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Simple Summary: This review focuses on the effects that a class of drugs, PI3Kδ inhibitors, used
for the treatment of patients with lymphoma can have not on the neoplastic cells but on the normal
cells and how this effect can modulate the immune response and potentially contribute to the
anti-tumor response.

Abstract: The development of small molecules able to block specific or multiple isoforms of phospho-
inositide 3-kinases (PI3K) has already been an active field of research for many years in the cancer
field. PI3Kδ inhibitors are among the targeted agents most extensively studied for the treatment of
lymphoma patients and PI3Kδ inhibitors are already approved by regulatory agencies. More recently,
it became clear that the anti-tumor activity of PI3K inhibitors might not be due only to a direct effect
on the cancer cells but it can also be mediated via inhibition of the kinases in non-neoplastic cells
present in the tumor microenvironment. T-cells represent an important component of the tumor mi-
croenvironment and they comprise different subpopulations that can have both anti- and pro-tumor
effects. In this review article, we discuss the effects that PI3Kδ inhibitors exert on the immune system
with a particular focus on the T-cell compartment.

Keywords: lymphoma; PI3K inhibitors; T-cells; B-cells; macrophages; chemokine; cancer; tumor;
immune checkpoint inhibitors

1. Introduction

Phosphoinositide 3-kinases (PI3Ks) are a class of enzymes fundamental in the regula-
tion of cell metabolism, proliferation and survival [1–6]. PI3Ks are active in most human
cancers, often representing oncogenic drivers due to genetic events directly targeting their
coding genes or determining the constitutive activation or upstream components of the
signaling cascade [1,4–6].

PI3Ks comprise four isoforms p110α (PI3Kα, coded by the PIK3CA gene), p110β
(PI3Kβ, coded by PIK3CB), p110δ (PI3Kδ, coded by PIK3CD), and p110γ (PI3Kγ, coded by
PIK3CG). These are the catalytic subunits that form heterodimers with regulatory isoforms.
The p85α and its splicing variants p55α and p50α (PIK3R1), p85β (PIK3R2), and p55γ
(PIK3R3) can bind PI3Kα, PI3Kβ, or PI3Kδ (class IA PI3Ks), while p101 (PIK3R5) or p87
(PIK3R6) bind PI3Kγ (Class IB PI3Ks). PI3Kδ and PI3Kγ are largely restricted to leukocytes,
while PI3Kα and PI3Kβ are ubiquitously expressed [1,4–6].
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The development of small molecules able to block specific or multiple PI3K isoforms is
a heavily pursued effort in oncology: Table 1 shows the PI3Kδ inhibitors that have entered
clinical development. Multiple preclinical and clinical studies showed the anti-tumor
activity of PI3Kδ inhibitors in patients affected by chronic lymphocytic leukemia (CLL), B-
and T-cell lymphomas and these data have been extensively summarized elsewhere [3–8].
Importantly, PI3Ks are expressed not only in the cancer cells, but also in the non-neoplastic
cells, in which PI3K inhibitors contribute to their pro- or anti-tumor effects, and they
can be used to improve the response to immunomodulatory and immunotherapeutic
agents [9–17]. In this review article, we will discuss the effects of inhibiting PI3Kδ isoform
on the immune system with a particular focus on the T-cell compartment.
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Table 1. List of P3Kdelta inhibitors sorted by their target, their official name, if assigned, or by their common/alternative name.

Target Official Name Common/Alternative
Name

PI3Kδ

(IC50, nM)
PI3Kα

(IC50, nM)
PI3Kβ

(IC50, nM)
PI3Kγ

(IC50, nM) Adm. Route Phase # FDA Approval On-Going Trials ##

PI3Kδ Acalisib GS-9820, CAL-120 [18] 12.7 5441 3377 1389 p.o 1 - -

PI3Kδ Dezapelisib INCB040093 [19] 31 28,912 3751 2297 p.o 2 - -

PI3Kδ Idelalisib CAL-101, GS-1101 [20] 2.5 820 565 89 p.o 3 CLL, FL, SLL ** Lymphoid tumors

PI3Kδ Leniolisib CDZ173 [21] 1.1 244 424 2230 p.o 3 ˆ - APDS/PASLI ˆ

PI3Kδ Linperlisib YY-20394,
PI3K(delta)-IN-2 [22] n.a. n.a. n.a. n.a. p.o 2 - Lymphoid and

solid tumors

PI3Kδ Nemiralisib GSK2269557 [23] 9.9 n.a. n.a. n.a. inh. 2ˆ - -

PI3Kδ Parsaclisib INCB050465,
IBI-376 [19] 1.1 >20,000 >20,000 >10,000 p.o 3 - Lymphoid tumors,

myeloid neoplasms

PI3Kδ Puquitinib XC-302 [24] 3.3 992.8 959.2 89.8 p.o no - -

PI3Kδ Seletalisib UCB-5857 [25] 12 3638 2129 282 p.o 2 - No

PI3Kδ Zandelisib ME-401, PWT143 [26] 5 5022 208 2137 p.o 2 - Lymphoid tumors

PI3Kδ - ACP-319, AMG 319 [27] 18 33,000 270 85 p.o 2 - Lymphoid tumors

PI3Kδ - BGB-10188 [28] n.a. n.a. n.a. n.a. p.o 2 - Lymphoid and
solid tumors

PI3Kδ - GS-9901 [29] 1 750 100 190 p.o 1 - -

PI3Kδ - GSK2292767 [23] n.a. n.a. n.a. n.a. inh. 1 ˆ - -

PI3Kδ - HMPL-689 [30] 0.8 >1000 87 114 p.o 1 - Lymphoid tumors

PI3Kδ - IOA-244,
MSC2360844 [31] 145 18,500 2850 >20,000 p.o 1 - Lymphoid and

solid tumors

PI3Kδ - RV1729 [32] 12 193 n.a. 25 inh. 1 ˆ - -

PI3Kδ - SHC014748M [33] n.a. n.a. n.a. n.a. p.o 2 - Lymphoid tumors

PI3Kα/PI3Kδ Copanlisib BAY 80-6946 [34] 0.7 0.5 3.7 6.4 i.v. 3 FL *** Lymphoid and
solid tumors
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Table 1. Cont.

Target Official Name Common/Alternative
Name

PI3Kδ

(IC50, nM)
PI3Kα

(IC50, nM)
PI3Kβ

(IC50, nM)
PI3Kγ

(IC50, nM) Adm. Route Phase # FDA Approval On-Going Trials ##

PI3Kα/PI3Kδ Pictrelisib Pictilisib GDC-0941,
RG-7321 [35] 3 3 33 75 p.o 2 - -

PI3Kα/PI3Kδ - TQ-B3525 [36] n.a. n.a. n.a. n.a. p.o 2 - Lymphoid and
solid tumors

PI3Kβ/PI3Kδ - AZD8186 [37] 12 35 4 675 p.o 2 - Solid tumors

PI3Kβ/PI3Kδ - KA2237 [38] 8 >500 19 >500 p.o 1 - -

PI3Kα/PI3Kδ
/PI3Kγ Taselisib GDC-0032 [39] 0.12 0.29 9.1 0.97 p.o 3 - Lymphoid and solid

tumors

PI3Kα/PI3Kβ
/PI3Kδ Sonolisib PX-866 [40] 2.7 5.5 >300 9 p.o 2 - -

PI3Kδ/PI3Kγ Duvelisib IPI-145, INK1197 [41] 2.5 1602 85 27 p.o 3 CLL, FL, SLL **** Lymphoid tumors

PI3Kδ/PI3Kγ Tenalisib RP6530 [42] 24 >7000 >3000 33 p.o 2 - Solid tumors

PI3Kα/PI3Kδ
/BRAF - ASN003 [43] 6 16 690 97 p.o 1 - -

PI3Kδ/CK1ε Umbralisib TGR-1202, RP5264 [44] 22.23 >9000 >1000 >1000 p.o 3 FL, MZL ***** Lymphoid tumors

PI3Kα/PI3Kβ
/PI3Kδ/HDAC Fimepinostat CUDC-907 [45] 39 19 54 311 p.o 2 - Lymphoid and

solid tumors

FDA, U.S. Food and Drug Administration; target IC50 inhibition based on reported kinase inhibition profiles; #, based on http://adisinsight.springer.com/ and on https://clinicaltrials.gov accessed in 15
September 2021; ##, defined as “recruiting” or “not yet recruiting” in https://clinicaltrials.gov accessed in 15 September 2021; APDS/PASLI, Activated phosphoinositide 3-kinase delta syndrome/p110δ-activating
mutation causing senescent T-cells, lymphadenopathy and immunodeficiency; CLL, chronic lymphocytic leukemia; SLL, small lymphocytic lymphoma; FL, follicular lymphoma; MZL, marginal zone lymphoma; ˆ,
non in oncology; **, for the treatment of patients with (a) relapsed CLL in combination with rituximab, in patients for whom rituximab alone would be considered appropriate therapy due to other co-morbidities,
(b) relapsed FL after at least two prior systemic therapies, (c) relapsed SLL after at least two prior systemic therapies) [46]; ***, for the treatment of adult patients with relapsed FL after at least two prior systemic
therapies [47]; **** for the treatment of adult patients with (a) relapsed or refractory CLL/SLL after at least two prior therapies, (b) relapsed or refractory FL after at least two prior systemic therapies [48]; ***** for
the treatment of adult patients with (a) relapsed or refractory MZL who have received at least one prior anti-CD20-based regimen and (b) for relapsed or refractory FL who have received at least three prior lines
of systemic therapy [49]; inh., inhalation.; p.o., per os; i.v., intravenous.

http://adisinsight.springer.com/
https://clinicaltrials.gov
https://clinicaltrials.gov


Cancers 2021, 13, 5535 5 of 17

2. Immune System and Anti-Cancer Immunotherapy

The TME is a complex system comprising the cancer cells, plus proteins and other
chemical components of the extracellular matrix (ECM), and “accessory” non-neoplastic
cells, such as resident mesenchymal support cells, infiltrating inflammatory immune cells,
and endothelial cells. Altogether, the tumor microenvironment (TME) plays a fundamental
role in regulating tumor development, both leading to an immune inflammatory response
and fueling innate and adaptive immune activity against cancer cells, but also supporting
the growth of the latter [50].

Cells and tissues are continuously surveilled by immune cells, which recognize and
eliminate emerging cancer cells. Genetically engineered mice deficient for CD8+ cytotoxic
T-lymphocyte (CTLs), CD4+ Th1 helper T-cells, or natural killer (NK) cells components of
the immune system, show an increased tumor incidence [51,52].

During tumor initiation, naïve T-cells recognize antigens expressed by malignant
cells are primed in the draining lymph nodes, are activated, and migrate in the TME. In
this niche, immune response eliminates immunogenic cancer cells [53]. NK and cytotoxic
CD8+ T-cells eliminate immunogenic proliferating cancer cells [54]. Later on, inflamma-
tion is persistent and inflammatory cells are recruited and activated. In many cancers,
high presence of tumor-infiltrated T-cells has a good prognostic value [55,56]; instead,
high presence of macrophage infiltration often correlates with poor prognosis [57] and
tumor-associated inflammatory response has a paradoxical effect of enhancing tumor
progression [58,59]. Tumor-promoting effects of immune cells is becoming more and more
evident and inflammation provides bioactive factors that helps proliferative growth, an-
giogenesis, invasion, and metastasis. In the setting of T-cell lymphomas, expression and
secretion of immunoinhibitory molecules can be shared by both tumor and non-neoplastic
cells [15,17].

CD8+ T-cells are the main players among anti-tumor T-cells. They are primed and
activated by antigen presenting cells (APC) to differentiate into CTL, which can directly
kill cancer cells [60].

CD4+ T helper 1 (Th-1) cells act through a variety of mechanisms. They massively
secrete proinflammatory cytokines, as IL-2, TNF-α and IFN-γ, co-adjuvate CTL cytotoxicity
and T-cell priming and activation, help macrophages and NK cells to destroy tumoral
cells and facilitate tumor antigens presentation [61–63]. Immune infiltrate components of
tumors include CD8+ T-cells and Th-1 cytokines, correlating with favorable prognosis in
many cancer types [64].

Effector T-cells killing-activity relies on the balance between the capability of tumor
antigens to induce an immune response (immunogenic feature) and the existence of signals
impairing T-cell functions [53]. This process by which the immune system controls tumoral
growth and balances tumor immunogenicity is called immune editing. Tumoral cells with
the most immunogenic antigens are recognized and killed in the early stages of tumori-
genesis, while the less immunogenic cancer cells escape T-cell control [54,65]. Neoplastic
cells are also able to decrease the response of the others innate immunity involved cells as
tumor-associated macrophages (TAM) and NK cells [66].

At present, different mechanisms of cancer immune tolerance have been identified.
Immune checkpoints signals are negative regulators of effector T-cells, and the two mainly
studied molecules in cancers are Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA-4)
and Programmed Cell Death 1 (PD-1) [63]. Known ligands of CTLA-4 are CD80 and CD86,
while PD-1 binds to its coreceptors PDL-1/2, expressed also by cancer cells, to impair
anti-tumor T-cell responses [67]. Immune checkpoint inhibitors (pembrolizumab and
nivolumab as anti-PD1; atezolizumab as anti-PD-L1; ipilimumab as anti-CTLA4) became a
successful strategy to enhance anti-tumor response in many malignancies [68].

As the tumor grows, cancer cells and signal molecules in the TME recruit regulatory
CD4+ T-cells (Tregs), responsible to inhibit T-cell responses, specifically priming, acti-
vation and cytotoxicity of effector immune cells (Figure 1) [69]. Tregs contribute to the
suppression of uncontrolled clonal expansion and negatively regulate the insurgence of
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hyper-inflammatory state. In tumors, they are recruited to hamper the immune system
and escape immune surveillance [70,71]. Tregs exploit their function through contact-
dependent mechanisms—PDL-1, LAG-3 C39/73, CTLA-4 or PD1 are expressed on their cell
surface, and lead to effector cell death or to enhance this event—and contact-independent
mechanisms—by secreting immune-suppressive cytokines, as IL-10, TGF-β, prostaglandin
E2, adenosine, and galectin-1 [72,73], and also recruiting myeloid-derived suppressor cells
which contribute to build an immunosuppressive environment [74]. Tumor-infiltrating
Treg cells are under pressure of a challenging environment with low oxygen availability,
high glucose demand, and a multitude of cytokines and chemokines [75,76]. Tan et al.
demonstrated that PI3K-AKT pathway regulates the immunosuppressive capacity of PD-1
deficient Tregs [77]. Tregs are characterized by the expression of the IL-2 receptor alpha
chain (CD25), CD4, FOXP3 and CTLA-4. Enrichment of Tregs in tumors can be due to an
augmented recruitment, expansion in the TME as a consequence of antigenic exposure,
response to cytokine signals or metabolic changes (Figure 1) [53]. Higher numbers of
Tregs have been detected in the blood of lymphoma patients than of healthy or cured
patients [78,79], and in lymphoma tissues than in reactive lymph nodes [78]. In cutaneous
diffuse large B-cell lymphoma, Hodgkin’s lymphoma and Epstein-Barr virus-associated
lymphoma, Tregs are recruited by CCR4 ligands or evolve from conventional cells (Tconvs)
to Tregs in the TME [80]. High presence of circulating Tregs represents a poor prognostic fac-
tor in diffuse large B-cell lymphoma (DLBCL), correlates with high lactate dehydrogenase,
advanced stage of the disease [78], and poor survival [72,81].
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Figure 1. Immuno-regulation in the tumor microenvironment. Tregs deprive the surrounding of co-stimulatory signals
for effector T-cells (Teff) affinity and activity. They exert their suppressive mechanism by different modalities: depriving
IL-2 from the surrounding, therefore reducing it for effector T-cells, by IL-2 binding with CD25; constitutively expressing
CTLA-4, which down-regulates CD80/86 expression by antigen-presenting cells (APC) and limits co-stimulatory signals for
Teff, together with CD28; immune-suppressive cytokines produced by Tregs decrease APC and Teff signals; PD-1/PD-L1
axis activation inhibits Teff function. In this environment, responders T-cells die by apoptosis or stay dormant and tumor
cells are prone to proliferation. Targeting PI3K specifically in Tregs could provide advantage for anti-cancer immunotherapy.
TCR: T-cell receptor; MHC: Major Histocompatibility Complex, BCR: B-cell receptor.
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3. Targeting PI3Kδ and Treg in Lymphomas

The ideal immune regulatory approach to fight cancer should be able to selectively
deprive Tregs in TME, while maintaining a potent immune effector system. Understanding
the signaling pathways regulating Tconvs and Tregs mechanisms could help to develop spe-
cific Tregs and Tconvs modulation strategies. In vitro and in vivo studies demonstrated that
PI3K signaling is fundamental for Treg differentiation and immunosuppressive function,
although the precise mechanism is still unclear [82–84].

Tregs are dependent on the activity of the PI3Kδ isoform [83,85,86] and studies suggest
that loss of PI3K signaling in Tregs leads to increased activity of the BACH2 and FOXO1
transcription factors, which in normal conditions, regulate the expression of key genes in
Treg differentiation and function (FOXP3, L-selectin, CCR7 and IFNγ) [87–89] (Figure 2).
In line with this mechanism, PTEN inhibition impairs Treg function and reduces their
immunosuppression ability [90]. PTEN-deficient Tregs could reduce FOXO1 transcription,
followed by decreased expression of FOXP3, essential for Treg development [91].
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Figure 2. PI3K pathway in Tregs regulating anti-cancer immunity. Activated AKT pathway through PI3Kδ signaling, the
dominant isoform in Tregs, leads to the phosphorylation of the BACH2 and FOXO1 transcription factors and in this form
they are sequestrated in the cytoplasm. BACH2 and FOXO1 are regulators of genes involved in Treg differentiation and
function, such as FOXP3, L-selectin (SELL), CCR7 and IFNγ. PI3Kδ inhibition suppress Tregs functionality; they are not able
to suppress any more anti-tumor responses. Proteins belonging to downstream TCR signaling are also regulated by PI3Kδ,
as pS6 phosphorylation and GSK-3β activation, controlling proliferation, survival pathway and downstream degradation of
the antiapoptotic protein Mcl-1.

Interestingly, genetic and pharmacological inhibition of PI3Kδ in mice exerts anti-tumor
activity via inhibition of Tregs and, possibly, of myeloid-derived suppressor cells [82,85]. In
this context, CD8+ CTL can still mediate anti-tumor activity, although an altered balance
between regulatory and effector CD4+ T-cells, with effector cells that prevail. Pharmaco-
logical targeting of PI3Kδ lead to similar changes compared to genetical inhibition, such
as suppression of tumor growth and reduction of immunosuppression, in many cancer
models [22,31,82,86,92–96]. The PI3Kδ inhibitor parsaclisib has in vivo antitumor activity
against the A20 mouse lymphoma cell lines despite no in vitro anti-tumor activity [96].
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Similar data are available for the PI3Kδ inhibitor linperlisib against models of breast carci-
noma and colorectal cancer [22]. Hanna et al. demonstrated that PI3Kδ inhibition decreases
Tregs numbers, proliferation, and activity in the Eµ-TCL1 model, but also CD8+ effector
T-cells numbers and cytotoxicity T-cell ability [94]. In vitro experiments on T-cells from CLL
patients, revealed that idelalisib down regulates the expression of crucial genes for T-cell
mediated immunity, impairs IFNγ production by CD4 and CD8 T-cells, and decreases the
proliferative capacity of T-cells without affecting their survival [93]. Similar results have
been reported by Maharaj et al., also using the Eµ-TCL1 model [95]. The PI3Kδ inhibitor
idelalisib and the PI3Kδ/γ inhibitor duvelisib, but not the dual PI3Kδ/CK1ε inhibitor
umbralisib, determined a reduction of Tregs, which was associated with increased immune-
mediated toxicities, in the absence of changes in the CD4/CD8 ratio or in the absolute
number of T-cells [95]. In a syngeneic colorectal cancer model, treatment with the PI3Kδ
inhibitor IOA-244 increases NK cells, and the ratio of cytotoxic CD8+ T-cells/Tregs [31]. The
last observation is supported by data indicating a selective and concentration-dependent
suppression of Treg cells but not of the proliferation of CD8+ T-cells [31]. Suppression of
Tregs in syngeneic tumors is also reported with the PI3Kα/δ inhibitor copanlisib [92], and
with KA2237 [38]. In an in vivo mammary tumor model, PI3Kδ blockade leads tumors to
be divided in “non-regressors”, in which tumor growth rate is reduced but tumors continue
to grow, and “regressors” where tumors shrink. Tumor infiltrating T-cells in “regressors”
are enriched of elements indicating a CD8-specific T-cell response. In both groups of mice
Tregs where reduced, although in Tregs from “non-regressor” tumors the expression of the
coinhibitory receptor LAG3 is enriched compared to “regressor” and untreated tumors [97].

Exposure of follicular lymphoma (FL) cells, cocultured with follicular dendritic
cells derived from normal tonsils, to idelalisib down-regulates the expression of inte-
grins and their ligands, of proangiogenic factors and it determines a disruption of the
CD40/CD40L-mediated crosstalk between FL cells and T-cells [98]. The PI3Kδ inhibitor
down-regulates CCL22 expression, and this would reduce the recruitment of Tregs and of T
follicular helper cells (TFH), both expressing the chemokine receptor CCR4 and supportive
for the growth and survival of FL cells [98]. A similar effect is also observed during the
generation of high-affinity antibodies in the GC, where PI3Kδ regulates TFH formation
and function, activating ICOS, leading to intracellular signaling activation, production of
TFH-related cytokines and effector molecules [99]. Moreover, idelalisib appears to increase
the sensitivity of FL cells to the BCL2 inhibitor venetoclax, via a reduced PI3Kδ-mediated
BAD phosphorylation, and/or via up-regulating the levels of proapoptotic factor HRK,
and/or down-regulation of the anti-apoptotic factor BFL-1 [98].

Targeting PI3Kδ isoform with idelalisib stimulates CD8+ T-cells proliferation, main-
taining survival, cytokines and granzyme B production. Idelalisib also inhibits Akt phos-
phorylation (both S473 and T308) in Tregs but not in Tconvs, and abrogates Tregs prolifera-
tion without affecting Tconv cells [83,86].

Finally, data collected in syngeneic mouse models mostly suggest that PI3Kδ inhibitors
show synergism with immune checkpoint modulators [22,31,92]. However, there are also
data demonstrating an important suppression of CD8+ T-cells maturation and killing
capacity, antagonizing the effect due to immune checkpoint blockade [100].

4. Potential Toxicities Linked with PI3Kδ Inhibition in T-Cells

Side effects of PI3Kδ inhibitors encompass infections, hepatotoxicity, diarrhea and/or
colitis, and pneumonitis [4–6,101–106] (Table 2). In clinical trials with idelalisib, serious ad-
verse events have also included deaths related to cytomegalovirus infections, pneumonias
caused by Pneumocystis jirovencii, in addition to respiratory events possibly caused by infec-
tions [107]. These toxicities have been linked with a T-cell immune response impairment
induced by PI3Kδ inhibition that could favor such infections or viral reactivations, both by
an increase in Treg-mediated immune tolerance mechanisms, and by impairment of the
later stages of CD8 differentiation involved in the most potent antiviral activity [93,103].
Interestingly, these toxicities seem more frequent in treatment-naïve than in pre-treated
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patients and in younger than older individuals, further suggesting that the presence of
a still partially preserved immune system is implied [101,103,104], and they might be
associated with higher clinical activity [105].

Table 2. Effect of the PI3Kδ inhibitors on serum levels of secreted factors in the context of clinical trials enrolling patients
with lymphoma.

PI3Kδ Inhibitor Phase Lymphoma Subtypes Decreased Factors Increased Factors

Copanlisib 1 [108] FL, WM, DLBCL, BL,
MCL, PTCL

CCL2, CCL3, CCL5, CCL15, CCL16, IL-10,
IL2RA, CD27, CD5L (cycle 1, day 15) -

Duvelisib 1 [109] FL, WM, SLL, MZL
CCL1, CCL4, CCL17, CCL22, CXCL10,
CXCL13, IL-10, IL-16, MMP-9, TNFα

(cycle 1, day 8)
-

Duvelisib 1 [110] CLL
CCL1, CCL3, CCL4, CCL17, CCL22,

CXCL10, CXCL13, IL-6, IL-10, IL-12p40,
MMP-9, MMP-12, TNFα (cycle 1, day 8)

-

Duvelisib 1 [111] PTCL IL10, IL-12p40, CXCL13, (cycle 1, day 8)
CCL1, IL6, IL8, IL9,

IL15 IL17A, IL-12p70,
CD40L, TNFβ

Duvelisib 1 [112] CLL, FL, WM, SLL,
MZL

CCL1, CCL4, CCL17, CCL22, CXCL10,
CXCL13, MMP-9, TNFα (cycle 1, day 8) -

Duvelisib 3 [113] CLL/SLL
CCL3, CCL4, CCL17, CCL19, CCL22,

CXCL13, IL2RA, IL-12p40, IL-10, TNFα
(cycle 2, day1);

-

Idelalisib 1 [114] CLL/SLL CCL3, CCL4, CCL17, CCL22, CD40L,
CCL2, CXCL13, TNFα (within 1 month) -

Tenalisib 1 [115] HL CCL17 -

FL, follicular lymphoma; WM, Waldenström’s macroglobulinemia; DLBCL, diffuse large B-cell lymphoma; BL, Burkitt lymphoma; MCL,
mantle cell lymphoma; PTCL, peripheral T-cell lymphoma; SLL, small lymphocytic lymphoma; MZL, marginal zone lymphoma; CLL,
chronic lymphocytic leukemia; HL, Hodgkin lymphoma.

Although the reduction of Tregs in the TME is an important and attractive thera-
peutic target, the caveat is that a reduction of Tregs activity, can activate autoimmune
reactions [116,117]. For example, the effect on T-cells is believed to cause the severe di-
arrhea or colitis, which are some of the major side effects in patients receiving PI3Kδ
inhibitors [7,102]. A picture similar to graft versus host disease has been described in these
patients, with increase infiltration of CD8+ cytotoxic T-cells [118,119], perhaps due to the
already mentioned effect of the PI3Kδ inhibitor on the mesenteric B-cells leading to an
unleashed activity of Tregs [116].

We have also to consider that the pattern of selectivity for the PI3Kδ isoform versus
other class IA or IB members largely varies across the small molecules that have entered the
clinical evaluation (Table 1). Their ability to bind isoforms can affect the toxicity profile. An
example is given by observed acute insulin resistance, also causing severe hyperglycemia
and hyperinsulinemia, seen with compounds that also target PI3Kα, physiologically in-
volved in the glucose homeostasis in muscle, liver, and fat tissues [6,102,120].

5. Effects on T-Cells in the Context of Clinical Trials

While the effect of the PI3Kδ inhibitors on the secretion of chemokines has been
studied in many clinical trials enrolling patients with lymphoma (Table 3), only a few
studies have explored whether the drugs affect T-cell populations in the peripheral blood
(Pb) [114,117,121–123] or in the TME [108,124].
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Table 3. Potential toxicities of the PI3Kδ inhibitors in the context of clinical trials enrolling patients with lymphoma.

PI3Kδ Inhibitor Phase Lymphoma Subtypes Any Grade, AE (%) Grade ≥ 3, AE (%)

Copanlisib 2 [108] FL, MZL, SLL,
WM/LPL, DLBCL

Diarrhea (35.2), colitis (0.7),
hyperglycemia (50.0),

hypertension (29.6), neutropenia
(28.9), pneumonitis (6.3)

Diarrhea (8.5), colitis (0.7),
hyperglycemia (40.1),

hypertension (23.9), neutropenia
(24.0), pneumonitis (1.4)

Umbralisib 2 [109] MZL, FL, SLL

Neutropenia (15.9), diarrhea (59.1),
colitis (1.9), fatigue (30.8),

increased ALT (20.2), increased
AST (18.8)

Neutropenia (11.5), diarrhea (10.1),
colitis (0.5), fatigue (3.4), increased

ALT (6.7), increased AST (7.2)

Duvelisib 2 [113] SLL, FL, MZL

Diarrhea (48.8), neutropenia (28.7),
throbocytopenia (18.6), anemia
(26.4), febrile neutropenia (9.3),
increased ALT (14.0), increased

lipase (9.3), pneumonia (7.8),
colitis (7.8)

Diarrhea (14.7), neutropenia (24.8),
throbocytopenia (11.6), anemia
(14.7), febrile neutropenia (9.3),
increased ALT (5.4), increased
lipase (7.0), pneumonia (5.4),

colitis (5.4)

Idelalisib 2 [114] FL, SLL, MZL,
WM/LPL

Diarrhea (43.0), pneumonia (11.0),
increased ALT (47.0), increased

AST (35.0)

Diarrhea (13.0), pneumonia (7.0),
increased ALT (13.0), increased

AST (8.0)

Tenalisib 1 [115] DLBCL, MCL, PTCL,
CLL, HL

Anemia (29.0), neutropenia (20.0),
thrombocytopenia (26.0), pyrexia

(37.0), cough (43.0), dyspnea (26.0)

Anemia (11.0), neutropenia (17.0),
thrombocytopenia (17.0),

pyrexia (3.0)

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate eminotransferase; BL, Burkitt lymphoma; CLL, chronic lymphocytic
leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; LPL, Lymphoplasmacytic lymphoma; MCL, mantle cell
lymphoma; MZL, marginal zone lymphoma; PTCL, peripheral T-cell lymphoma; SLL, small lymphocytic lymphoma; HL, Hodgkin
lymphoma. WM, Waldenström’s macroglobulinemia.

No significant changes in Pb T-cells subsets were seen in the phase I and II studies
evaluating idelalisib in patients with relapsed indolent lymphoma [122,123] and in the
phase I for CLL [114]. Conversely, a decrease of the Treg percentage was described in
the Pb of 13/19 relapsed/refractory CLL patients treated for one month of idelalisib in a
separate phase I study evaluating the small molecule as single agent followed by 6 months
of combination therapy with the anti-CD20 antibody ofatumumab [117]. Importantly, the
decrease of Tregs in the Pb was stronger in patients that experienced toxicity [117].

A reduction in the Pb Tregs was also observed in 14/19 relapsed/refractory CLL
patients exposed to the PI3Kδ inhibitor ACP-319 in the phase I study [121].

Serial biopsies were obtained in 30 patients with relapsed/refractory solid tumors or
lymphoma enrolled in a phase I study of copanlisib, a pan PI3K inhibitor, preferentially
targeting the PI3Kα/PI3Kδ isoforms [108]. There was a reduction in the proportion of
CD4+T-cells in tumors after 14 days of treatment in 14 of patients treated at 0.8 mg/Kg
but not at 0.4 mg mg/Kg (n = 16), with no changes in the CD8+ cells [108]. The reduc-
tion in the CD4+ cells suggests that Tregs were affected; however no additional staining
was performed.

In the phase I study, exploring the dual PI3K/BRAF inhibitor sonolisib in patients
with advanced solid tumors bearing the BRAF V600 mutation, biopsies were performed at
baseline and at day 8 of the first cycle in six patients [124]. An increase in CD8+ cells at
immunohistochemistry was observed in 5/6 patients [124]. This was paired with higher
PD-L1 staining in the two cases with a partial response and not in patients with stable or
progressive disease [124]. Additionally, here, no data are available for Tregs.

Finally, since PI3Kδ is also downstream to FcεRI, activated by IgE binding in mast
cells and basophils, idelalisib has been evaluated in patients with allergic rhinitis [125]. In a
phase 1 study the PI3Kδ inhibitor decreased plasma levels of CD631/CCR31 basophils, and
inhibited ex vivo basophil activation in response to allergen stimulation [125]. A similar
effect has also been reported in relapsed/refractory lymphoma patients enrolled in a phase
I with the PI3Kδ inhibitor dezapelisib [126].
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6. Conclusions

PI3Kδ inhibitors are active anti-cancer compounds in lymphomas. Their mechanism of
action is promiscuous, and it is mediated via a direct inhibition of PI3Kδ in the lymphoma
cells but also due to an inhibitory activity in multiple non-neoplastic cells. In particular,
the data we have summarized highlight that the pharmacological inhibition of PI3Kδ
in Tregs is clearly effective in boosting anti-tumor immune system. Further studies are
needed to exploit this therapeutic option, avoiding the possible insurgence of autoimmune
disorders. Discovery of other pathways and molecules that preferentially inhibit PI3K
signaling specifically in Tregs is needed.
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