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6.1 � Overview

Due to the increasing resistance of HIV-1 to antiretroviral therapies, there has been 
much emphasis on the discovery and development of alternative therapeutics for 
HIV-1-infected individuals. The chemokine receptors CXCR4 (Bleul et al. 1996a; 
Feng et al. 1996; Nagasawa et al. 1996; Oberlin et al. 1996) and CCR5 (Alkhatib 
et al. 1996; Deng et al. 1996; Dragic et al. 1996) were identified as target molecules 
from the time their role as coreceptors for HIV-1 entry into leukocytes was first 
discovered 10  years ago. Initial studies focused on the use of the chemokine 
ligands, or altered derivatives, of CXCR4 and CCR5 to prevent the entrance of 
HIV-1 into immune cells (Schols 2006). While these studies showed some initial 
promise, there was evidence of significant caveats to their use, including selection 
of alternative coreceptor utilizing strains (Marechal et al. 1999; Mosier et al. 1999) 
and the potential to cause inflammatory side effects. These data prompted the 
development and study of small molecule inhibitors of CXCR4 and CCR5, which 
have also been used to examine the roles of these molecules in a variety of inflam-
matory and infectious diseases.

Since their discovery as HIV-1 coreceptors, expression of CXCR4 and CCR5 
has been detected on diverse leukocyte populations and has been shown to influ-
ence the promotion, maintenance, and regulation of inflammation (Bleul et  al. 
1996b; D’Apuzzo et al. 1997; Granelli-Piperno et al. 1996; Klein and Rubin 2004; 
Mohle et al. 1998; Sozzani et al. 1997; Wu et al. 1997). The trafficking of CXCR4- 
and CCR5-expressing leukocytes occurs in a wide range of diseases with diverse 
etiologies that affect a variety of tissue sites, including the central nervous system 
(CNS). Because most antiretroviral therapies are unable to efficiently cross the 
blood–brain barrier (Boffito et al. 2006), the CNS retains special status as a potential 
viral reservoir during HIV-1 infection. It is therefore imperative to consider how 
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targeting HIV-1 coreceptors impacts on leukocyte trafficking into the CNS, as it 
could influence the incidence, progression and severity of advanced HIV-1 infection, 
including the development of HIV-1-associated neurological diseases. For example, 
as HIV-1-infected immune cells are believed to bring virus in to the CNS (Fischer-
Smith and Rappaport 2005), enhancement of leukocyte trafficking into the CNS 
could lead to increases in CNS viral replication and dissemination. Alternatively, 
increased parenchymal entry of immune cells might promote the induction of 
demyelinating disease via enhanced entry of myelin specific T cells into the CNS 
(Hellings et al. 2002; Holz et al. 2000; Lunemann et al. 2004; Muraro et al. 2002). 
Additionally, the prevention of leukocyte trafficking by receptor antagonism could 
lead to increased susceptibility to lethal opportunistic infection, as was observed in 
multiple sclerosis (MS) patients treated with natalizumab, a humanized monoclonal 
antibody against a4-integrin, an adhesion molecule shown to be essential for the 
migration of leukocytes into the CNS (Adelman et al. 2005). In either scenario, the 
effects on CNS leukocyte trafficking resulting from CXCR4 and CCR5 antagonism 
could be especially detrimental when applied to an immunocompromised patient 
population such as one infected with HIV-1.

The following chapter will discuss the current data relating to the role of CXCR4 
and CCR5 in leukocyte trafficking in the CNS. Included is a discussion of the con-
tributions of CXCR4 and CCR5 to neuroinflammatory diseases caused by infection 
with either HIV-1 or WNV and by autoimmune mechanisms such as in MS. To gain 
preliminary insight into how altering leukocyte trafficking patterns in the CNS 
could affect disease outcome, studies utilizing animal models of autoimmune and 
virologic CNS diseases and receptor antagonism or deficiency will be covered. 
Finally, the potential benefits and/or hazards of targeting CXCR4 and CCR5 in the 
context of HIV infection will be addressed.

6.2 � Leukocyte Trafficking into the CNS

The movement of leukocytes out of the blood and into diseased tissue is the hallmark 
of inflammation. The coordination of this movement begins in the secondary lymphoid 
tissue where leukocytes are primed with information regarding antigen specificity, 
become activated, and up-regulate molecules that can direct their infiltration into 
specific target tissues. The general sequence of events leading to leukocyte entrance 
into inflamed tissue is a well-defined process involving selectins, integrins and 
chemokines (Butcher and Picker 1996). The first step in this sequence involves a 
family of molecules that bind sialylated carbohydrates known as selectins, which 
are expressed on the activated endothelium and mediate the “capture and rolling” 
of lymphocytes along the vascular wall. The rolling motion of a lymphocyte is 
converted to firm adhesion by the combined action of integrins and chemokines. 
Integrins are expressed by lymphocytes, and endothelial cells express their carbohydrate 
ligands. Integrins undergo conformational changes in response to activation of 
G-protein-coupled chemokine receptors, which are also expressed by trafficking 
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lymphocytes (Johnston and Butcher 2002; Springer 1994). Chemokine ligands, 
which comprise a large family of proteins that generally direct lymphocyte extrava-
sation into tissues, thus accomplish directed homing of lymphocytes. Although the 
molecular patterns required to enable trafficking from the circulation into the CNS 
are incompletely understood, three important molecules, intercellular adhesion 
molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 (Laschinger and 
Engelhardt 2000), and P-selectin (Piccio et al. 2002) appear to play essential roles 
in this process. ICAM-1, VCAM-1 and P-selectin are all expressed by activated 
endothelial cells during induction of disease or by treatment with the inflammatory 
mediators tumor necrosis factor alpha (TNF-a), CD40 ligand (CD40L), lipopoly-
saccharide (LPS) and IL-1b (Ubogu et  al. 2006). After the CNS endothelium is 
activated, the expression of P-selection and ICAM-1 mediate the capture of circu-
lating T cells through interactions with P-selectin glycolipid (PSGL)-1, and lymphocyte-
function-associated antigen (LFA)-1 (integrin aLb2), respectively (Biernacki et al. 
2001; Bullard et al. 2007; Piccio et al. 2002). Firm adhesion of trafficking T cells 
depends upon ICAM-1, while monocytes utilize VCAM-1, although both share a 
common receptor, very-late antigen (VLA)-4 (Floris et al. 2002).

The CNS is protected from immune cell intrusion by a highly specialized system 
of microvasculature known as the blood–brain barrier (BBB) (Lucas et al. 2006). The 
BBB is comprised of a network of various cell types and modifications that contrib-
ute to maintaining its immune-privilege status including endothelial cells joined by 
tight junctions, their encasement by pericyte-embedded basement membranes and an 
additional barrier comprised of glial cell foot-processes. These modifications create 
an additional area through which leukocytes must exit to gain parenchymal entry 
known as the perivascular space, which is unique to the CNS (Ballabh et al. 2004). 
Under normal conditions, this formidable barrier is effective at limiting the traffick-
ing of leukocytes from the blood into the CNS parenchyma. However, when the BBB 
is compromised, immune cells are able to gain access to the CNS. The extent of BBB 
penetration and leukocyte entrance depends upon disease etiology (Frohman et al. 
2006). Despite differences in the extent of parenchymal entry during infectious or 
autoimmune diseases, infiltrating leukocytes first accumulate in the perivascular 
spaces. The perivascular infiltrate is therefore the cardinal lesion associated with all 
neuroinflammatory diseases. Control of immune infiltration of the CNS poses a 
unique dichotomy in which its limitation is greatly desired for the treatment of MS, 
but might also be detrimental during infectious disease where leukocytes are required 
to clear pathogens. Understanding the specific mechanisms regulating the trafficking 
of leukocytes across the blood–brain barrier is therefore paramount in developing 
therapies that prevent or promote inflammation within the CNS.

The HIV-1 coreceptors CXCR4 and CCR5 bind to ligand members of a family of 
molecules known as chemokines, or chemotactic cytokines. While the hallmark func-
tion of these small proteins is the direction of leukocyte trafficking, they can also 
participate in cellular events such as activation and costimulation (Bajetto et al. 2001a). 
Members of the chemokine family can be classified as either homeostatic or inflam-
matory based on their temporal expression (Charo and Ransohoff 2006; Kim 2005). 
Although traditionally the CNS had been thought to be protected from immune acti-
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vation, it is now known that a variety of chemokines and their receptors are expressed 
in the CNS, both constitutively and during inflammatory diseases, including CXCR4, 
CCR5 and their ligands (Bajetto et al. 2001b; Cartier et al. 2005).

Classically categorized as a homeostatic chemokine, the ligand for CXCR4, 
known as CXCL12 or SDF-1, can be detected in the quiescent CNS at the microvas-
culature and by subpopulations of neurons (Krumbholz et  al. 2006; Stumm et  al. 
2002). CXCR4 is also expressed constitutively throughout the CNS and can be found 
on endothelial cells, oligodendrocytes, microglia, and neurons (Klein and Rubin 
2004). In the absence of inflammation, CXCL12 and CXCR4 direct the movement 
and proliferation of and recognition between a variety of resident neural cells types 
during CNS development (Lu et  al. 2002; Pujol et  al. 2005; Stumm et  al. 2003). 
Neurophysiologic roles for these molecules in the adult CNS have not been estab-
lished. During inflammatory conditions, however, expression of CXCL12 is altered 
(McCandless et al. 2006; McCandless et al. 2008a), suggesting that its role in the 
CNS is not limited to a developmental one. Because CXCR4 is ubiquitously 
expressed on leukocytes, it is likely that BBB expression of CXCL12 affects the traf-
ficking of leukocytes, including CD4+, CD8+ T cells and macrophages (Bleul et al. 
1996b; Klein and Rubin 2004). Much of the work studying inflammatory-induced 
CXCL12 has been done in the context of autoimmune neuroinflammation, such as 
MS and its murine model experimental autoimmune encephalomyelitis (EAE), dur-
ing which endothelial cells, neurons, microglia, and astrocytes have all been shown 
to increase their expression of CXCL12 (Ambrosini et al. 2005; Calderon et al. 2006; 
Krumbholz et al. 2006; McCandless et al. 2006; McCandless et al. 2008a). In compli-
ment, increased numbers of CXCR4-expressing T cells and macrophages traffic to 
and infiltrate the CNS during MS, leading to demyelination and neuronal injury 
(Frohman et al. 2006; Prat and Antel 2005). More recent studies have examined the 
roles of CXCL12 and CXCR4 during encephalitis due to neurotropic viruses, such as 
the West Nile virus (WNV) and in the context of neuroAIDS (Langford et al. 2002; 
McCandless et al. 2008b; Peng et al. 2006). These studies have focused on CXCL12 
expression by various BBB constituents including endothelial and glial cells and col-
lectively support the notion that CXCR4 plays an important role in regulating the 
trafficking of leukocytes into the CNS parenchyma.

Unlike CXCR4, expression of CCR5 and its four ligands, CCL3, -4, -5 and -8, 
only occurs during inflammatory states. CCR5 may be expressed by activated T 
cells, macrophages, microglia and astrocytes (Bleul et al. 1997; Granelli-Piperno 
et al. 1998; Qin et al. 1998; Wahl et al. 1999), depending on the disease context. In 
most neuroinflammatory diseases, including neuroAIDS and MS, CCL3, -4, and -5 
are expressed within inflammatory lesions (McManus et al. 1998; Simpson et al. 
1998; Van Der Voorn et al. 1999) while CCR5 is expressed by infiltrating mononu-
clear cells (Simpson et al. 2000; Sorensen et al. 1999), suggesting a role for these 
molecules in the recruitment of immune cells during inflammation. While most of 
this data is correlative, several recent studies utilizing mice with targeted deletion 
of CCR5 or examining cohorts of patients with natural mutations of CCR5 or its 
ligands have begun to shed light on the differential roles of CCR5 in the trafficking 
mononuclear cell subsets in to the CNS (Table 6.1). While initial interpretations 
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suggested a simple “summon and response” relationship, it has now become apparent 
that CCR5-expressing leukocytes may be involved in both clearance of infection 
and in the counter-regulation of T cell responses that might lead to postinfectious 
inflammatory sequelae.

6.3 � NeuroAIDS

Neurological disease associated with HIV-1 infection results from primary replication 
within the CNS, which generally occurs during advanced stages of the disease 
when viral isolates reportedly expand their coreceptor usage from CCR5 to 

Table 6.1  Role of CCR5 in neuroinflammatory disorders

Disease
Effect of CCR5 deletion/
polymorphism Reference

Murine  
models

EAE No effect Tran et al. (2000)
Chronic MHV Decreased macrophage  

infiltration and  
demyelination

Glass et al. (2001)

Acute MHV Decreased CD4+ T cell  
trafficking into the CNS, 
impaired viral clearance; 
No effect on CD8+ T cell 
trafficking into the CNS

Glass and Lane (2003)

LCMV Enhanced fatality with delayed 
CD8+ T cell infiltration

MS No effect; CCR5D32 not 
protective

Bennetts et al. (1997)

Human  
diseases

Flavivirus  
infection

Delayed onset of disease Barcellos et al. (2000)

Decreased severity of disease Schreiber et al. (2002)
Associated with early death Gade-Andavolu et al. (2004)
No effect on disease Kantarci et al. (2005)
No association with MS Ristic et al. (2006)
Associated with MS Favorova et al. (2006)
Protective role Otaegui et al. (2007)
Decreased severity of disease Van Veen et al. (2007)
Increased risk of symptomatic 

WNV infection
Glass et al. (2006)

Increased risk of symptomatic 
WNV infection

Lim et al. (2008)

Associated with tickborne 
encephalitis (TBEV)

Kindberg et al. (2008)

EAE experimental autoimmune encephalomyelitis, MHV murine hepatitis virus, LCMV lymphocytic 
choriomeningitis virus, MS multiple sclerosis, WNV West Nile virus, TBEV tick-borne encepha-
litis virus
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CXCR4. However, viruses that replicate within the CNS primarily infect cells via 
CCR5, suggesting a distinctive role for this receptor in the biology of neuroAIDS. 
Consistent with this, CCR5 has been detected on HIV-infected macrophages within 
both the CNS and the peripheral blood in individuals with advanced disease. 
Additionally, T cell-tropic viruses that traffic in and out of the brain during progressive 
HIV-1 disease may play a greater role in HIV-1-associated neuropathogenesis than 
macrophage-tropic viruses, which have been shown to induce less neurotoxicity 
(Zheng et al. 1999). As the accumulation of macrophages within the CNS has been 
correlated with encephalitis and dementia (Marcondes et al. 2008), it is possible 
that CXCR4 and/or CCR5 play roles in the physiologic turnover of macrophages 
within the CNS. In this section, we will discuss the evidence implicating CXCR4 
and CCR5 in the trafficking of leukocytes into the CNS during HIV-induced 
neuroinflammatory diseases. As infection and replication of HIV-1 and other 
viruses in brain macrophages and microglia represent the principal reservoir and 
vehicle for viral dissemination in nonlymphoid tissues, understanding the mechanisms 
that promote the infiltration of these cells is essential for developing targeted therapies 
aimed at depleting this reservoir.

6.3.1 � Human Studies

The first insights into the essential role of macrophages in the neurodissemination of 
HIV came from studies examining chemokine receptor expression on postmortem 
specimens from patients with HIV encephalitis. In a majority of these specimens, 
both CXCR4 and CCR5 were detected on brain macrophages and microglia within 
inflammatory lesions, which also exhibited staining for HIV-1 antigen (Bonwetsch 
et  al. 1999; Sanders et  al. 1998; Vallat et  al. 1998). The overall frequency of 
CCR5-expressing perivascular macrophages was positively correlated with severity 
of HIV-1-induced neurologic disease, whereas the frequency of CXCR4-expressing 
macrophages did not correlate with disease severity (Vallat et  al. 1998). CCR5 
expression was also significantly enhanced in HIV-1-specific CD8 T cells taken from 
cerebrospinal fluid versus peripheral blood of HIV-infected patients without neuro-
logic disease (Shacklett et al. 2004). Ligands for these receptors (CXCL12, CCL2, -3, -5) 
were found to be expressed by activated astrocytes (Peng et al. 2006; Sanders et al. 
1998), suggesting that turnover of macrophages may increase during neuroinflamma-
tory states. Characterization of chemokine receptors found on T lymphocytes and 
monocytes in brain sections from subjects with various neuroinflammatory diseases, 
however, revealed that CCR1 and CCR5 are present on perivascular and parenchymal 
monocytic cells whereas only CCR5 was present on parenchymal macrophages 
(Trebst et al. 2003). These findings suggest that CCR5-expressing mononuclear cells, 
macrophages, and microglia contribute to progression of neurologic disease of 
individuals with AIDS by promoting virus entry and replication within the CNS.

As CCR5 was also found to be expressed by normal microglia in nonencephalitis 
brain specimens, this receptor may play a role in the physiologic turnover of these 
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cells, although this remains a topic of much debate (Ajami et al. 2007; Mildner et al. 
2007). Using a coculture of endothelial cells and astrocytes that models several 
aspects of the human blood–brain barrier, Weiss et al. (1999) examined the mechanism 
whereby the HIV-derived factor Tat, a protein that activates viral gene expression 
(Deng et al. 2002), may facilitate monocyte transmigration. HIV-1 Tat induced sig-
nificant expression of CCL2 by astrocytes and upregulated expression of CCR5 on 
human monocytes (Weiss et al. 1999). Although they demonstrated that transmigra-
tion across an in vitro BBB model could be inhibited by antiCCL2 antibodies, others 
have shown that antiCCR5 and antiCCR1 also both abrogate monocyte migration in 
similar models suggesting that a variety of inflammatory processes could augment 
monocyte migration into the CNS (Ubogu et al. 2006).

6.3.2 � Macaque Model

The macaque model of neuroAIDS using simian immunodeficiency virus (SIV) has 
confirmed that viruses utilizing CCR5, such as SIV(mac)251, can cause primary 
disease in the CNS via the infiltration of SIV-infected mononuclear cells. Similar 
to patients with HIV-encephalitis, macaques with SIV encephalitis exhibit elevated 
CNS levels of CCL3–5 and perivascular infiltrates expressing CXCR4 and CCR5. 
Within these infiltrates, CCR5 localized specifically to cells within microglial nod-
ules (McManus et  al. 2000; Westmoreland et  al. 1998). This model has further 
demonstrated that CCR5 expression on blood monocytes and brain microglia and/
or macrophages distinguishes animals that develop encephalitis from those that do 
not (Marcondes et  al. 2008). Recently, IL-15 treatment of SIVmac251-infected 
macaques was associated with decreased percentages of CCR5-expressing CD4+ T 
cells within the peripheral blood (Mueller et al. 2008). IL-15 had previously been 
reported to improve the survival and effector function of HIV- and SIV-specific 
CD8+ T cells and to up-regulate CCR5 on human CD4+ T cells. Because IL-15 
treatment of acute SIV infection of rhesus macaques also led to an increase in the 
viral set point and acceleration of disease, the authors speculated that the decreased 
percentages of peripheral CCR5-expressing CD4+ T cells might indicate that the 
trafficking of these cells into tissue increases infection. Interestingly, one of the 
IL-15-treated animals developed neuropathological signs of early SIV encephalitis 
with increased mononuclear cell infiltrates and parenchymal microglial nodules, 
suggesting that increased expression of CCR5 on virally infected mononuclear cells 
promotes viral entry and neuropathology (Mueller et al. 2008).

6.4 � CNS Autoimmunity

MS, a chronic demyelinating disease of the CNS, is the most common cause of non-
traumatic disability among young adults (Frohman et al. 2006). At the cellular level, 
MS is mediated by myelin-specific CD4+ T cells that destroy oligodendrocytes  
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and trigger a cascade of inflammatory events leading to recruitment of additional 
immune cells that induce progressive demyelination and, ultimately, axon destruc-
tion. Clinically, MS is characterized by variations in the progression of disease over 
time, which has led to three clinical classifications of the disease. Relapsing-remitting 
MS (RRMS), the most common presenting form of MS, is a stable condition inter-
rupted by recurrent attacks of temporary neurological disability. RRMS often evolves 
into secondary-progressive MS (SPMS), in which patients no longer remit but rather 
progressively deteriorate and accrue neurological disability. Primary-progressive MS 
(PPMS) follows a continuously declining course beginning at disease onset. In MS, 
it is generally accepted that acute inflammatory lesions begin with breakdown of the 
BBB (McFarland and Martin 2007), leading to the formation of perivascular infil-
trates of mononuclear cells, parenchymal penetration by myelin-specific T cells, and 
subsequent recruitment and activation of monocytes/microglia that cause demyelina-
tion and axonal damage (Hauser et al. 1986; Huseby et al. 2001; Prat and Antel 2005; 
Ransohoff et al. 2003).

A variety of proinflammatory chemokines, including ligands of both CXCR4 
and CCR5, are detected within the CNS of individuals with autoimmune neuroin-
flammatory diseases. Thus, in patients with MS and in mice with EAE, CCL3–5 
are elevated within the CNS and CSF and treatments that decrease the levels of 
these ligands lead to decreased infiltration of mononuclear cells and diminished 
disease (Eltayeb et al. 2007; Fischer et al. 2000; Glabinski et al. 2002, 2000; Irony-
Tur-Sinai et al. 2006; McCandless et al. 2006). CXCR4 and CCR5 ligands, how-
ever, exhibit differential roles in the pathophysiology of CNS autoimmunity, which 
can be traced to their cellular sources and location. CXCL12, which is expressed 
by the CNS microvasculature, regulates BBB immune privilege while CCL3–5 is 
expressed by glial cells and promotes the migration of leukocytes into the CNS 
parenchyma. In this section, we will discuss the roles of CXCR4 and CCR5 in CNS 
autoimmune diseases, drawing from studies utilizing the EAE model as well as 
tissue samples derived from MS patients.

6.4.1 � CXCL12 and CXCR4

At many tissue sites, CXCL12 expression increases during autoimmune disease 
and CXCR4 participates in the localization, proliferation and activation of effector 
leukocytes at inflamed tissues sites (Garcia-Vicuna et al. 2004; Nagase et al. 2001; 
Nanki and Lipsky 2000). AMD3100, a bicyclam specific antagonist of CXCR4 
signaling (De Clercq 2003; Hatse et al. 2002), has been employed to analyze the 
role of this receptor in a variety of biological processes, as targeted deletion of 
either CXCL12 or CXCR4 leads to embryonic lethality due to defects in the devel-
opment of multiple organ systems (Ma et al. 1998; Zou et al. 1998). Amelioration 
of disease in a variety of murine models of autoimmunity has been accomplished 
via chronic treatment with AMD3100 (Lukacs et  al. 2002; Matthys et al. 2001), 
suggesting that CXCR4 activation is required during the expression of certain auto-
immune diseases. During CNS autoimmunity, activation of CXCR4 may be necessary 
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for the development of myelin-specific T cells as use of mutant chemokine ligands 
that antagonize CXCR4 decreased EAE by inhibiting the sensitization phase of the 
disease, leading to decreased activation of encephalitogenic T cells (Kohler et al. 
2008). The role of CXCL12 and CXCR4 within the CNS during autoimmunity, 
however, is more complicated.

CSF derived from patients with neuroinflammatory diseases contains elevated 
levels of CXCL12 (Giunti et al. 2003). In studies using CNS tissues derived from 
both mice and humans with and without neuroinflammatory diseases, BBB expres-
sion of the CXCL12b isoform has been observed to be dynamic, exhibiting altera-
tions in its level and location depending on the disease context (McCandless et al. 
2008a, b, 2006). In normal CNS tissues CXCL12b expression occurs along the 
abluminal surfaces of CNS endothelial cells where leukocytes, which ubiquitously 
express the receptor CXCR4, engage it when attempting to enter the CNS. The 
polarized expression of CXCL12b acts to localize mononuclear cells to perivascu-
lar spaces during neuroinflammation, thereby limiting their entry into the CNS 
parenchyma. This subcompartment retention, which is analogous to the role of 
CXCL12b in lymphoid compartments, could be an integral component of CNS 
protection from the pathologic consequences of lymphocyte-induced glial cell acti-
vation. Consistent with this, in both humans and mice with CNS autoimmune dis-
ease, BBB expression of CXCL12b increases and relocates across the inflamed 
venules, allowing the egress of leukocytes from CNS perivascular spaces into the 
parenchyma, leading to glial activation and demyelination. This altered pattern of 
CXCL12 expression at the BBB was shown to be highly specific for MS, occurring 
in 10–100% of venules within inflammatory lesions in postmortem CNS speci-
mens. Other diseases affecting the CNS such as viral encephalitis, CNS lymphoma 
and Alzheimer’s disease did not show altered CXCL12 expression at the BBB 
(McCandless et al. 2008a).

Alteration in homeostatic CXCL12 expression also correlated with increased 
astrocyte expression of CXCL12 within the glial limitans (Calderon et  al. 2006; 
McCandless et al. 2008a). Recent studies have implicated the cytokine interleukin 
(IL)-1b in the regulation of CXCL12 expression and location within the CNS. 
Exposure to IL-1b, as well as myelin basic protein (MBP) induces CXCL12 expres-
sion by astrocytes in vitro (Calderon et al. 2006). Administration of IL-1b, but not 
TNF-a, to naïve mice induced CXCL12 relocation in approximately 90% of vessels, 
and mice with targeted deletion of the IL-1R do not relocate CXCL12 at the micro-
vasculature after immunization with MOG (McCandless et al., 2009). Consistent 
with this, mice with targeted deletion of IL-1R are resistant to EAE (Matsuki et al. 
2006). Further studies will determine the mechanisms of this effect with regard to 
the infiltration of CXCR4-expressing mononuclear cells.

Use of a phospho-specific antibody against the ligand-activated form of CXCR4 
also revealed an association between relocation of CXCL12 and activation of 
CXCR4 within lumenal leukocytes (McCandless et al. 2008a). These data suggest 
that aberrant expression of CXCL12 at the BBB could contribute both to leukocyte 
entry into and egress from perivascular spaces. Consistent with this, administration 
of AMD3100 to mice with EAE leads to widening of inflammatory lesions, 
increased demyelination and worsened clinical disease. These results demonstrate 



128 R.S. Klein and E.E. McCandless 

a critical role for CXCL12b in regulating the trafficking of lymphocytes through 
the perivascular space during CNS autoimmunity.

CXCL12 has also been implicated in the initial myelination of the CNS. During 
development, the migration, proliferation and differentiation of oligodendrocyte 
precursor cells (OPCs) that populate the spinal cord, hindbrain and basal forebrain 
with mature oligodendrocytes is accomplished via the synergistic effects of growth 
factors and chemokines, including CXCL12 (Benveniste and Merrill 1986; 
Dziembowska et  al. 2005; Franklin 2002; Frost et  al. 2003; Hinks and Franklin 
1999; Kadi et al. 2006; Redwine and Armstrong 1998; Tsai et al. 2002; Wu et al. 
2000). Studies examining spinal cord myelination in embryonic mice with targeted 
deletion of CXCR4 suggest that it may control the survival and migration of OPCs 
in this CNS region (Dziembowska et al. 2005). Interestingly, studies of a variety of 
CXCR4-expressing cell types have indicated that CXCL12 may synergize with 
platelet-derived growth factor (PDGF), transforming growth factor (TGF)-b1 or 
insulin-like growth factor (IGF)-1 in promoting CXCR4-mediated localization, 
proliferation, survival and maturation (Akekawatchai et  al. 2005; Avecilla et  al. 
2004; Basu and Broxmeyer 2005; Kadi et al. 2006; Kortesidis et al. 2005; Lataillade 
et al. 2000; Sanders et al. 2000). Thus the presence of growth factor receptors on 
OPCs may enable migration and proliferation during the initial myelination of the 
CNS according to the precise location and timing cues provided by other factors. 
During inflammation, however, new cues in the form of Th1 cytokines and chemok-
ines may be required to trigger these developmental attributes.

CXC chemokines may also play a role in remyelination during CNS autoimmu-
nity. Recently, subpopulations of cells expressing markers of OPCs (NG2, O4) have 
been identified within the adult mammalian brain (Dawson et  al. 2003). Studies 
examining the expression of chemokines within MS lesions, however, have been 
controversial with some investigators detecting the in situ expression of CXC recep-
tors 1–3 on proliferating oligodendrocytes while others have not (Filipovic et  al. 
2003; Omari et al. 2006, 2005). These investigations did not include antiCXCR4 in 
the panel of chemokine receptor antibodies used in their immunohistochemical ana-
lyzes. Studies inducing EAE in mice with targeted deletion of CXCR2 did not 
appear to uncover any enhancement in disease susceptibility or progression in these 
mice. However this single study focused on the role of CXCR2-expressing neutro-
phils in EAE, so extensive analyzes of demyelination and recovery in comparison 
with wild-type mice were not performed (Abromson-Leeman et al. 2004). Further 
studies on the roles of CXCR2 and CXCR4 are clearly warranted as these chemok-
ines may play differential roles in various aspects of the remyelination process.

6.4.2 � CCR5 and Its Ligands

The role of CCR5 in the trafficking of leukocytes during CNS autoimmune diseases 
is poorly understood. Studies indicate that under noninflamed, physiologic states, 
few T cells enter the CNS and there is minimal CNS engraftment of blood-derived 
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monocyte precursors of microglia (Ajami et  al. 2007; Mildner et  al. 2007). 
However, in disease states where the BBB is disrupted, expression of a variety of 
chemokines, including CCL5, is increased, as is the trafficking of antigen-specific 
lymphocytes and a subpopulation of monocytes that differentiate into ramified 
parenchymal microglia (Mildner et al. 2007). Thus, CCR5 may be important for 
both the trafficking of autoreactive lymphocytes and the demyelinating process 
believed to be initiated and maintained by activated monocytes and microglia 
within the CNS parenchyma.

In support of this, active MS lesions contain CCR5 expressing infiltrating T cells 
comprised of members of both the adaptive (CD4+, CD8+) and innate (gdTCR+) 
arms of immunity (Rinaldi et al. 2006). While autoreactive CD4+ and CD8+ T cells 
have been shown to play roles in CNS demyelinating diseases in murine models, gd 
T cells have recently come to the forefront as important participants in the initial 
induction of EAE (Lees et al. 2008; Odyniec et al. 2004; Smith and Barnum 2008; 
Szalai and Barnum 2004; Szalai et  al. 2005). Interestingly, gd TCR+T cell lines 
derived from MS patients, compared to lines derived from healthy control subjects, 
expressed lower levels of CCR5 but higher levels of ligand (CCL5), suggesting the 
presence of an autoregulatory loop (Murzenok et al. 2002). Additional CCL3 and 
CCR5 expressing cells present within MS lesions are foamy macrophages and 
activated microglia (Balashov et  al. 1999; Simpson et  al. 2000; Sorensen et  al. 
1999). In a study by Trebst et al. (2003), 70% of CSF CD14+ monocytes derived 
from MS patients during exacerbations were found to express CCR1 and CCR5, 
regardless of the stage of disease, versus <20% of circulating monocytes. CCR1/
CCR5 expressing monocytes were found in perivascular infiltrates and at demyeli-
nating edges of lesions. While early lesions contained CCR1/CCR5-expressing 
monocytes and CCR1/CCR5 negative microglia, those examined at later stages 
contained macrophages that expressed only CCR5. The authors suggest that a sub-
set of CCR1+/CCR5+ blood monocytes traffic into the CNS where, in the presence 
of ligands they are retained and, which upon further activation, down-regulates 
CCR1 and upregulates CCR5. A recent study identified four patterns of demyelina-
tion in active MS lesions. In all four of these patterns, infiltrating monocytes coex-
press CCR1 and CCR5. The characteristics of pattern II lesions suggested a primary 
inflammatory mechanism of myelin injury, while pattern III lesions showed fea-
tures consistent with oligodendrocyte degeneration. In pattern II lesions, the num-
ber of cells expressing CCR1 significantly decreased while CCR5 increased in late 
active compared with early active demyelinating regions. In striking contrast, num-
bers of cells expressing CCR1 and CCR5 were equal in all regions of pattern III 
lesions (Mahad et al. 2004).

Support for the role of CCR5 in the trafficking of CD4 T cells and macrophages 
during CNS autoimmunity also comes from studies using viral models of demyeli-
nation. Intracranial infection of the coronavirus mice with mouse hepatitis virus 
(MHV) results in an immune response-mediated demyelinating disease that serves 
as another model MS. During MHV-induced demyelination, CD4+ T cells amplify 
demyelination by attracting macrophages into the CNS following viral infection by 
mechanisms that are not yet understood. In studies using mice with targeted deletion 
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of CCR5, virus-specific CD4+ T cells were unable to traffic into the CNS which 
led to higher CNS viral titers early during infection (Glass and Lane 2003b). CCR5 
is not, however, required for the trafficking of virus-specific CD8+ T cells in this 
model as there were no differences in trafficking patterns of CCR5−/− CD8+ T 
cells. On the contrary, loss of CCR5 led to increased activity of virus-specific, 
cytotoxic CD8 T cells and eventual viral clearance that was no different from wild-
type mice (Glass and Lane 2003a). However, the authors did observe a significant 
decrease in the extent of macrophage recruitment and demyelination during the 
chronic demyelinating phase of MHV CNS disease. Analysis of chemokine recep-
tor expression on infiltrating macrophages and microglia revealed that most of them 
expressed CCR5. This was one of the first studies implicating CCR5 in the traffick-
ing of macrophages into the CNS during a neuroinflammatory disease.

CCR5 is among a group of chemokine receptors expressed by T cells that are 
essential for their effector functions during Th1 inflammatory responses. Studies 
indicate that cytokines that contribute to the development of autoreactive T cells up-
regulate their expression of CCR5 and enhance their encephalitogenic properties 
(Bagaeva et al. 2003) and that DT390-RANTES-SRalpha, a recombinant immuno-
toxin, prevents EAE via decreasing the numbers of CCR5+-infiltrating cells within 
the CNS (Jia et  al. 2006). Consistent with this, increased percentages of CCR5 
peripheral blood mononuclear cells (PBMCs) can be found in the blood and CSF of 
MS patients versus healthy controls or patients with other types of neurological 
diseases (Martinez-Caceres et al. 2002b). PBMCs that express CCR5 include lym-
phocytes, monocytes and myeloid-derived dendritic cells (mDCs), which are major 
stimulators of T cells. Comparisons of CCR5 mRNA on PBMCs derived from 
patients with different forms of MS revealed significantly increased expression in 
those derived from PPMS versus SPMS, RRMS and control patients (Jalonen et al. 
2002), suggesting that synthesis of CCR5 within leukocytes increases with severity 
of MS. CD209+ CCR5+ dendritic cells are abundant in nonlesional gray matter in 
multiple sclerosis and may thus play a role in the activation of autoreactive T cells 
within the CNS parenchyma, leading to exacerbations (Cudrici et al. 2007).

Both memory T cells and mDCs have been shown to exhibit increased expression 
of CCR5 and CCL5 in the blood and CSF of MS patients (Pashenkov et al. 2002). CSF 
memory T cells, which could potentially differentiate into effector cells via antigen 
encounter derived from MS patients, express disproportionately high levels of CCR5 
when compared with peripheral blood mononuclear cells (Sorensen et al. 1999, 2002; 
Zang et al. 2000). During relapse, CD4 and CD8 cells within the CSF are enriched for 
CCR5 while during remission, CCR5 alone is reduced in CSF CD4 T cells suggesting 
that CCR5 expression on those particular cells is a marker of disease activity (Misu 
et al. 2001). Treatment with immunosuppressive drugs alters the numbers of CCR5-
expressing T cells in the periphery. Both cyclophosphamide and glatiramer therapy, for 
example, reverse the increase in the percentages of IFN-g-producing CCR5 expressing 
T cells in MS patients (Allie et al. 2005; Karni et al. 2004). In addition, treatment with 
methylprednisolone can decrease the percentages of CCR5-expressing CD4 T cells in 
the peripheral blood (Martinez-Caceres et al. 2002a). IL-12 stimulates myelin-reactive 
T cells to up-regulate the beta-chemokine receptor, CCR5, in correlation with the 
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acquisition of central nervous system-infiltrating and encephalitogenic properties 
(Bagaeva et al. 2003). In contrast, in vitro treatment of T cells with IFN-b inhibits 
expression of CCL3 and CCL5 mRNA, and surface expression of their receptor 
CCR5, suggesting that the mechanism of IFN-beta treatment of MS lies in impairment 
in T cell trafficking (Zang et al. 2000). Consistent with this, treatment with IFN-b is 
associated with a decrease in CCR5-expressing mononuclear cells in the peripheral 
blood (Teleshova et al. 2002). Similarly, Sorensen and Sellebjerg (2001) found that T 
cells in the peripheral blood of SPMS patients exhibited lower levels of CCR5, which 
may have left this compartment and trafficked into the CNS (Sorensen and Sellebjerg 
2001). These studies suggest that targeting CCR5 might be useful for the treatment of 
CNS autoimmune diseases and, in support of this, peripheral administration of anti-
CCL3 antibodies has been shown to prevent recurrence of autoimmune anterior uveitis 
in Lewis rats (Manczak et al. 2002). However, genetic approaches have not been as 
conclusive in that CCL3- and CCR5-deficient mice are both fully susceptible to EAE 
(Tran et al. 2000) and studies on patients with the CCR5D32 allele, which encodes a 
truncated, nonfunctional protein, reveal an unclear relationship between CCR5 activity 
and MS severity.

Approximately a dozen genome screenings of MS cohorts and multiplex MS 
families have evaluated the relationship between the presence of the CCR5D32 allele 
and disease onset, severity and outcome of MS. The majority of these studies sug-
gest that while decreased activation of CCR5 does not confer protection from MS 
(Bennetts et al. 1997), it may delay disease onset and attenuate recurrent disease 
activity (Kantor et  al. 2003; Sellebjerg et  al. 2000). In addition, patients with the 
CCR5D32 allele have been observed to have more benign clinical courses with smaller 
lesion volumes, lower black hole ratio on MRI and higher percentages of lesions with 
signs of remyelination (Kaimen-Maciel et  al. 2007; Schreiber et  al. 2002).  
Similar findings have been reported for other CCL5 polymorphisms including the low-
producer alleles CCL5−403*G and CCR5+303*G, which were associated with reduced 
risk of severe axonal loss and reduced T2 hyperintense and T1 hypointense lesion 
volumes on MRI, respectively (van Veen et al. 2007). In contrast, high-producer alleles 
CCL5−403*A and CCR5+303*A were associated with a worse clinical disease course 
and early age at onset. Similarly, a study of CCR5D32 allele carriage in a Spanish popu-
lation revealed a statistically significant difference between the study group and the 
control group for the carriers of at least one deleted allele in which the allele was more 
frequent in the control group, suggesting a possible protective effect of this deletion 
against MS (Otaegui et al. 2007). Most of these authors concluded that CCR5 antago-
nism may attenuate disease activity in MS or may provide a therapeutic target to modu-
late inflammatory demyelination (Sellebjerg et al. 2000). Several studies have refuted 
these findings, suggesting instead that the CCR5D32 polymorphism is either not a major 
determinant of susceptibility for MS (Kantarci et al. 2005; Ristic et al. 2006; Sellebjerg 
et al. 2007; Silversides et al. 2004) or is positively associated with MS (Favorova et al. 
2002), especially in patients with worsened outcome including primary progressive 
disease and early death (Gade-Andavolu et al. 2004; Pulkkinen et al. 2004). The use of 
novel CCR5 antagonists in various animal models of MS may be necessary to address 
the role of CCR5 in the neuropathogenesis of MS.
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6.5 � West Nile Virus Encephalitis

WNV is a neurotropic flavivirus now endemic within the Northern hemisphere that 
cycles between ornithophilic mosquitoes and natural bird reservoirs but may also 
incidentally infect humans and other vertebrate animals (Campbell et  al. 2002; 
Glaser 2004; Williams 2004). While most WNV infections are asymptomatic or 
manifest as a mild, flu-like illness, potentially fatal neuroinvasive infections, includ-
ing meningitis, encephalitis and anterior myelitis, occur in the elderly or immuno-
compromised. In the CNS, WNV targets cortical, midbrain, cerebellar and spinal 
cord neurons leading to their injury or death (Fratkin et al. 2004; Hunsperger and 
Roehrig 2006; Samuel et al. 2006; Shrestha et al. 2003). The high incidence of WNV 
neuroinvasive disease in patients on antiT cell therapies (Katz and Bianco 2003; 
Kleinschmidt-DeMasters et al. 2004) and in mice with T cell deficiencies (Shrestha 
et al. 2006; Wang et al. 2006, 2003a, b) indicate that, similar to other neurotropic 
viruses, the clearance of WNV within the CNS relies heavily on cell-mediated 
immune responses that promote the migration and effector functions of T cells into 
the CNS parenchyma. Experiments in mice have established that some chemokines 
and their receptors have essential roles in directing leukocytes to the CNS to clear 
WNV from infected neuronal cells. CCL3–5, chemokines that all bind the chemokine 
receptor CCR5, are strongly induced in the CNS after WNV infection (Glass et al. 
2005, 2006; Klein et al. 2005; Shirato et al. 2004), and targeted deletion of CCR5 is 
associated with depressed leukocyte trafficking, increased viral burden and enhanced 
mortality (Glass et al. 2005). WNV encephalitis is associated with the early expression 
of CXCL10 by virally infected neurons that proceeds in a caudal to rostral direction 
within the CNS with significantly higher levels detected in the cerebellum by day 5 
postinfection (Klein et al. 2005). Loss of CXCL10 was associated with decreased 
recruitment of WNV-specific CD8 T cells into the CNS, high CNS viral loads and 
enhanced mortality. The identification of CXCL12 as a key regulator of leukocyte 
trafficking at the BBB led to recent studies evaluating the role of this chemokine in 
the migration of virus-specific T cells during WNV encephalitis.

6.5.1 � CXCL12 and CXCR4

The discovery that CXCL12 serves to prevent excessive immune cell entry by 
localizing infiltrating immune cells to perivascular spaces led to the hypothesis that 
BBB expression of CXCL12 might also prevent infiltrating virus-specific T cells 
from entering the CNS during infections with neurotropic viruses. Indeed, analysis 
of human postmortem specimens from patients who have succumbed to WNV 
revealed that CXCL12 maintains its polarity at the BBB (McCandless et al. 2008a, b) 
and that infiltrating T cells remained primarily sequestered within perivascular spaces 
with little parenchymal entry in most CNS regions (McCandless et al. 2008a, b). 
Using a murine model of lethal WNV encephalitis, the authors demonstrated that 
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CXCL12 mRNA and protein at the BBB are down-regulated during the course of 
WNV encephalitis and that the decreased levels of CXCL12 are associated with a 
concomitant decrease in the numbers of perivascular T cells and an increase in the 
numbers of parenchymal T cells. In addition, administration of a CXCR4 antago-
nist early in the course of CNS infection led to increased parenchymal penetration 
of WNV-specific CD8+ T cells, enhanced viral clearance and improved survival 
from 10 to 50%. Interestingly, the augmented numbers of infiltrating CD8+ T cells 
was associated with decreased glial cell activation, suggesting that T cell entry into 
the CNS for the purpose of viral clearance does not necessarily lead to inappropri-
ate immune activation and pathology. It is also probable that virus-specific T cells 
that can efficiently eliminate a pathogen trigger mechanisms for efficient T cell 
egress from or elimination within the CNS versus T cells that gain entry into the 
CNS but do not encounter their antigens. Further studies are necessary to identify 
the molecules that regulate pathways of T cell exit.

The demonstration that CXCR4 inactivation leads to increased leukocyte entry 
poses a dilemma for the use of CXCR4 antagonists in patients infected with HIV-1. 
While it suggests that CXCR4 antagonism might promote the entry of virus-specific 
T cells, it also raises the issue of whether the entry of HIV-infected monocyte might 
also be enhanced, promoting the CNS as a reservoir of virus. Because HIV-specific 
CD8 T cell responses are defective in chronic HIV infection (Trabattoni et al. 2004), 
CXCR4 antagonism in the setting of HIV infection may therefore tip the balance in 
favor of extensive HIV neuroinvasion and acceleration of HIV encephalitis. Further 
preclinical evaluations that focus on the CNS may be warranted before novel CXCR4 
antagonists are approved as antiinfectives for patients with HIV-1.

6.5.2 � CCR5

The role of CCR5 in viral infections of the CNS has been studied using a variety of 
viral models including MHV, lymphocytic choriomeningitis (LCMV) and WNV 
(de Lemos et  al. 2005; Glass and Lane 2003b; Glass et  al. 2005; Nansen et  al. 
2000). As observed in CNS autoimmune diseases, CCR5 expression is essential for 
the trafficking of CD4+ T cells in all of these viral models. In addition, impaired 
trafficking of CD8+ T cells and macrophages was observed in LCMV- and WNV-
infected mice with targeted deletion of CCR5. In all circumstances, CCR5-deficient 
mice had increased viral burdens and, in the cases of LCMV and WNV, adoptive 
transfer of splenocytes from virally-infected CCR5+/+ mice into infected CCR5−/− 
mice increased leukocyte accumulation in the CNS and increased survival rates to 
approximate those observed in infected CCR5+/+ control mice. These studies indi-
cate a critical role for CCR5 in antiviral immune responses within the CNS and 
suggest that targeting CCR5 to prevent infection with HIV-1 could have dire con-
sequences if patients become infected with neurotropic viruses.

In support of this, several recent studies have evaluated the clinical outcomes 
observed in flavivirus-infected patients that carry the CCR5D32 allele. One group 
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has now published two reports that associate deficiency of CCR5 with symptomatic 
WNV infection. In one report, which examined WNV infection and carriage of 
CCR5D32 in cohorts of patients from Colorado and Arizona, loss of CCR5 was 
associated with increased neuroinvasive disease (Glass et  al. 2006). In a meta-
analysis of the Colorado and Arizone cohorts plus two additional cohorts from 
Illinois and California, homozygosity for the CCR5D32 allele was found to be 
higher in patients with symptomatic WNV infection (Lim et al. 2008). The discrep-
ancy in the severity of WNV infection associated with CCR5D32 homozygosity 
between the two studies was blamed on underpowering as the small sample sizes 
were unable to show such an association for a gene found in populations of 
European descent with allelic frequencies ranging from 0 to 0.29 (McNicholl et al. 
1997). In addition, neither study demonstrated any impact of CCR5D32 homozy-
gosity on age incidence in symptomatic, WNV-infected patients.
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Fig. 6.1  Role of CXCL12 in T cell trafficking at the BBB. Depicted are proposed models for 
CXCL12-mediated regulation of T cell egress from perivascular spaces in the context of autoim-
mune and WNV encephalitides. In autoimmune disease, CXCR4-expressing T cells express the 
cytokine IL-1b (McCandless et al., 2009), which binds its receptor, IL-1R, on endothelial cells. 
This induces the intracellular uptake of CXCL12 via unknown mechanisms, allowing T cells to 
exit from the perivascular space. In the case of WNV encephalitis, IL-1b is not expressed within 
the CNS (Cheeran et  al. 2005; Kong et  al. 2008) and T cells remain localized to perivascular 
spaces until late in the course of disease when CXCL12 levels are down-regulated and T cells 
begin to enter the parenchyma (McCandless et al. 2008b)
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Carriage of the CCR5D32 allele, however, may be a risk factor for severe infec-
tions with flaviviruses, in general. Kindberg et  al. (2008) performed CCR5D32 
genotyping among Lithuanian patients with tick-borne encephalitis (TBE), an often 
fatal infection caused by the TBE flavivirus (TBEV). As with WNV, TBEV in most 
individuals induces a self-limited, febrile illness with influenza-like symptoms 
while certain individuals, for unknown reasons, develop severe meningoencephali-
tis. In the Kindberg study, a significant increase in CCR5D32 allele prevalence was 
observed in patients with TBE compared with nonTBE aseptic meningoencephali-
tis subjects and healthy subjects were seronegative for TBE. Carriage of the 
CCR5D32 allele was also associated with increased clinical severity of disease, 
although individuals with CCR5D32 were not members of the group with the most 
severe symptoms (Kindberg et al. 2008). Thus, there are likely to be additional risk 
factors for severe TBE neuroinvasive disease that are currently unknown.

6.6 � Conclusions

Coreceptor antagonism for the prevention of widespread cellular entry has been 
considered an attractive approach to halt the progression of HIV-1 ever since the 
discovery that carriage of CCR5D32 confers resistance to initial infection with HIV-1. 
However, the multifunctional role of HIV-1 coreceptors suggests that additional 
insights are required to identify unforeseen hazards of pharmacological chemokine 
receptor inactivation. This appears to be particularly important in the case of CXCR4 
antagonism, which leads to increased trafficking of mononuclear cells into the CNS, 
potentially impacting on the CNS viral reservoir. While few studies have directly 
addressed how HIV-1 infection itself impacts on leukocyte CNS entry and no studies 
have implicated CXCR4 in this process; the studies outlined in this chapter strongly 
suggest that HIV-1 enters the CNS within mononuclear cells and that this migration 
is enhanced during CXCR4 antagonism. Because HIV-infected macrophages and 
microglia have also been implicated in the inflammatory-mediated destruction of 
neurons (Adamson et al. 1996; Dawson et al. 1993; Giulian et al. 1996; Nottet et al. 
1995; Persidsky et al. 2000), CXCR4 antagonists could potentially increase both the 
incidence and severity of neuroAIDS. Thus, studies examining the impact of 
CXCR4 antagonism on CNS viral loads and neuronal injury are warranted prior to 
the approval and implementation of this new class of antiHIV drugs.

Use of CCR5 antagonists, on the other hand, might limit HIV-1 neuroinvasion 
and/or alter the immunopathology ascribed to CCR5-expressing mononuclear cells 
that enter the CNS. As outlined above, CCR5 is involved in the CNS trafficking of 
HIV-infected mononuclear cells and plays a role in glial cell activation and ampli-
fication of inflammatory responses. Thus, inactivation of CCR5 could prove to be 
efficacious in slowing the progression of HIV-1 infection. These speculations, how-
ever, have not undergone rigorous evaluation in animal models of neuroAIDS. 
Thus, the effect of newly approved CCR5 antagonists on HIV infection with the 
CNS is currently unknown and will therefore be determined empirically. If CCR5 
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antagonism does prove to be efficacious for the prevention of neuroAIDS, based on 
the virologic studies in animal models described above, its use would not be recom-
mended if alternative immunotherapeutic agents that promote CD8 T cell-mediated 
clearance of HIV-1 were developed and implemented. Therefore, use of CCR5 
antagonists will need to be continually reevaluated through animal model experi-
mentation as novel therapeutic targets emerge and are translated into new drug 
treatments for HIV-infected patients.
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