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Transthyretin (TTR)-like proteins play multi-function roles in nematode and are important
component of excretory/secretory product in Haemonchus contortus. In this study, we
functionally characterised a secretory transthyretin-like protein in the barber’s pole worm
H. contortus. A full-length of transthyretin-like protein-coding gene (Hc-ttr-31) was
identified in this parasitic nematode, representing a counterpart of Ce-ttr-31 in
Caenorhabditis elegans. High transcriptional levels of Hc-ttr-31 were detected in the
egg and early larval stages of H. contortus, with the lowest level measured in the adult
stage, indicating a decreased transcriptional pattern of this gene during nematode
development. Localisation analysis indicated a secretion of TTR-31 from the intestine
to the gonad, suggesting additional roles of Hc-ttr-31 in nematode reproduction.
Expression of Hc-ttr-31 and Ce-ttr-31 in C. elegans did not show marked influence on
the nematode development and reproduction, whereas Hc-ttr-31 RNA interference-
mediated gene knockdown of Ce-ttr-31 shortened the lifespan, decreased the brood
size, slowed the pumping rate and inhibited the growth of treated worms. Particularly, gene
knockdown of Hc-ttr-31 in C. elegans was linked to activated apoptosis signalling
pathway, increased general reactive oxygen species (ROS) level, apoptotic germ cells
and facultative vivipary phenotype, as well as suppressed germ cell removal signalling
pathways. Taken together, Hc-ttr-31 appears to play roles in regulating post-embryonic
larval development, and potentially in protecting gonad from oxidative stress and
mediating engulfment of apoptotic germ cells. A better knowledge of these aspects
should contribute to a better understanding of the developmental biology of H. contortus
and a discovery of potential targets against this and related parasitic worms.
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INTRODUCTION

The strongylid nematode Haemonchus contortus (also known as
barber’s pole worm) is one of the most important parasitic
nematodes of sheep, goats and other ruminants (Chilton et al.,
2006). It feeds on blood in the abomasa of small ruminants and
causes the parasitic disease haemonchosis characterised by
anemia, hemorrhagic gastritis, oedema and associated
complications (Zajac and Garza., 2020). This parasitic disease
affects hundreds of millions of livestock animals, causing billions
of dollars of losses to livestock husbandry globally (Roeber et al.,
2013; Wang et al., 2017; Zajac and Garza., 2020). Current control
strategies against H. contortus infection in ruminants rely heavily
on anthelmintic chemotherapy, especially in the absence of
efficient alternative methods in many countries (Blanchard
et al., 2018). However, frequent and indiscriminate
administration of anthelmintics has led to the development of
drug resistance worldwide (Arsenopoulos et al., 2021), including
drugs recently introduced into the market (Mederos et al., 2014;
Niciura et al., 2019). Although the commercial vaccine
Barbervax® against H. contortus has been registered for use in
lambs in some countries (Teixeira et al., 2019; Kebeta et al., 2020),
effective control of H. contortus and haemonchosis remains a
major challenge globally. Revealing resistance mechanisms and
discovering novel drug/vaccine targets are current priorities in
the research field of H. contortus, which should be preferably
based on a deep understanding of this important parasitic
nematode at the molecular level (Wang et al., 2017; Ma et al.,
2020).

Extensive studies on the excretory/secretory products (ESP) of
parasitic nematodes (Hewitson et al., 2011; Vanhamme et al.,
2020) have indicated a range of molecules that might play
important roles at the host-parasite interface and are of
potential value as vaccine targets. For instance, hundreds of
ESPs of H. contortus have been identified by using advanced
transcriptomic and proteomic tools, including proteolytic
enzymes, glycoside hydrolases, C-type lectins, SCP/TAPS and
transthyretin (TTR)-like proteins (Yatsuda et al., 2003; Gadahi
et al., 2016; Wang et al., 2019). Particularly, TTR-like proteins
have been consistently identified in the previous studies, which
have been proposed to play a role in the developmental transition
from the free-living stage to the parasitic stage of H. contortus as
well as in the host-parasite interactions (see Cantacessi et al.,
2010; Laing et al., 2013; Britton et al., 2016; Wang et al., 2019). In
particularly, although it was proposed that TTR proteins play
various roles in regulating apoptosis, modulating host immune
responses and degenerative maladies in a range of organisms
(Wang et al., 2010; Ankarcrona et al., 2016; Lin et al., 2016), few
molecules have been studied at the molecular level in free-living
or parasitic worms (Wang et al., 2010; Offenburger et al., 2018).
Little is known about the biological function of TTR-like proteins
inH. contortus and related parasitic nematodes of socioeconomic
importance.

A recent proteomic study has confirmed 15 excreted/secreted
TTR-like proteins in the parasitic stages of H. contortus (Wang
et al., 2019), suggesting their roles in the key biological processes
(e.g., development, reproduction and parasitism) of this

important parasite. In this study, we elected to characterise
one gene homologue (Hc-ttr-31) of C. elegans ttr-31 that
exhibited strong phenotypic changes in previous genome-wide
RNA interference (RNAi) studies. Real-time quantitative PCR
(qRT-PCR) was used to analyse the developmental transcription
of ttr-31 in H. contortus and C. elegans. Spatial expression of Hc-
ttr-31 was assessed in the infective third-stage larvae (L3s),
fourth-stage larvae (L4s) and adults of H. contortus by indirect
immunofluorescence, and in C. elegansN2 strain by transgenesis.
Gene knockdown was conducted to investigate the functional
roles of Hc-ttr-31 in the development and reproduction as well as
apoptosis of this important parasitic nematode.

MATERIALS AND METHODS

Propagation of H. contortus and C. elegans
Adult worms of H. contortus (ZJ strain) were collected from a
slaughterhouse in Jiaxing, Zhejiang, China. Female adult worms
were dissected to collect eggs under a dissecting microscope
(Motic, China). Eggs were cultured at 28°C for 7 days to
obtain the L3s. Three helminth-free lambs (Hu sheep,
6 months old) were experimentally infected with ∼8000 L3s of
H. contortus as described previously (Zhang et al., 2018). Faecal
examination was performed to confirm the establishment of
infection. Eggs of H. contortus were collected by flotation
using saturated NaCl solution (Cox and Todd, 1962). The
first-stage larvae (L1s), second-stage larvae (L2s) and L3s of H.
contortus were obtained by incubating faecal samples at 28°C for
1, 3 and 7 days, respectively. L4s and adult worms were collected
from the abomasum of euthanised lambs at 9 and 45 days after
infection, washed in phosphate-buffered saline (PBS, pH7.4) and
temporarily maintained in DMEM (Thermo Fisher Scientific,
United States) with 10% FBS (Biological Industries, Israel) at 37°C
(Shi et al., 2021).

The free-living nematode C. elegans N2 strain was maintained
on nematode growth medium (NGM) agar plates at 20°C
(Stiernagle, 2006). NGM agar plates were supplied with
Escherichia coliOP50 or HT115 mutant bacteria as a food source.

Extraction of Deoxyribo Nucleic Acid and
Ribo Nucleic Acid
Genomic DNA (gDNA) was extracted from snap-frozen adult
worms of H. contortus using a small-scale DNA extraction kit
(Takara Bio, Japan) according to the supplier’s instructions. Total
RNA was extracted from eggs, L1s, L2s, L3s, L4s and adult worms
of H. contortus using Trizol reagent (Invitrogen, United States).
The first strand cDNA was synthesised from the total RNA using
a first-strand cDNA synthesis kit (Toyobo, Japan). Extracted
gDNA and synthesised cDNA were stored at −80°C until use.

Cloning and Characterization
The sequence of C. elegans ttr-31 (WormBase ID:
WBGene00010225) was used to identify the gene homologue
of H. contortus (designated as Hc-ttr-31) from the Sanger
Helminths Database (https://www.sanger.ac.uk/resources/
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downloads/helminths/haemonchus-contortus.html). Based on
the available transcript of Hc-ttr-31, primers (Supplementary
Table S1) were designed using Primer Premier 5 (PREMIER
Biosoft International, United States) to amplify the coding region
of this gene. The amplification reaction mix contained 2.5 μL 10 ×
PCR buffer, 0.5 μL LA Taq (Takara Bio), 2 μL of 2.5 mM dNTPs,
2.0 μL of primer pair (10 μM), 1 μL gDNA of H. contortus and
17 μL of molecular grade water. The thermocycle program
comprised of 94°C for 15 s, 62°C for 30 s and 72°C for 30 s.
PCR amplification was also performed using cDNA as a template
to obtain the transcript ofHc-ttr-31. PCR products were purified,
ligated to PMD-19T (Takara Bio) and sequenced in both
directions. Based on the obtained nucleotide acid sequence,
exons and introns of Hc-ttr-31 were predicted by the “GT-
AG” rule using DNASTAR (Version 7.1.0) (Breathnach and
Chambon, 1981), with evidence from the obtained transcript
sequences. Compara Gene Tree analysis and reciprocal blastp
searching were performed based on resources available at
WormBase ParaSite (https://parasite.wormbase.org/index.html).
Functional domain architecture of the inferred proteins was
predicted based on the InterPro database (Mitchell et al., 2018).

Quantitative Real-Time Polymerase Chain
Reaction
Transcriptions of Hc-ttr-31 in all developmental stages (egg, L1,
L2, L3, L4 and adult) ofH. contortus were determined using Real-
time SYBR Green Mix reagent (Toyobo) and a CFX96 Real-time
PCR System (Bio-Rad, United States). qRT-PCR was also
performed to assess the transcriptional level of ttr-31 in
different developmental stages of C. elegans. The thermocycle
program was 95°C for 10 min followed by 40 cycles of 95°C for
15 s, 60°C for 15 s and 72°C for 15 s. Actin (act-1) and β-tubulin
were used as the internal controls for C. elegans and H. contortus,
respectively. Transcriptional levels of key signalling components
(i.e., ced-1, ced-4, ced-6, ced-7, ced-9, egl-1, ina-1, nrf-5, par-1, and
ttr-52) involved in apoptosis and phagocytosis of apoptotic cells
(Reddien and Horvitz, 2004; Wang et al., 2010; Palmisano and
Meléndez, 2019) were also assessed. Primer sets used in this
section can be found in Supplementary Table S1. Three
replicates were included and performed independently.
Transcriptional changes of genes were analysed using a 2-ΔΔCt

method and presented as mean ± standard error of mean (SEM).
Statistical analysis was conducted using a one-way ANOVA
(p < 0.05).

Prokaryotic Expression and Preparation of
Polyclonal Antibodies
Hc-ttr-31 was subcloned into pET30a vectors for prokaryotic
expression of the recombinant protein rHc-TTR-31. In brief, the
pET30a-Hc-trr-31 plasmids were transformed into E. coli BL 21
(DE3), which was induced by 0.5 mM isopropyl-β-D-1-
thiogalactopyranoside (IPTG) at 37°C for 8 h. Bacteria were
harvested by a centrifugation at 8,000 × g at 4°C for 5 min,
suspended in 50 mM potassium phosphate (pH7.4), and lysed by
sonication. The supernatant was separated by a centrifugation at

12,000 × g for 10 min at 4°C, filtered with a 0.22 μm filter (Merck
Millipore, United States), then incubated with Ni-NTA resin
column (Thermo Fisher Scientific) for 30 min. After washing
with 20 mM imidazole, recombinant protein rHc-TTR-31 was
eluted with 250 mM imidazole from the column. Purified protein
was assessed by SDS-PAGE and a Bradford kit (Fdbio Science,
China) using bovine serum albumin (BSA) as standard.

ANew Zealand rabbit was immunised with the rHc-TTR-31 to
generate polyclonal antibodies against the recombinant protein
(Shi et al., 2021). In brief, the rabbit was subcutaneously injected
with the rHc-TTR-31 and Freund’s Complete Adjuvant (Sigma-
Aldrich, United States). Two boosting shots were conducted with
the rHc-TTR-31 and Incomplete Fraud’s Adjuvant in a 2-week
interval. Antiserum was collected 10 days after the final
immunisation. Western blotting was performed using the anti-
6 × His tag polyclonal antibodies (1:2,000; Proteintech,
United States) and the generated anti-rHc-TTR-31 polyclonal
antibodies to determine the specificity of antibodies.

Indirect Fluorescence
Immunohistochemistry
Immunolocalisation of target protein was performed as described
previously (Riou et al., 2005; Shi et al., 2021). Briefly, L3s of H.
contortus were exsheathed by incubation with 0.15% sodium
hypochlorite for 30 min (Ding et al., 2017); the exsheathed L3s
(xL3s), L4s and adults were washed in PBS (pH7.4), fixed in 4%
paraformaldehyde (Rothwell and Sangster, 1993) overnight, and
then dehydrated. L4s and adults were further embedded in
paraffin, sectioned at 5 μm in thickness, dried at 60°C
overnight and deparaffinized with xylene and dehydrated as
described previously (Qu et al., 2014). Sliced L4s and adults as
well as xL3s of H. contortus were incubted in 1% BSA for 2 h,
washed twice in PBS, and then incubated with 1:500 diluted anti-
Hc-TTR-31 polyclonal antibodies at 4°C overnight. After
washing, slides were incubated with goat anti-rabbit IgG
(Invitrogen) at 1:1,000 dilution at 37°C for 1 h. Pre-
immunisation serum from the same animal was used as a
negative control. Fluorescence was detected with a Zeiss
LSM710 laser confocal microscope (Zeiss Microscopy, Germany).

Transgenic Expression of Hc-ttr-31 in C.
elegans
To confirm the spatial distribution ofHc-TTR-31, transgenesis of
Hc-ttr-31 was conducted in C. elegans (Huang et al., 2021).
Briefly, the promoter sequence of Ce-ttr-31 was amplified,
ligated to the PMD-18T vector and subcloned into pPD95.67
plasmids (Ce-ttr-31p::gfp), with the Hc-ttr-31 coding sequence
inserted into the multiple cloning site (Ce-ttr-31p::Hc-ttr-31::gfp).
Transgenic expression of Hc-ttr-31 in C. elegans N2 strain was
performed by micro-injection with the Ce-ttr-31p::Hc-ttr-31::gfp
(Mello et al., 1991). A Ce-ttr-31p::Ce-ttr-31::gfp was used as a
reference control. Considering the homology ofHc-ttr-31 and Ce-
ttr-31, transgenesis of Hc-ttr-31 should result in an over-
expression of TTR-31 in the treated C. elegans. To explore the
effects of exogenous Hc-TTR-31 in C. elegans, transgenic worms
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were mounted on 2% agar pads containing 1% sodium azide
(Solarbio, China) and imaged using a Zeiss LSM710 laser confocal
microscope (Zeiss Microscopy).

RNA Interference
To explore the function of Hc-ttr-31 in H. contortus, Hc-ttr-31
RNAi-mediated gene knockdown of its orthologue Ce-ttr-31 was
performed in C. elegans, using a method described previously
(Kwon et al., 2010; Yan et al., 2014). In brief,Hc-ttr-31was cloned
into the plasmid L4440, which was then transformed into E. coli
HT115 (DE3), with Ce-ttr-31 and empty L4440 vectors used as
positive and negative controls, respectively. NGM plates
containing 0.1 mM IPTG were seeded with the transformed
HT115 and placed at room temperature for 5 days prior to
RNAi assay. Worms of C. elegans N2 strain were synchronized
and laid on standard NGM plates supplemented with OP50
(Kamath and Ahringer, 2003). The worms were washed off
the plates after 30 h (i.e., L4 stage) and then centrifuged at
1,000 ×g for 5 min. From which, 20 worms were inoculated
onto NGM plates with the transformed HT115, and incubated
at 25°C for 3 days. Following transcriptional examinations of Hc-
ttr-31 and Ce-ttr-31 by qRT-PCR, phenotypic changes of worms
were assessed in aspects of brood size, pumping rate, body length
and body width (see Wong et al., 1995; Mörck and Pilon, 2006;
Papaevgeniou et al., 2019). Three replicates were performed for
the RNAi and phenotypic assays. For the analysis of facultative
vivipary phenotype, worms were checked using a dissecting
microscope (Motic) and the ratio of bagging worms was
calculated.

Apoptosis Assay
To check whether Hc-ttr-31 plays a role in the apoptosis, the
number of apoptotic germ cells in the RNAi-treated worms was
determined using a method described elsewhere (Kelly et al.,
2000) with some modifications according to manufacturer’s
instruction. Briefly, ∼ 100 synchronised adult worms were
subjected to RNAi treatment for 36 h and then washed in M9
buffer for 5 times; Worms were suspended in 0.5 ml M9 buffer
and stained with acridine orange (20 μg/ml; Solarbio) for 1.0 h;
Stained worms were then transferred onto NGM plates seeded
with OP50 for 1.5 h for recovery. Recovered worms were kept in
1.0% sodium azide solution at the centre of slide and examined
under a Zeiss LSM710 laser confocal microscope (Zeiss
Microscopy).

Measurement of Reactive Oxygen Species
Production of general ROS in RNAi-treated worms was
determined using 2′, 7′-dichlorodihydrofluorescein diacetate
(DCFH-DA) (Beyotime, China) based on the method
reported elsewhere (Zhu et al., 2010; Guo et al., 2016). In
brief, about 5,000 treated/untreated worms were sonicated in
PBS, and the supernatant was collected after centrifugation at
15,000 × g for 45 min. Bradford protein assay kit (Fdbio Science)
was performed to determine protein concentration. The lysates
were incubated with 300 μM DCFH-DA in black-walled
microtiter plate (Corning Incorporated, United States) at
37°C for 3 h. Rosup was used as a positive control in the

production of reactive oxygen. Fluorescence intensity was
measured using a Synergy H1 hybrid multimode microplate
reader (BioTek, United States).

Statistical Analysis
At least three technical replicates were included in each assay and
each experiment was repeated three times. Data are presented as
mean ± standard error of mean (SEM). One-way ANOVA with
Dunnett post-hoc test was performed using Excel 2016
(Microsoft, United States) and GraphPad Prism 5 (GraphPad
Software, United States). p < 0.05 was considered statistically
significant.

RESULTS

cDNA-Confirmed Hc-ttr-31 is a 1-to-1
Orthologue of Ce-ttr-31
Hc-ttr-31 comprised three exons, encoding a transcript of
432 nt in length (GenBank accession number MW013314;
Figure 1A), representing a predicted gene locus
(hcontortus_chr2_Celeg_TT_arrow_pilon: 30031855–30032608) in
the recently updated chromosome-level genome assembly of H.
contortus (MHCO3ISE; WBPS15). The cDNA-confirmed gene
model of Hc-ttr-31 was similar to that of Ce-ttr-31 in the free-
living model organism C. elegans (Figure 1A), and was predicted a
1-to-1 orthologue of Ce-ttr-31. The inferred protein Hc-TTR-31 was
143 aa in length, contained a signal peptide (SignalP-noTM) and a
transthyretin-related family domain, showing a 65% similarity to the
amino acid sequence deduced from Ce-ttr-31 (Figure 1B).

Hc-ttr-31 Highly Transcribes in all Larval
Stages but Not in Adult Stage
Different transcriptional levels of Hc-ttr-31 were detected among
the developmental stages of H. contortus. Specifically, Hc-ttr-31
was highly transcribed in the egg and larval (L1, L2, L3 and L4)
stages of H. contortus, with the highest level detected in the L1
stage and the lowest in the female adult stage (Figure 1C),
showing a decreasing transcriptional pattern of Hc-ttr-31
during the development of this parasitic nematode. A similar
developmental transcription of Ce-ttr-31 was also found in C.
elegans (Figure 1D). Differently, the highest transcriptional level
of Ce-ttr-31 was detected in the egg of the free-living nematode
(Figure 1D).

Hc-TTR-31 is Localised in the Intestine and
Gonad of H. contortus
RecombinantHc-TTR-31 (rHc-TTR-31) was successfully expressed in
E. coli BL21 (DE3) and was recognised by the anti-6×His tag
polyclonal antibodies (Supplementary Figure S1). Using the
recombinant protein, polyclonal antibodies against rHc-TTR-31
were generated and used to detect the native Hc-TTR-31 from the
crude protein extract of H. contortus (Supplementary Figure S1A),
facilitating immunolocalization of native Hc-TTR-31 in the L3s, L4s,
and adults of this parasite (Figure 2 and Supplementary Figure S2).
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Specifically, predominant cephalic, cuticular/muscular and intestinal
distributions ofHc-TTR-31 were observed in the xL3s ofH. contortus,
with punctate expression detected in the head and tail regions
(Figure 2A). Muscular and intestinal distributions of Hc-TTR-31
were also found in L4s (Figure 2B) and adults (Figure 2C) of this
parasitic nematode. Differently, the fluorescent intensities observed in
the L4s and adults were lower than that in the xL3s of H. contortus
(Figures 2B,C), which was in accordance with the decreasing
transcriptional pattern of Hc-ttr-31 during the development of this
parasite.

Expression of Ce-TTR-31 and Hc-TTR-31
Prolonged the Lifespan of C. elegans
Driven by the promoter of Ce-ttr-31 (Ce-ttr-31p), GFP was
expressed in the intestine, muscle, and neurons in the pharynx

and tail regions of C. elegans (Figure 3), suggesting functional
activities of the promoter in these tissues. Therefore, by
microinjection of the Ce-ttr-31p::Ce-ttr-31::gfp and Ce-ttr-31p::
Hc-ttr-31::gfp plasmids, GFP-fused proteins were expressed in the
transgenic worms. Specifically, the Ce-TTR-31-GFP fusion
protein was observed in the pharyngeal neurons, muscle, and
the U-shape gonad arms, but not detected in the intestine of adult
worms (Figure 4A). A similar protein distribution was also found
for the Hc-TTR-31-GFP fusion protein in the transgenic C.
elegans, including pharyngeal neurons, gonad and musculature
(Figures 4B,C).

Microinjection of Ce-ttr-31p::Ce-ttr-31::gfp/Ce-ttr-31p::Hc-ttr-
31::gfp in C. elegans N2 strain resulted in expression of Ce-TTR-
31 and expression of both Ce-TTR-31 and Hc-TTR-31 in the
transgenic worms. Compared with the non-transgenic C. elegans
N2 strain, expression of Ce-TTR-31 prolonged the lifespan of

FIGURE 1 | Sequence and transcription analyses of ttr-31 in Haemonchus contortus and Caenorhabditis elegans. (A)Gene structures of Hc-ttr-31 and Ce-ttr-31.
Black boxes and the horizontal lines represent exons and introns, respectively. The numbers below the black boxes indicates the boundaries of exons. (B) Pair-wise
sequence alignment of the predicted TTR-31 of C. elegans and H. contortus. Identical residues are shaded in black. The red box (I) indicates the predicted secretory
signal, the arrow points the putative cleavage sites and the blue box (II) shows the transthyretin domain. Transcriptional patterns ofHc-ttr-31 (C) andCe-ttr-31 (D) in
different developmental stages of H. contortus and C. elegans. Egg, first (L1), second (L2), third (L3), fourth (L4) larval, female adult (Af) and male adult (Am) stages are
indicated. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 2 | Immunolocalisation of Hc-TTR-31 in Haemonchus contortus. Green fluorescence shows the distribution of Hc-TTR-31 in the third- (A) and
fourth stage larvae (B), and adult stage (female) (C) of H. contortus. Hc-TTR-31 is probed with rabbit anti-rHc-TTR-31 polyclonal antibodies followed by
fluorescein (FITC) conjugated-goat anti-rabbit IgG as secondary antibody. Nuclei are stained with 4′,6-diamidino-2-phenylindole (DAPI). ct: cuticle, go:
gonad, in: intestine, hp: hypodermis, nu: nucleus. Scale bar: 50 μm or 100 μm.
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transgenic worms (Figure 4D), but did not show any significant
(p > 0.05) effect on brood size (Figure 4E) or pumping rate
(Figure 4F) of the transgenic worms. Expression of bothCe-TTR-
31 and Hc-TTR-31 in C. elegans N2 strain showed similar effects
to the expression of Ce-TTR-31 (Figures 4D–F).

Downregulation of ttr-31 Leads to
Facultative Vivipary Phenotype inC. elegans
To further explore the functional roles of Hc-ttr-31, gene
knockdown was successfully conducted by feeding worms with
HT115 bacteria that could express silencing RNAs targeting Ce-
ttr-31 or Hc-ttr-31. Specifically, compared with negative control,
RNAi of Ce-ttr-31 significantly reduced (>50%; p < 0.001) the
transcriptional level of this gene in the treated worms
(Figure 5A), shortened the lifespan of treated worms
(Figure 5B), decreased the number of progeny (p < 0.001),
and inhibited the pumping rate (p < 0.001) and growth (body
length and width; p < 0.05) of the treated worms (Figures 5C–F).
Hc-ttr-31 RNAi mediated gene knock down of Ce-ttr-31 also
achieved effective gene silencing (>50%; p < 0.001) of Ce-ttr-31
(Figure 5A), and resulted in similar effects on treated worms,

such as shortened lifespan, and reduced brood size, pumping rate,
body length and width (Figures 5B–F), implying functional
conservation of ttr-31 between C. elegans and H. contortus.

Notably, compared with the untreated C. elegans, effective
knockdown of Ce-ttr-31 and Hc-ttr-31-mediated knockdown of
Ce-ttr-31 led to significantly increased (8 and 5 fold; p < 0.001)
facultative vivipary phenotype (i.e., hatching in vivo or “bagging”;
Chen and Caswell-Chen, 2004) in treated worms (Figure 5G),
suggesting involvement of TTR-31 in the post-embryonic
development and reproduction processes.

Hc-TTR-31 is Likely to Play a Role in the
Apoptotic Germ Cell Removal
By staining with acridine orange, apoptotic cells were observed
(brighter than the normal ones due to pyknosis) in the gonad
arms of the RNAi-treated C. elegans (Figure 6). Specifically,
compared with negative control (Figure 6A), there was an
increase (4.28 and 3.77 folds) of apoptotic germ cells in the
gonad arms of Ce-ttr-31 and Hc-ttr-31 RNAi-treated worms
(Figures 6B,C). In addition to the increased number of
apoptotic germ cells, lower transcriptional level of Ce-ttr-31

FIGURE 3 | Activity of Ce-ttr-31 promoter in Caenorhabditis elegans. Ce-ttr-31p:gfp is expressed in the second-stage larva (A–C), third-stage larva (D–F) and
adult (G–I) of C. elegans. Activities of Ce-ttr-31 promoter in neurons (ne), muscle layer (mu), intestine (in) and hypodermis (hp) are indicated. ct: cuticle, go: gonad, hd:
head, ph: pharynx, tl: tail. Scale bar: 20 μm.
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FIGURE 4 | Transgenic expression of Hc-ttr-31 in Caenorhabditis elegans. Green fluorescence protein-fused Ce-TTR-31 (A) and Hc-TTR-31 (B,C) were
expressed in adult worms of C. elegans by microinjection of pPD95.67-Ce-ttr-31p:gfp plasmids. Protein expression in neurons (ne), gonad (go), muscle layer (mu) and
hypodermis (hp) are indicated. The influences of overexpressed TTR-31 on lifespan (D), brood size (E) and pumping rate (F) in transgenic worms are indicated. Data are
presented as mean ± SEM (n � 30, 10, 10). ct: cuticle, hd: head, in: intestine, md: middle, ph: pharynx, tl: tail. Scale bar: 20 μm or 200 μm.
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and Hc-ttr-31 was linked to a significant increase of general ROS
(p < 0.01) and transcriptional level of ced-4 (cell death abnormal 4,
encodes a key component in the apoptosis activation pathway)
(p < 0.001) in RNAi-treated worms (Figure 7A), suggesting
activated apoptosis and involvement of ttr-31 in apoptosis.

As the homologous gene ttr-52 (encodes an extracellular
phosphatidylserine-binding protein on the apoptotic cell) was
reported to be required for cell corpse engulfment (Wang et al.,
2010), the function of ttr-31 in apoptosis or clearance of cell
corpse was determined by exploring the transcriptional
alterations of signalling components involved in phagocytosis
of apoptotic cells (Figures 7B–D). Specifically, compared with
untreated worms, significant lower transcriptions were detected
for ina-1 (encodes an engulfment receptor integrin-1 that
functions upstream of CED-2/CED-5/CED-10/CED-12

apoptotic cell removal signalling pathway) (p < 0.001)
(Figure 7C), and nrf-5 (encodes a secreted lipid-binding
protein) (p < 0.01), ttr-52 (p < 0.001) and ced-6 (encodes
CED-6, a key factor in CED-1/CED-6/CED-7 cell corpse
engulfment pathway) (p < 0.001) in both Ce-ttr-31 and Hc-ttr-
31 RNAi-treated C. elegans (Figure 7D). Differently, a significant
higher transcription of ced-7 (encodes an ABC transporter that
transfers phosphatidylserine from apoptotic cells to engulfing
cells) (p < 0.05) was found in the treated worms (Figure 7C).
Transcriptional changes of egl-1 (egg-laying defective-1), ced-9 (an
orthologue of bcl-2), psr-1 (encodes a phosphatidylserine-
recognizing receptor) and ced-1 (encodes a single-pass
transmembrane protein that acts in engulfing cells to promote
removal of apoptotic cells) were not consistent between Ce-ttr-31
and Hc-ttr-31 RNAi-treated worms (Figures 7B–D). In

FIGURE 5 | Hc-ttr-31 RNAi mediated gene knockdown of Ce-ttr-31 in Caenorhabditis elegans. (A) Transcriptional levels of Ce-ttr-31 in treated worms. Effects of
gene knockdown on the lifespan (B), brood size (C), pumping rate (D), body length (E) and body width (F) are shown. Data are presented as mean ± SEM (n � 10). (G)
Hatching in vivo phenotype and the percentage of bagging phenotype are shown. Data are presented as mean ± SEM (n � 6). *p < 0.05; **p < 0.01; ***p < 0.001.
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summary, ttr-31 is likely to regulate and recognise the
apoptotic cells.

DISCUSSION

The biological role of TTR-like proteins is not clear in parasitic
nematodes, although such molecules have been commonly
identified in the excretory/secretory products of parasitic
worms. In this study, we reported the functional roles of Hc-
ttr-31 in a strongylid nematode H. contortus. We found that this
gene was transcribed in all developmental stages of H. contortus,
with a decreasing transcriptional pattern during the development
from the egg to the adult stage. Immunolocalisation and
transgenic expression analyses of Hc-TTR-31 indicated
pharyngeal, muscular and gonad protein distributions of this
protein. Gene knockdown ofHc-ttr-31 in C. elegans was linked to
an increase of ROS level and apoptotic germ cells, which resulted
in a “worm bagging” phenotype, suggesting essential roles in
development and reproduction of nematodes.

Hc-ttr-31 is an orthologue to the Ce-ttr-31 of the free-living
nematode C. elegans. Although several TTR-like proteins or
protein-coding genes have been reported in H. contortus (see
Laing et al., 2013; Britton et al., 2016; Wang et al., 2019) and
other parasitic nematodes (Parkinson et al., 2004; Saverwyns
et al., 2008; Vieira et al., 2020), most of these molecules have
not yet been identified and functionally characterised. In the
current study, gene model validation, reciprocal homology
searching, and domain architecture analysis confirmed the
orthologous relationship between Hc-ttr-31 and Ce-ttr-31.
This statement was also supported by the similar
transcriptional patterns and protein localisation of the two
genes. In particular, RNAi targeting the transgenicHc-ttr-31 in
C. elegans also resulted in efficient knockdown of Ce-ttr-31 and
the same phenotypes in transgenic worms, strongly suggesting
sequence and functional conservation between the two genes.
However, considering the nature of differences between the
free-living nematode C. elegans and the parasitic nematode H.
contortus, detailed biological exploration of Hc-ttr-31 is still
required.

FIGURE 6 | Effect of ttr-31 RNA interference on the germ cells in Caenorhabditis elegans. Apoptotic germ cells in the negative control (A),Ce-ttr-31 (B) andHc-ttr-
31 (C) RNAi-treated worms are indicated. Apoptotic germ cells (ag) are pointed by white arrows. (A–C) a1-a3 shows the whole gonad of C. elegans stained by acridine
orange including two gonad arms (a4-a6 and a7-a9). b4-b6 and b7-b9 are two gonad arms of a worm in b1-b3. c4-c6 and c7-c9 are two gonad arms of a worm in c1-
c3. (D) The number of apoptotic germ cells in the treated and untreated worms is shown. Data are presented asmean ± SEM (n � 15). GF: green fluorescence; DIC:
differential interference contrast; Merge: GF merges with DIC. Scale bars: 50 μm ***p < 0.001.
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It appears that Hc-TTR-31 was produced in the intestine
and then secreted into the gonad of a worm. Given the
extensive identification of TTR-like proteins in excretory/
secretory products, it is interesting that transgenic expression
of GFP (driven by the promoter of Ce-ttr-31) was observed in
the intestine of C. elegans, whereas the fusion protein Hc-
TTR-31-GFP was detected in the gonads of worms. It is likely
that Hc-TTR-31 was synthesised in the intestinal cells,
secreted into the body cavity, and then diffused to the
gonad, which can be supported by the identification of
signal peptide and the localisation of Hc-TTR-31 in H.
contortus. Particularly, TTR-52 (a homologous to TTR-31)
has been confirmed as a secretory protein that was found
expressed in the intestine of C. elegans (Wang et al., 2010;
Raiders et al., 2021). Additionally, TTRs are proteins
commonly found in the serum and cerebrospinal fluid in
mammals (Goodman, 1986; Herbert et al., 1986; Buxbaum
and Reixach, 2009), suggesting the secretory nature of these
proteins. However, it is still not clear whether there is a
polarity of Hc-TTR-31 secretion (exclusive secretion into

body cavity or intestine lumen), since it has been
identified in the excretory/secretory products of H.
contortus (Wang et al., 2019) and potentially other
parasitic nematodes.

The secretory Hc-TTR-31 might play a role in nematode
development, particularly post-embryonic larval
development. This statement can be strongly supported by
the transcriptional analysis, protein localisation and RNAi
analysis in the current study. First, Hc-ttr-31 was highly
transcribed in the early developmental stages (e.g., egg, L1,
L2 and L3) and then significantly downregulated when
worms enter parasitic stages (e.g., L4 and adult) of H.
contortus. More transcriptional evidence can be found in a
previous study in which significant differences in
transthyretin-like gene families were found between the
free-living and the CO2-activated L3s of H. contortus
(Cantacessi et al., 2010). Second, Hc-TTR-31 was
consistently found in the pharyngeal neurons of H.
contortus L3s and C. elegans larvae (i.e., L2s and L3s),
whereas expression of both Hc-ttr-31 and Ce-ttr-31 in

FIGURE 7 | Effect of ttr-31 knockdown on the apoptotic signalling pathway in Caenorhabditis elegans. (A) Relative levels of reactive oxygen species (ROS) in RNA
interference (RNAi)-treated worms, negative and positive (Rosup) controls are shown. (B–D) Transcriptional levels of genes involved in apoptotic signalling pathways in
RNAi-treated C. elegans worms. ced-4: cell death abnormal 4, egl-1: egg-laying defective-1, ina-1: integrin-α, nrf-5: nose resistant to fluoxetine 5, psr-1: phosphatidyl
serine receptor-1. *p < 0.05; **p < 0.01; ***p < 0.001.
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adult C. elegans extended the lifespan but did not influence
the pumping rate and brood size of the transgenic worms.
TTRs were also found in cerebrospinal fluid of mammals and
mutations of these proteins may cause Alzheimer’s disease in
human beings (Schwarzman et al., 1994; Sousa et al., 2007;
Gião et al., 2020). So, it is very likely that ttr-31 plays a role in
signalling pathways, such as insulin/insulin-like growth
factor 1 (insulin/IGF-1) and steroid hormone signalling
(Murphy and Hu, 2013; Antebi, 2015), to regulate worm
growth and lifespan. However, this statement still needs
further exploration and verification at the molecular level.
Third, Hc-ttr-31 RNAi-mediated gene knockdown Ce-ttr-31
resulted in slower pumping rate and growth as well as a
significant increase of embryos in the utero and egg hatching
in vivo in C. elegans (facultative vivipary; see Chen and
Caswell-Chen, 2004). Post-embryonic development variant,
larval arrest and slow growth have also been reported in the
previous RNAi experiments of C. elegans (Kamath et al.,
2003; Rual et al., 2004; Dalton and Curran, 2018).
Therefore, it is clear that Hc-ttr-31 also plays potential
roles in regulating the post-embryonic development, larval
growth and lifespan of H. contortus. Nevertheless, the
mechanism of ttr-31 underlying the developmental
regulation of parasitic worms is still unclear and warrants
further investigation.

In addition, Hc-TTR-31 might play dual roles in protecting
germ cells from oxidative stress and mediating clearance of
apoptotic cells. It has been reported that a transthyretin-like
protein (TTR-52) was required to mediate recognition and
clearance of apoptotic cells in C. elegans (Wang et al., 2010;
Palmisano and Meléndez, 2019). In the current study, gene
knockdown of ttr-31 led to an increase of ROS production
and increased number of apoptotic germ cells, as well as
facultative vivipary (also known as worm bagging, a survival-
enhancing response to stress; Chen and Caswell-Chen, 2004).
Therefore, it is likely a relationship between low TTR-31
expression and oxidative stress which then causes DNA
damage and apoptosis in the gonadal tissue of RNAi-treated
worms (see Stergiou and Hengartner, 2004; Balaban et al., 2005;
Hubbard and Schedl, 2019). Indeed, the functional role of another
transthyretin-like protein (TTR-33) in protecting dopaminergic
neurons from oxidative stress-induced degeneration has been
reported in C. elegans (Offenburger et al., 2018). However, it is
still plausible that dying cells might be recognised and cleared by
phagocytes (phagocytosis) via TTR-31 (Lockshin and Zakeri,
2001; Reddien and Horvitz, 2004), as no apoptotic germ cell
was found in the wild-type C. elegans. To further distinguish or
confirm the involvement of TTR-31 in apoptosis and in apoptotic
cell clearance, we assessed the transcriptional status of key
signalling components involved in the apoptosis signalling
pathways (see Savill and Fadok, 2000; Hochreiter-Hufford and
Ravichandran, 2013; Palmisano and Meléndez, 2019). First, ced-4
(a key component in the apoptosis activation pathway) was up-
regulated in ttr-31 RNAi treated worms, suggesting an initiation
of apoptosis (see Stergiou and Hengartner, 2004; Hochreiter-
Hufford and Ravichandran, 2013). Second, ina-1 (an engulfment
receptor functions upstream of CED-2/CED-5/CED-10/CED-12

apoptotic cell removal signalling pathway), nrf-5 and ttr-52
(molecules mediating engulfment signal into CED-1/CED-6/
CED-7 pathway) were down-regulated in response to gene
knockdown of ttr-31 RNAi, suggesting a suppressed
phagocytosis of apoptotic cells (Wang et al., 2003; Hsu and
Wu, 2010; Zhang et al., 2012; Haley et al., 2018). Third, ced-7
(an ABC transporter that transfers phosphatidylserine from
apoptotic cells to engulfing cells; Wang et al., 2003) was found
upregulated in ttr-31 knock-down worms, which might be
associated with the increased apoptotic germ cells. Therefore,
Hc-TTR-31 is likely to play roles not only in protecting germ cells
from oxidative stress-induced apoptosis and but also inmediating
apoptotic germ cell clearance. However, this functional
interpretation is based on results derived from heterologous
expression of Hc-ttr-31 and heterologous RNAi of Ce-ttr-31 in
C. elegans. A rescuing experiment of Ce-ttr-31 loss-of-function by
Hc-ttr-31 in C. elegans, or direct gene knockout assay in H.
contortus should be preferably conducted. Further investigations
such as binding assays (TTR-31 and receptors), molecular
changes at the protein levels, as well as time-lapse assays to
distinguish between the role of TTR-31 in triggering germ cell
apoptosis or in germ cell corpse clearance should provide novel
insights into the functional roles of this TTR-like protein in
parasitic nematodes.

In conclusion,we functionally characterised a secretory proteinHc-
TTR-31 in the important parasitic nematode H. contortus. This
protein appeared to play roles in regulating post-embryonic larval
development, and likely in protecting germ cells from oxidative stress
andmediating clearance of apoptotic germ cells. Detailed involvement
of Hc-TTR-31 in the development and reproduction of H. contortus
and related parasitic nematodes of socioeconomic importance
warrants further investigation. A better understanding of these
aspects at the molecular level is likely to indicate potential targets
for the control of parasitic diseases.
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