burden of cDNA sequencing can be avoided. We
therefore propose strategy IV as the optimal practical and
appropriate strategy for predicting candidate neoantigens.
Finally, several different strategies are currently used to pre-

dict and prioritize candidate neoantigens, and thus interpreta-
tion of neoantigen load reported in published works requires
caution and makes it difficult to compare different studies.
Illustrating this, in the present study, starting from the same
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number of somatic missense mutations (i.e., 361 mutations
detected by WES in four non-small-cell lung cancers), we
derived different candidate neoantigen counts from 72 to 224
by applying different current strategies.
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