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Abstract The expanding use of genomic sequencing promises to improve clinical
diagnostics and to drive the discovery of new disease genes. Candidate genes are
increasingly being identified through recurrent cases (e.g., two or more independent
cases ["N of 2"] in which variants are present in the same gene). These second case hits
provide statistical evidence of an association, which may then be combined with
functional validation or familial segregation studies to bolster the evidence that a gene is
truly causal. Here, we discuss how to integrate different forms of functional evidence with
human genetics case and segregation data to improve the significance of new disease—
gene associations.

It is estimated that there may be thousands of Mendelian disease genes yet to be discovered
(Boycottetal. 2013), which are likely to be identified through a long tail of observationsin rare
disease cases (Krawitz et al. 2015). There are many ways in which recurrent cases can help
identify Mendelian disease genes. These cases may include single families that are studied
in isolation and aggregated through the Matchmaker Exchange or collaborations
(Philippakis et al. 2015), case series in specialized clinics or Centers for Mendelian
Genetics, data from large clinical sequencing laboratories (Lee et al. 2014; Yang et al.
2014), or large-scale population screens (Table 1; Saleheen et al. 2015). This issue is now
acutely in focus as Molecular Case Studies (DeBerardinis and Mardis 2015) and systems
such as the Matchmaker Exchange expand potential discovery cohorts (Philippakis et al.
2015). As case volumes grow, increasing numbers of cases will have strong candidate variants
for which there is insufficient evidence of disease-gene association without a separately as-
certained case (Regalado 2014).

For example, in a large clinical exome-sequencing cohort, there is great potential for the
identification of new disease-gene associations through recurrent observations. In a set of
500 solved clinical exome cases from Baylor College of Medicine (Yang et al. 2014), 291 of
those cases involved repeated genes that were responsible for a molecular diagnosis. More
than 90% of those genes related to diagnoses did not have a sufficient knowledge base to
be readily available on clinical genetic testing panels (National Center for Biotechnology
Information 2012), which demonstrates that gene recurrence in clinical cases is uncovering
or helping to establish the evidence base for a substantial number of new disease genes.

Such recurrent observations can help to identify potential new disease-gene asso-
ciations; however, alone they are not necessarily sufficient to prove disease causality.
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Table 1. Modes of new gene discovery that use clinical sequencing data from multiple cases to identify
potential gene—phenotype associations

Mode of discovery Description

Clinical case series (N > 1 individuals studied In large case series, several patients with similar
with the same phenotype) phenotypes may have similar variants in the same gene,
allowing the identification of possible new disease—
gene associations. These associations should be
statistically and functionally validated before assigning
causality, including consideration of variant type (e.g.,
repeated rare variants vs. repeated de novo variants).

Matches identified through the Matchmaker  Cases identified across institutions through matchmaking
Exchange and/or clinical collaborations services or collaborations highlight potential disease—
gene associations. These too must be checked for
potential false-positive associations, given the small
sample size, and functionally validated before assigning
causality.

Large-scale population studies These studies identify variants in large population cohorts
where phenotypic data are available. These cohorts
may include populations at large medical centers or
consanguineous families that are enriched in identity by
descent. Consanguineous population studies are
particularly enriched for rare variant types (e.g.,
nonsense or canonical splicing variants), which may help
generate new phenotypic associations at higher rates.

Recurrent case observations (e.g., matches among two or more cases of the same gene and
phenotype) provide variable levels of evidence depending on the gene in question, the var-
iant’s functional consequence, and whether the variant is de novo or segregating.

WEAK STATISTICAL EVIDENCE FROM GENE MATCHES IN CLINICAL EXOMES

When matches in the same gene are identified in separately ascertained cases, there are
three possibilities: A potential novel disease gene has been identified, a phenotypic expan-
sion has been found in a previously identified gene, or the new cases have produced a false-
positive disease—gene association. The statistical evidence for disease-gene association that
may be gleaned from two matching cases depends on a number of factors based on the
gene and phenotype(s) in question.

Evidence from a Matching Gene

How informative is a gene match in two unrelated individuals with the same phenotype? In
large genes (e.g., TTN), it is not unusual to find matching variants in two cases by chance
alone. The likelihood that two individuals each carry variants in that gene may be directly es-
timated. We have developed a tool (RD-Match; http:/genetics.bwh.harvard.edu/rdmatch/)
that assesses the likelihood that two individuals would carry variants in a specified gene that
are unrelated to the phenotype by chance alone using specific variant, gene, and case pa-
rameters (Akle et al. 2015). We estimate this probability using data from the Exome
Aggregation Consortium, a set of more than 60,000 exomes from individuals without severe
disease (Lek et al. 2016). This tool is freely available and open-source, and the use of such
calculations should be encouraged whenever evidence for causality is provided from recur-
rent case data (Box 1).
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» Box 1. Application note

When using RD-Match, we suggest starting with a conservatively large N if there is no better
way of independently estimating this parameter. If the patient population is broadly represen-
tative of cases that might be available for matching, then the total number of individuals in a
cohort (e.g., Matchmaker Exchange) could be used to estimate the cohort size for each pheno-
type. We have updated the online tool to provide estimates of these cohort sizes for each phe-
notype based on clinical exome case phenotypic frequencies.

Of the recurrent matches identified in the Baylor clinical exome-sequencing program,
which genes might have sufficient statistical evidence to support a potential association
from matching frequency alone? For each implicated gene, we statistically analyzed the
number of matched cases, the variant’s functional consequence, and the mode of inheri-
tance, and we found that merely having a match in two patients with the same phenotype
is not very strong evidence of association (Akle et al. 2015). Overall, 91% of the 291 cases
from the Baylor cohort would not have statistical significance from matches identified at
the gene level given the number of recurrent observations in the affected gene and the num-
ber of individuals in the disease group.

The evidence from matching cases is not uniform; it very much depends on the specific
gene and other case parameters. For example, when considering only cases with an autoso-
mal recessive mode of inheritance, in which we expect matches at the gene level to be more
statistically informative, we find that 68% of these cases would reach statistical significance
given the specific gene and the variant’s functional consequence. Both of these analyses
conservatively assume that any match within the same broad phenotypic category (e.g., neu-
rologic disease phenotype) would be considered for analysis.

This demonstrates that the statistical evidence from identifying two separate cases with
the same phenotype with variants in the same gene is not very strong. Where statistical in-
formation is insufficient, investigators must make use of detailed phenotypic data from
matching cases, information from historical cases, and other resources to make assessments
of causality. For this reason, matches within clinical case series or through the Matchmaker
Exchange must be further investigated and supplemented with functional validation studies
at the variant level.

INTEGRATING FUNCTIONAL DATA TO BUILD EVIDENCE FOR CAUSALITY

How can information from recurrent observations be supplemented with other sources of
available evidence, such as functional validation data, to demonstrate causality? The com-
munity continues to establish standards for the clinical interpretation of variants (Richards
etal. 2015), which often must rely on integrating multiple, disparate lines of evidence to as-
cribe causality and to prevent false-positive associations from entering into the published lit-
erature (Cassa et al. 2013).

There are many forms of functional evidence that can be useful in supporting a disease-
gene association, but integrating these diverse types of evidence adds statistical complexity.
Furthermore, some functional validation assays may not be suitable for specific genes or
phenotypes. So, instead, we evaluate a small set of functional data sources for which we
would expect a broad phenotypic impact in order to determine which of these sources might
be used to supplement Mendelian gene discovery efforts. We specifically focus on high-
throughput, neutrally ascertained model data, including two lines of evidence from in vitro
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assays of cell essentiality (Wang et al. 2015) and in vivo data from embryonic lethal mouse
knockout data (International Mouse Phenotyping Consortium; http://www.mousephenotype.
org/data/embryo), as measures of gene essentiality that we expect to have broad phenotypic
impact.

To measure the utility of these functional data from clinical exome sequences for the
purpose of gene discovery, we annotated the recurrent genes that appeared in more than
one case in the aforementioned Baylor cohort that were responsible for a molecular diagno-
sis (N = 192 genes). Each gene in this set was annotated to indicate whether it was found to
be essential for cellular or embryonic development, and the genes were separated by clinical
mode of inheritance. We then compared the number of genes for each functional assay that
were found to be essential for development with a similarly sized set of genes without any
clinical annotations, again separated by mode of inheritance from the clinical diagnosis
(Table 2). We found that certain assays, including systematic clustered regularly interspersed
short palindromic repeats (CRISPR)-based KBM7 human tumor cell line inactivation and
yeast gene traps, are statistically predictive in the identification of autosomal dominant dis-
ease genes from clinical exome cases, whereas lethal mouse knockouts are predictive of au-
tosomal recessive disease genes.

Although these functional annotations in aggregate are informative for causality assess-
ment in novel disease gene discovery, they do not guarantee that a given gene with these

Table 2. Evidence for causality from aggregate functional validation assay data in a set of recurrent genes
identified in a clinical exome-sequencing program

Number of genes with importance Essential in KBM7 Essential in Lethal in IMPC
in functional model human cell assay  gene trap assay mouse knockout

Autosomal dominant (AD) disorders (N =118)

Recurrent genes associated with AD 27 15 4
disorders from clinical exome-
sequencing case data found to be
essential for cellular or embryonic
development

Expected number of genes in a similarly 12.35 7.83 2.58
sized set of unannotated genes found to
be essential for cellular or embryonic
development

x> P-value 1.62%x107° 5.82x 1073 0.303
Autosomal recessive (AR) disorders (N =74)
Recurrent genes associated with AR 11 7 6
disorders from clinical exome sequencing

case data found to be essential for
cellular or embryonic development

Expected number of genes in a similarly 7.75 4.91 1.62
sized set of unannotated genes found to
be essential for cellular or embryonic
development

x> P-value 0.172 0.271 3.01x10™

Statistically significant results are in bold. The unannotated gene set included any gene without a ClinVar or Human Gene
Mutation Database (HGMD) annotation (N=10,719) and was adjusted in size for each gene group. It represents a
candidate set of novel genes that might be associated with disease in the future. If a gene is required for cell essentiality,
it is significantly more likely to be associated with new autosomal dominant disease genes than a gene with no disease
annotations. Conversely, if a gene is required for mouse embryonic development, it is significantly more likely to be
lethal in a mouse knockout than any unannotated gene.

IMPC, International Mouse Phenotyping Consortium.
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annotations will be causal. But clinical laboratories have long integrated this type of uncer-
tain information into variant causality assessments. For example, the use of parametric link-
age analysis (e.g., logarithm of odds [LOD] scores) in individual pedigrees (Morton 1955)
has long been used to provide evidence for association at the human genetics level, and y°
P-values have been used to describe the statistical certainty of association at the population
level. Similarly, it is time to begin using the statistical certainty that recurrent case matches
and functional validation assays provide at the gene level in novel disease gene assessment.

As recurrent gene observations begin to represent a larger source of gene discovery, this
complementary form of evidence also requires community standards for statistical certainty.
Likewise, evidence from in vivo and in vitro assays must appropriately weigh the potential for
false-positive associations by considering the worldwide frequency of phenotypic observa-
tions and model outcomes. One path forward would be to develop a composite probability
of association given the independent probabilities derived from orthogonal lines of evi-
dence. This poses challenges, though, as it is difficult to be certain that two lines of evidence
are truly independent of one other. Using a Bayesian methodology, one can integrate these
separately ascertained lines of evidence into a posterior probability. This can be done by as-
suming a uniform prior probability that any gene in the genome is causal for an observed
phenotype and then considering the likelihood of the observed match, used together
with other lines of evidence such as those presented above.

Appropriately weighing each line of evidence may be challenging when there are biases
in the ascertainment and generation of data sets (e.g., mouse knockouts that have largely
been targeted for orthologs of suspected disease genes). While efforts are ongoing, resourc-
es such as ClinGen are cataloging and analyzing annotation data that can be used to gener-
ate broader statistical evidence for different sources of data (Rehm et al. 2015).

ADDRESSING STATISTICAL UNCERTAINTY FROM FAMILIAL
DATA AND PHENOTYPES

Evidence from Segregation Studies within Pedigrees

When there is additional evidence from a pedigree, the different numbers of segregation
events can be integrated into novel gene assessment using tools like SORVA (Significance
of Rare Variants; https://sorva.genome.ucla.edu). SORVA allows users to measure the signifi-
cance of matches across cases and to integrate evidence from segregation within families.
Various case parameters may be used to measure the significance from within single families
(e.g., the coefficient of relationship for individuals who share the variant, how many observa-
tions were made for individuals of the same level of relatedness, and whether the variants
are de novo), and similar parameters are used for findings that span different families, as
in RD-Match.

Prevalence of Phenotype in Matching

Another consideration that may influence the statistical evidence for disease—gene associa-
tion is the total number of patients in a cohort with the same phenotype. For example, if a
new patient with congenital hearing loss is added to the Matchmaker Exchange, the prob-
ability of a false-positive match depends on the total number of patients in the database who
also have that phenotype (N). In practice, the number of individuals in a cohort with the same
particular phenotype is difficult to estimate given that in many instances either the informa-
tion is not structured using a standardized phenotype ontology such as the Human
Phenotype Ontology (HPO) or is unavailable. The degree of relatedness of any given set
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of phenotypes may also be considered, and phenotypes can be used in aggregate to iden-
tify syndromes, which can then be used as the basis for a “phenotypic match.”

Multiple Candidate Variants or Phenotypes in Each Case

Another factor that can contribute to false-positive associations through recurrent observa-
tions is the number of candidate variants or associated phenotypes in each case. Although
the protocol used to interpret clinical sequencing data can dramatically alter the number of
candidate variants (Brownstein et al. 2014), many services review variants in disease-associ-
ated genes and inspect rare coding variation that is predicted to be deleterious (Adzhubei
et al. 2013). Depending on the population and consanguinity in a case, it is reasonable to
expect multiple promising candidate variants. For example, in a case where the putative
mode of inheritance is recessive, we may find several rare homozygous alternative coding
variants per genome (MacArthur et al. 2012; Francioli et al. 2015).

When there are multiple variants, each candidate variant is less likely to be causal, which
must be taken into account when analyzing matches in case data. Although some fraction of
cases may have multiple segregating variants that are linked to multiple disorders (Yang et al.
2014), the majority of solved Mendelian cases are linked with a single locus (particularly if the
phenotype is not diffuse). RD-Match assumes that all variants are reported and thus gives a
conservative multiple test correction for all the genes in the genome.

Similarly, when testing multiple phenotypes or syndromes (e.g., a single clinical exome
case may have two separately segregating Mendelian disorders or several HPO terms; see
Box 2), the P-value must be adjusted by the number of associated phenotypes. Clusters of

» Box 2. Many adult clinical exome sequencing patients have several HPO terms, many of which are common

In a sample of 85 cases from an adult clinical exome service, we find that, on average, each patient is associated with 11 HPO
terms (Fig. 1, left). The likelihood that two randomly selected patients will have a matching HPO term depends on the frequency
of each category. In our sample, roughly one-third of the HPO categories are unique (i.e., belonging to a single individual),
whereas the other categories are very common. The four most common categories are present in more than 25 of the 85 cases
(Fig. 1, right).
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Figure 1. (Left) Histogram showing the number of Human Phenotype Ontology (HPO) categories associated with each patient in the Baylor
adult exome-sequencing cohort (Posey et al. 2015). (Right) Histogram showing the number of patients associated with each HPO category in
the Baylor adult exome-sequencing cohort.
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HPO terms that form distinct syndromes should not be treated as separate phenotypic
matches, as doing so might reduce the statistical certainty of a match (Greene et al. 2016).

Although the vast majority of clinical exome cases are indicated for neurologic disorders,
there are now significant numbers of cases from adult populations involving a broader set of
disorders and related genes (Posey et al. 2015; Retterer et al. 2015). These populations may
be enriched for recurrent cases, as they are less likely to be solved during initial sequence
analysis (with a 17.5% diagnosis rate in adult exome cases vs. 25%-30% in pediatric cases);
however, these cohorts are only modestly sized.

This can be addressed conservatively using a standard Bonferroni correction (i.e., multi-
plying the P-value by the number of HPO categories or phenotypic clusters present in the
patient showing the match). This correction is unlikely to erode the data because most of
the HPO categories are shared by only a few patients, resulting in small values of N.

CONCLUSION

The broader availability of clinical sequencing data allows for the identification of novel dis-
ease genes using recurrent observations. Clinical sequencing cases from this journal and
from matchmaking services provide rich data for recurrent gene case matching, and they
may also provide additional phenotypic or human genetics data (e.g., segregation analysis).
These repeated observations can facilitate the identification of new genes in rare disorders,
but investigators must carefully consider the appropriate statistical evidence derived from
repeated observations along with other sources of evidence of association.

ADDITIONAL INFORMATION

Acknowledgments

This research was supported by the National Institutes of Health (NIH)/National Human
Genome Research Institute (NHGRI) grant RO0-HG007229. J.A.R. receives salary support
from Baylor Genetics, a clinical genetic testing laboratory.

REFERENCES

Adzhubei I, Jordan DM, Sunyaev SR. 2013. Predicting functional effect of human missense mutations using
PolyPhen-2. Curr Protoc Hum Genet Chapter 7: Unit7 20.

Akle S, Chun'S, Jordan DM, Cassa CA. 2015. Mitigating false-positive associations in rare disease gene discov-
ery. Hum Mutat 36: 998-1003.

Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. 2013. Rare-disease genetics in the era of next-gener-
ation sequencing: discovery to translation. Nat Rev Genet 14: 681-691.

Brownstein CA, Beggs AH, Homer N, Merriman B, Yu TW, Flannery KC, Dechene ET, Towne MC, Savage SK,
Price EN, et al. 2014. An international effort towards developing standards for best practices in analysis,
interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome
Biol 15: R53.

Cassa CA, Tong MY, Jordan DM. 2013. Large numbers of genetic variants considered to be pathogenic are
common in asymptomatic individuals. Hum Mutat 34: 1216-1220.

DeBerardinis RJ, Mardis ER. 2015. From “ N of 1" to N of more. Mol Case Stud 1: a000521.

Francioli LC, Polak PP, Koren A, Menelaou A, Chun S, Renkens |; Genome of the Netherlands Consortium, , van
Duijn CM, Swertz M, Wijmenga C, et al. 2015. Genome-wide patterns and properties of de novo mutations
in humans. Nat Genet 47: 822-826.

Cassa et al. 2017 Cold Spring Harb Mol Case Stud 3: a001099 70f8



Is “N of 2" enough?

Greene D, NIHR BioResource, Richardson S, Turro E. 2016. Phenotype similarity regression for identifying the
genetic determinants of rare diseases. Am J Hum Genet 98: 490-499.

Krawitz P, Buske O, Zhu N, Brudno M, Robinson PN. 2015. The genomic birthday paradox: how much is
enough? Hum Mutat 36: 989-997.

Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, Das K, Toy T, Harry B, Yourshaw M, et al.
2014. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA 312:
1880-1887.

Lek M, Karczewski K, Minikel E, Samocha K, Banks E, Fennell T, O'Donnell-Luria A, Ware J, Hill A, Cummings B,
et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536: 285-291.

MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L, Habegger L, Pickrell JK,
Montgomery SB, et al. 2012. A systematic survey of loss-of-function variants in human protein-coding
genes. Science 335: 823-828.

Morton NE. 1955. Sequential tests for the detection of linkage. Am J Hum Genet 7: 277-318.

National Center for Biotechnology Information. 2012. Genetests.org. http:/www.ncbi.nlm.nih.gov/sites/
GeneTests/.

Philippakis AA, Azzariti DR, Beltran S, Brookes AJ, Brownstein CA, Brudno M, Brunner HG, Buske OJ, Carey K,
Doll C, etal. 2015. The Matchmaker Exchange: a platform for rare disease gene discovery. Hum Mutat 36:
915-921.

Posey JE, Rosenfeld JA, James RA, Bainbridge M, Niu Z, Wang X, Dhar S, Wiszniewski W, Akdemir ZHC,
Gambin T, et al. 2015. Molecular diagnostic experience of whole-exome sequencing in adult patients.
Genet Med 18: 678-685.

Regalado A. 2014. EmTech: lllumina Says 228,000 Human genomes will be sequenced this year. Technol Rev.
http://www.technologyreview.com/news/531091/emtech-illumina-says-228000-human-genomes-will-be-
sequenced-this-year/ (Accessed January 11, 2014).

Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, Ledbetter DH, Maglott DR, Martin CL,
Nussbaum RL, et al. 2015. ClinGen—The Clinical Genome Resource. N Engl J Med 372: 2235-2242.
Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, Vertino-Bell A, Smaoui N, Neidich J,
Monaghan KG, et al. 2015. Clinical application of whole-exome sequencing across clinical indications.

Genet Med 18: 696-704.

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. 2015.
Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of
the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
Genet Med 17: 405-423.

Saleheen D, Natarajan P, Zhao W, Rasheed A, Khetarpal S, Won H-H, Karczewski KJ, O’'Donnell-Luria
AH, Samocha KE, Gupta N, et al. 2015. Human knockouts in a cohort with a high rate of consanguinity.
http://biorxiv.org/lookup/doi/10.1101/031518.

Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM. 2015. Identification and
characterization of essential genes in the human genome. Science 350: 1096-1101.

YangY, Muzny DM, Xia F, Niu Z, Person R, Ding Y, Ward P, Braxton A, Wang M, Buhay C, et al. 2014. Molecular
findings among patients referred for clinical whole-exome sequencing. JAMA 312: 1870-1879.

Cassa et al. 2017 Cold Spring Harb Mol Case Stud 3: a001099 80of8


http://www.ncbi.nlm.nih.gov/sites/GeneTests/
http://www.ncbi.nlm.nih.gov/sites/GeneTests/
http://www.ncbi.nlm.nih.gov/sites/GeneTests/
http://www.ncbi.nlm.nih.gov/sites/GeneTests/
http://www.ncbi.nlm.nih.gov/sites/GeneTests/
http://www.ncbi.nlm.nih.gov/sites/GeneTests/
http://www.ncbi.nlm.nih.gov/sites/GeneTests/
http://www.ncbi.nlm.nih.gov/sites/GeneTests/
http://www.technologyreview.com/news/531091/emtech-illumina-says-228000-human-genomes-will-be-sequenced-this-year/
http://www.technologyreview.com/news/531091/emtech-illumina-says-228000-human-genomes-will-be-sequenced-this-year/
http://www.technologyreview.com/news/531091/emtech-illumina-says-228000-human-genomes-will-be-sequenced-this-year/
http://www.technologyreview.com/news/531091/emtech-illumina-says-228000-human-genomes-will-be-sequenced-this-year/
http://www.technologyreview.com/news/531091/emtech-illumina-says-228000-human-genomes-will-be-sequenced-this-year/
http://www.technologyreview.com/news/531091/emtech-illumina-says-228000-human-genomes-will-be-sequenced-this-year/
http://biorxiv.org/lookup/doi/10.1101/031518
http://biorxiv.org/lookup/doi/10.1101/031518
http://biorxiv.org/lookup/doi/10.1101/031518
http://biorxiv.org/lookup/doi/10.1101/031518
http://biorxiv.org/lookup/doi/10.1101/031518

