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We propose a modified Perona-Malik diffusion (PMD) filter to enhance a coronary plaque boundary by considering the conditions
peculiar to an intravascular ultrasound (IVUS) image. The IVUS image is commonly used for a diagnosis of acute coronary
syndrome (ACS). The IVUS image is however very grainy due to heavy speckle noise. When the normal PMD filter is applied
for speckle noise reduction in the IVUS image, the coronary plaque boundary becomes vague. For this problem, we propose a
modified PMD filter which is designed in special reference to the coronary plaque boundary detection. It can then not only reduce
the speckle noise but also enhance clearly the coronary plaque boundary. After applying the modified PMD filter to the IVUS image,
the coronary plaque boundaries are successfully detected further by applying the Takagi-Sugeno fuzzy model. The accuracy of the

proposed method has been confirmed numerically by the experiments.

1. Introduction

Acute coronary syndrome (ACS), which is commonly known
as atherosclerotic heart disease, is the most common type of
heart disease and the cause of heart attacks. Recently, ACS
became one of the leading hospitalizations in the world. ACS
is a term used to describe any condition that results in a
sudden reduction in blood flow to the heart. ACS happens
when the plaques are built up inside the coronary arteries. If
the plaque ruptures as shown in Figure 1, it can lead to a blood
clot that blocks the blood supply to the heart and triggers
a heart attack. It may also block blood supply to the brain,
which could trigger a stroke.

Intravascular ultrasound (IVUS) imaging [1] is a unique
imaging clinic tool that provides a real time cross-sectional
inside view of a coronary artery in living individual and
thus allows a complete study of its morphology, such as
arterial wall, lumen, and plaque. The IVUS method helps
in the diagnosis and treatment of ACS, as far as a tissue
characterization and plaque volume calculation are available.
As the first step in a diagnosis of ACS, the inner and outer
coronary plaque boundaries in the IVUS image have to be

detected for evaluating the quantitative assessment of the
coronary plaque compositions.

Currently, these coronary plaque boundaries are man-
ually drawn and the area of that plaque is also evaluated
manually by a medical doctor. After that, the volume of
the plaque is estimated by integrating the calculated areas.
A manual processing of the IVUS images by a medical
doctor is a time consuming task and a difficult task and
might suffer from intra- and interobserver variability. This is
not only because a large number of the IVUS images must
be processed, but also because the IVUS images tend to a
heavy speckle noise. This fact motivates the development of
automatic image processing technique addressing detection
of the coronary plaque boundary with high accuracy.

Several algorithms for the coronary plaque boundary
have been proposed [2-6]. A probabilistic segmentation for
identification of luminal boundary (LB) has been proposed
by Ruiz et al. [2]. Gil et al. [3] presented a statistical
strategy for anisotropic adventitial modelling. Those methods
however do not automatically work because the method [2]
needs an initial area created by a user, and the method [3]
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needs a set of training data manually segmented by an expert.
Unal et al. [4] has proposed a shape driven segmentation
method. This method also needs a set of training data which
is manually segmented by an expert.

In our previous works [5, 6], the fuzzy inference based
method was proposed and applied for this problem. Fuzzy
inference model employed is Takagi-Sugeno (T-S) fuzzy
model [7]. In [5], membership functions (MSFs) in the
antecedent parts of the fuzzy rules were allocated adap-
tively. The fuzzy inference was used because it has several
advantages over the conventional methods in the boundary
calculation of image, for example, Sobel’s method, Prewitt’s
method, and Robert’s method [8]. The fuzzy inference can
handle problems with imprecise, noisy, inconsistent, and
incomplete data set [9]. IVUS images often have noise and
the plaque boundaries are usually missing in several areas. We
have employed the T-S fuzzy inference to restore the missing
boundaries by inference.

Because the IVUS image has heavy speckle noise, a
speckle noise reduction and an edge enhancement of coro-
nary plaque boundary are very important tasks in the case
of preprocessing of IVUS image. As the representative con-
ventional noise reduction methods, the median filters [10],
morphology analysis [11], and bilateral filters [12] are well
known, but at the same time the coronary plaque boundary
also becomes dull unexpectedly by applying those methods.

Above all those methods, Perona-Malik diffusion (PMD)
filter [13] is known as an effective edge-preserved smoothing
method and is broadly used in [3, 5, 6, 13-18]. In [5, 6],
the normal PMD filter is used to reduce the speckle noise.
However, when the normal PMD filter is applied to IVUS
image, the coronary plaque boundary cannot be preserved on
several areas. The diffusion direction and its strength are very
important factors to enhance the image edges and to reduce
the speckle noise. This is because the diffusion direction and
its strength in the normal PMD filter used in [5, 6] have not
been set properly and the plaque boundary direction in IVUS
image was not considered.
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In this paper, we propose a modified PMD filter to
reduce the speckle noise and enhance a coronary plaque
boundary by considering the plaque direction in IVUS image.
After applying the modified PMD filter to IVUS image,
the coronary plaque boundaries are detected by the Takagi
Sugeno (T-S) fuzzy model [7]. The accuracy of the proposed
method has been verified through the experiments using the
real IVUS images.

2. Intravascular Ultrasound Image

The intravascular ultrasound (IVUS) method is one of
the applications of ultrasound technology which has many
applications in medical diagnosis. The IVUS method is a
catheter based medical imaging technique that produces
cross-sectional images of blood vessel and is particularly
useful for the diagnosis of atherosclerosis [19].

IVUS method is further used in the coronary arteries
to observe within the blood vessel all the way through to
the surrounding blood column, visualizing the coronary
plaque, determining the amount of plaque built up at any
particular point in the coronary artery in living individual.
The progressive accumulation of plaque within the artery wall
over decades is the setup for vulnerable plaque which, in turn,
leads to heart attack and stenosis of the artery.

The IVUS method uses a specially designed thin catheter
with the ultimately miniaturized ultrasound probe attached
to its distal end (see Figure 2). The probe rotates in the arterial
lumen in order to receive an ultrasound radio frequency (RF)
signal reflected from the plaque and the vascular wall.

The IVUS images are acquired by means of high-
frequency, single-use probes based on various mechanical
and electronic phased array systems. The IVUS image is
generated by using the amplitude information from the
received ultrasound RF signals.

In the first step, the sampled RF signal is first transformed
into an 8-bit luminal intensity signal in all radial directions
by taking the absolute value of the signal. As the second step,
because the RF signal propagating in the tissue is affected by
attenuation due to depth, it is necessary to compensate it by
time gain compensation function. As the third step, in order
to reduce the noise effect and spurious harmonic components
outside the band of interest, the RF signal can be filtered by a
band-pass filter. After taking the envelope of this signal, data
is normalized. As the last step, in order to expand the effective
dynamic range of our digital images in terms of saturation, we
can optionally apply the gamma correction using the gamma
value, the gradient of the linear region on the gamma value
curve [20].

As the final result, we get a tomographic cross-sectional
image of a coronary artery as shown in Figure 3. This image
is called a “B-mode image” A B-mode image displays a real
time ultrasound cross-sectional image of a thin section of a
blood vessel where currently a catheter probe is rotating.

In quantitative assessment of coronary plaque, the fol-
lowing two boundaries are calculated in the IVUS B-mode
image. One is a luminal boundary (LB) between the lumen
and the plaque, and the other is an adventitial boundary (AB)
between the plaque and the vascular wall.
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FIGURE 3: B-mode image in the Cartesian coordinates.

3. Image Separability

Many edge extraction methods have been proposed, most of
which are mainly based on the gradient of image intensity.
These gradient-based methods use the smoothing filter such
as a Gaussian filter for suppression of noise. Since they blur
edges, the precision for edge localization degrades.

An edge detection method by using a statistical discrim-
inant measure called image separability has been proposed
by Fukui [21]. This method has advantages over the gradient
based methods, because the image separability has the follow-
ing features:

(i) insensitivity to noisy and blurred edges,

(ii) ability to differentiate the edges between texture
regions.

For this reason, to distinguish the difference between the
plaque boundary and the speckle noise in an IVUS image, the
proposed method employs the image separability.

Figure 4 shows a local region which consists of two small
regions A and B. The separability 7, for pixel h can be
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FIGURE 4: Detection of plaque boundary by using image separability.

calculated by linear discriminant analysis with information
from regions A and B as follows:

ny(Ta-1) +np (T - 1)

, @)
¥ (5-1)

M =

where 1, and ny represent the numbers of the pixels in the
regions of A and B, respectively. I, and I represent the
averages of intensities in the regions of A and B. I stands for
the average of the intensities in the combined regions of A
and B. S and I, represent the number of the pixels and the
intensity of the kth pixel in the combined regions of A and B.

The weighted separability for pixel h, which is a modifi-
cation of the original separability [6], is defined by

- - 2
I -1 1
Wllfzﬂh(—malx AXIB), (2)
max max

where I, is the maximum intensity in the whole of IVUS
image and 7, satisfies 0 < #;, < 1. The image separability
takes a larger value when two regions are separated from each
other.

The weighted image separability detects the candidates of
the inner and outer boundaries of plaque by considering the

following two conditions peculiar to IVUS images:

(i) intensity in the outside area of a luminal boundary
(LB) tends to be stronger than that in the inside area
of LB,

(ii) intensity in the outside area of an adventitial bound-
ary (AB) tends to be stronger than that in the inside
area of AB [22].

4. Proposed Method

We present in this paper a modified PMD filter to reduce
speckle noise and enhance a coronary plaque boundary in
IVUS image. This chapter is divided into two sections which
are (i) modified Perona-Malik diffusion (PMD) filter and (ii)
boundary calculation procedure by fuzzy inference.



4.1. Modified Perona-Malik Diffusion (PMD) Filter. Perona
and Malik have proposed an anisotropic diffusion filter,
which is known as Perona-Malik diffusion (PMD) filter, to
filter noise and preserve the edges of an image. The basic
idea of the PMD process is to get an increasingly smoothed
image u(x, y,t) from an original image u,(x, y), indexed by
diffusion parameter t. This process can be interpreted as an
image convolution by a Gaussian kernel G(x, y,t) with an
increasing width as follows:

I(x, p.t) = Iy (%, y) * G (x, 1) 3)

The PMD filter equation is defined by

I, = % =div (c(x, y,t) VI) = ¢ (x, y,t) AI + Ve (x, y,t) VI,
(4)

where
c () = g (IVI (x 1)) ()

is a diffusion coefficient. VI denotes a gradient of an image.

g(-) refers to an edge stopping function, which is a
decreasing function of the gradient of image, which is defined
by

1
I ok ©

respectively, where K is a parameter which controls the
strength of diffusion. g(-) takes large values at the regions
where the intensity gradients are low. On the contrary, it takes
low values at the regions where the intensity gradients are
high.

The initial condition is given by

I(x,9,0) =1, (x,y). )

The discrete version of PMD process is defined as follows:
[ _ o A vI™Y ™
s s +ng( s,p) s,p’ (8)

where s = (x, y) and p are the coordinates of the pixel of
concern and its neighboring pixels, respectively. IS(”) is an
intensity at s with an iteration count n. ¢, represents the four
neighboring pixels in north, west, south, and east diffusion
directions. |¢,| is the number of pixels in the neighborhood
area. A is a parameter. The structure of diffusion direction for
the normal PMD filters is shown in Figure 5(a).

However, when the normal PMD filter is applied to IVUS
image, the coronary plaque boundary cannot be preserved
on several areas. By analyzing many experiments, we can
conclude that the diffusion direction and its strength are very
important factors in the PMD filter to enhance the edge of
image and to reduce the noise.

If the strength of diffusion is too large, the edge of the
image tends to be lost. On the contrary, if the strength of
diftfusion is too small, the noise of image cannot be reduced.
When the diffusion direction and its strength are set properly,
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FIGURE 5: Structure of diffusion directions. (a) Normal PMD filter.
(b) Modified PMD filter.

the PMD filter can enhance the plaque boundary and reduce
noise. Therefore, the direction and strength of diffusion must
be set properly for a good filtering performance.

We propose here the modified direction and strength
of diffusion of the PMD filter by considering the plaque
boundary direction in the IVUS image. From Figure 4 it can
be observed that the boundaries of plaque are in horizontal
direction. It means that in order to preserve the plaque
boundaries, the diffusion strength in horizontal direction
should be smaller than that in other directions. In order
to consider flexibly the direction of plaque boundary, we
propose a new structure for diffusion directions as shown in
Figure 5(b).

The modified PMD filter moves in eight directions
with different strength in each direction. By modifying the
diffusion process of the normal PMD filter of (8) based on
the diffusion direction in Figure 5(b), the proposed iteration
formula for diffusion process of the modified PMD filter is
given as follows:

1 n
100 = 10 4 o 2 g (VIE) ©)

where k = {NW, N, NE, E, SE, S, SW, W}. NW, N through W
represent the direction of northwest, north, northeast, east,
southeast, south, southwest, and west, respectively [23].
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FIGURE 6: Boundary calculation procedure. (a) IVUS image in Cartesian coordinate. (b) Transposed image of (a) into polar coordinate. (c)
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seed points. (f) Plaque boundary calculation results by fuzzy inference.
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FIGURE 7: IVUS image in polar coordinate to be processed. (a) Image 1. (b) Image 2. (c) Image 3.
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FIGURE 8: Diffusion filter results for image 1. (a) The normal PMD filter [13]. (b) The modified PMD filter.
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4.2. The Boundary Calculation Procedure by Fuzzy Inference.
The boundary calculation procedure is briefly summarized as
follows.

(i) A B-mode image is transform from Cartesian coor-
dinate shown in Figure 6(a) into polar coordinate
shown in Figure 6(b).

(ii) The B-mode image in polar coordinate is filtered by
modified PMD filter of (9) whose filtering result is
shown in Figure 6(c).

(iii) An image separability of Figure 6(c), whose result is
shown in Figure 6(d), is calculated.

(iv) Seed points are roughly placed automatically on the
B-mode image to obtain search areas as shown in
Figure 6(e) described in [2].

(v) The plaque boundary is inferred by using the Takagi-
Sugeno (T-S) fuzzy model described in [5].

(vi) The plaque boundary results inferred by T-S fuzzy
model are shown in Figure 6(f).

Distance from probe (pixels)

0 127
Angle index
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255

5. Experimental Results

In the experiments, we use three different IVUS images which
are shown in Figure 7, and the proposed method is compared
with the method using the normal PMD filter in [6].

By analyzing for many IVUS images, the parameters of
the diffusion filter of (9) were set as Ay = Ag = 1 and Ay, =
Ag = Aaw = Asw = Agp = Ayg = 1.2.

Figures 8(a), 9(a), and 10(a) show the filtering results by
the normal PMD filter [13]. Figures 8(b), 9(b), and 10(b) show
the filtering results by the modified PMD filter. The plaque
boundaries by the modified PMD filter are more clearly
enhanced than by the normal PMD filter [13]. It is indicated
that the modified PMD filter is better than the normal PMD
filter in the plaque boundary enhancement.

Figures 11(a) and 11(b) show the weighted image sep-
arability of image 3 after applying the normal PMD filter
and after applying the modified PMD filter, respectively. The
red areas in Figures 11(a) and 11(b) show the possible areas
where the desired (true) boundaries exist. The desired (true)
boundaries are detected by the experts, and they are indicated
by the black solid lines in both figures. We can see that the red
areas of Figure 11(b), obtained by using the present modified
PMD filter, catch the desired (true) boundaries in the center
of red areas better than using the normal PMD filter.
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FIGURE 12: Comparison of plaque boundary detection. (a) IVUS image 1 to be processed. (b) Boundary detection results. The red lines and
the green lines indicate the boundaries detected by the proposed method and by the method with the normal PMD filter [6], respectively.
The white lines are the desired boundaries.



TaBLE 1: RMSEs of boundary detection results (um).

Method Image 1 Image 2 Image 3
LB AB LB AB LB AB
Method with
137 284 200 302 281 354
normal PMD [6]
Proposed method 9.5 15.0 203 140 14.0 34.6

The root mean square errors (RMSEs) between the
desired and the detected plaque boundaries are shown in
Table 1. The RMSEs of the proposed method are better than
those of the method in [6] using the normal PMD filter for
the most parts of LB and all parts of AB.

The comparisons of plaque boundary detection for image
1 by the method in [6] with the normal PMD filter and by
the proposed method are shown in Figure 12. The detected
boundary by the proposed method (red line) is closer to the
desired boundary (white line) than that by the method in
[6] (green line). The accuracy of the proposed method is
increased.

6. Conclusion

We have proposed a modified PMD filter to reduce speckle
noise and to enhance the coronary plaque boundary in the
IVUS image. After applying the modified PMD filter, the
plaque boundaries were detected successfully by T-S fuzzy
inference. The plaque detection accuracy was good in spite
of the very noisy IVUS image. The results show that the
proposed method is better than that of the method with the
normal PMD filter.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Grant-in-Aid for Scientific
Research (B) of the Japan Society for Promotion of Science
(JSPS) under Contract no. 23300086. Syaiful Anam would
also like to thank DGHE postgraduate scholarship of Indone-
sia for supporting his stay at Yamaguchi University, Japan.

References

[1] B. N. Potkin, A. L. Bartorelli, ]. M. Gessert et al., “Coronary
artery imaging with intravascular high-frequency ultrasound,”
Circulation, vol. 81, no. 5, pp. 1575-1585, 1990.

[2] G. M. Ruiz, M. Rivera, and I. A. Kakadiaris, “A probabilistic
segmentation method for the identification of luminal borders
in intravascular ultrasound images,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
’08), vol. 45, pp. 1-8, Anchorage, Alaska, USA, June 2008.

[3] D. Gil, A. Hernandez, O. Rodriguez, J. Mauri, and P. Radeva,
“Statistical strategy for anisotropic adventitia modelling in

=

(5]

(16]

(17]

(18]

International Journal of Biomedical Imaging

IVUS;” IEEE Transactions on Medical Imaging, vol. 25, no. 6, pp.
768-778, 2006.

G. Unal, S. Bucher, S. Carlier, G. Slabaugh, T. Fang, and K.
Tanaka, “Shape-driven segmentation of the arterial wall in
intravascular ultrasound images,” IEEE Transactions on Infor-
mation Technology in Biomedicine, vol. 12, no. 3, pp. 335-347,
2008.

E. Uchino, N. Suetake, T. Koga et al, “Automatic plaque
boundary extraction in intravascular ultrasound image by fuzzy
inference with adaptively allocated membership functions,” in
Advances in Neuro-Information Processing Part II, vol. 5507 of
Lecture Notes in Computer Science, pp. 583-590, 2009.

T. Koga, S. Ichiyama, E. Uchino, N. Suetake, T. Hiro, and M.
Matsuzaki, “Fully automatic boundary extraction of coronary
plaque in IVUS image by anisotropic diffusion and T-S type
fuzzy inference,” in Soft Computing in Industrial Applications:
Algorithms, Integration, and Success Stories, vol. 75 of Advances
in Intelligent and Soft Computing, pp. 139-147, Springer, Berlin,
Germany, 2010.

T. Takagi and M. Sugeno, “Fuzzy identification of systems and
its applications to modeling and control,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985.
S. Arora and Q. A. Kaur, “Modified edge detection technique
using fuzzy inference system,” Computer Application, vol. 44, pp.
9-12, 2012.

S. Cateni and V. Colla, “Fuzzy inference system for data pro-
cessing in industrial applications,” in Fuzzy Inference System—
Theory and Applications, pp. 215-240, InTech, 2012.

J. C. Russ, The Image Processing Handbook, Academic Press,
New York, NY, USA, 5th edition, 2006.

P. Soille, Morphology Image Analysis: Principles and Applica-
tions, Springer, Telos, Berlin, Germany, 1999.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images,” in Proceedings of the IEEE 6th International
Conference on Computer Vision, pp. 839-846, Bombay, India,
January 1998.

P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, pp. 629-639, 1990.

S. Kim, “Equalized net diffusion (END) in image denoising,’
in Proceedings of the 10th WSEAS International Conference on
Applied Mathematics (MATH ’06), pp. 349-354, 2006.

S. K. Weeratunga and C. Kamath, “Comparison of PDE-
based nonlinear anisotropic diffusion techniques for image
denoising,” in Electronic Imaging, Image Processing: Algorithms
and Systems II, vol. 5014 of Proceedings of SPIE, pp. 279-290,
2002.

G.J. M. Parker and J. A. Schnabel, “Enhancement of anisotropic
diffusive filtering of MR images using approximate entropy, in
Proceedings of the International Society for Magnetic Resonance
in Medicine, p. 175, 1999.

J. Song and H. R. Tizhoosh, “Fuzzy anisotropic diffusion: a rule
based approach,” in Proceeding of the 7th World Multiconference
on Systemics, Cyebernetics and Informatics, pp. 241-246, 2003.
A. Taki, Z. Najafi, A. Roodaki et al., “Automatic segmentation of
calcified plaques and vessel borders in IVUS images,” Interna-
tional Journal of Computer Assisted Radiology and Surgery, vol.
3, no. 3-4, pp. 347-354, 2008.

E. G. Mendizabal-Ruiz, G. Biros, and I. A. Kakadiaris, “An
inverse scattering algorithm for the segmentation of the luminal
border on intravascular ultrasound data,” in Proceedings of the



International Journal of Biomedical Imaging

(20]

12th International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 885-892, 2009.

E Ciompi, C. Gatta, O. Pujol, O. Rodriguez-Leor, J. M. Ferre,
and P. Radeva, “Reconstruction and analysis of intravascular
ultrasound sequences,” in New Advances in Biomedical Signal
Processing, pp. 231-250, 2011.

K. Fukui, “Edge extraction method based on separability of
image features,” IEEE Transactions on Information and Systems,
vol. E78-D, no. 12, pp. 1533-1538, 1995.

T. Koga, E. Uchino, and N. Suetake, “Automated boundary
extraction and visualization system for coronary plaque in
IVUS image by using fuzzy inference-based method,” in Pro-
ceedings of the IEEE International Conference on Fuzzy Systems,
pp.- 1966-1973, June 2011.

S. Anam, E. Uchino, and N. Suetake, “Coronary plaque bound-
ary calculation in IVUS image by modified PMD filter and fuzzy
inference,” in Proceedings of the 20th International Conference
on Neural Information Processing, vol. 8228 of Lecture Notes in
Computer Science, pp. 509-516, 2013.



