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Abstract

Radiological biomarkers have been reported for multiple system atrophy and progressive

supranuclear palsy, but serum/plasma biomarkers for each disorder have not been estab-

lished. In this context, we performed a pilot study to identify disease-specific plasma bio-

markers for multiple system atrophy and progressive supranuclear palsy. Plasma samples

collected from 20 progressive supranuclear palsy patients, 16 multiple system atrophy

patients and 20 controls were investigated by comprehensive metabolome analysis using

capillary electrophoresis mass spectrometry and liquid chromatography mass spectrometry.

Medication data were obtained from patients with multiple system atrophy and progressive

supranuclear palsy, and correlations with associated metabolites were examined. Receiver

operating characteristics curve analyses were used to investigate diagnostic values for

each disorder. The levels of 15 and eight metabolites were significantly changed in multiple

system atrophy and progressive supranuclear palsy, respectively. Multiple system atrophy

was mainly characterized by elevation of long-chain fatty acids and neurosteroids, whereas

progressive supranuclear palsy was characterized by changes in the level of oxidative

stress-associated metabolites. Receiver operating characteristic curve analyses revealed

that patients with multiple system atrophy or progressive supranuclear palsy were effectively

differentiated from controls by 15 or 7 metabolites, respectively. Disease-specific metabolic

changes of multiple system atrophy and progressive supranuclear palsy were identified.

These biomarker sets should be replicated in a larger sample.

Introduction

Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are devastating par-

kinsonian disorders, typically characterized by sporadic adult-onset motor symptoms includ-

ing gait difficulty, akinesia and increased muscle tone, with limited response to levodopa [1].

Particularly in the early stages, it is often difficult to make accurate diagnoses that differentiate
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various parkinsonian disorders from idiopathic Parkinson’s disease (PD) [2]. The forms of α-

synucleinopathy include PD with neuronal cytoplasmic inclusions (Lewy bodies) and MSA

with glial cytoplasmic inclusions (GCIs), whereas PSP is a tauopathy with neuronal cyto-

plasmic tau accumulation [3, 4]. For the development of disease-modifying therapies to treat

each disorder, it is important to achieve accurate diagnosis of each disease using simple, acces-

sible, and cost-effective methods [5]. In this context, several previous studies have suggested

the use of biomarkers based on cerebrospinal fluid (CSF) or serum/plasma analysis. Low levels

of CSF/plasma coenzyme Q10 are reported to be significantly decreased in MSA [6, 7]. In

MSA and PSP, neurofilament light chain levels in both the CSF and the serum are reported to

be significantly increased compared with controls [8, 9]. Although plasma levels of α-synu-

clein, DJ-1, and total tau in MSA are reported to be altered compared with controls [10], at

present, no clinically established serum/plasma biomarkers for differential diagnosis between

MSA and PSP have been identified [3,4].

Comprehensive metabolome analysis has recently been developed as a useful tool for bio-

marker identification based on understanding the pathophysiological changes associated with

neurodegenerative disease [3,10,11]. In the current study, we performed plasma metabolome

analysis using a dual method combining liquid chromatography time-of-flight mass spectrom-

etry (LC-TOFMS) with capillary electrophoresis time-of-flight mass spectrometry

(CE-TOFMS) to investigate potential biomarkers for parkinsonian disorders. Fifteen metabo-

lites in MSA and eight metabolites in PSP were significantly changed, and each set of metabo-

lites was revealed as a novel disease-specific biomarker, suggesting that they may each be

implicated in a disease-specific pathogenesis.

Materials and methods

Study population

This study protocol complied with the Declaration of Helsinki and was approved by the ethics

committee of Juntendo University (2012157). Written informed consent was obtained from all

participants. Participants were recruited from the Department of Neurology at Juntendo Uni-

versity Hospital in Tokyo, Japan. We enrolled 20 healthy controls, 16 MSA patients, and 20

PSP patients without any history of cancer, aspiration pneumonia, type 2 diabetes mellitus or

collagen vascular diseases (Table 1). Diagnosis of MSA patients was made using the “Second

consensus statement on the diagnosis of MSA” [12], and diagnosis of PSP patients was made

using the National Institute for Neurological Disorders and Stroke/Society criteria for PSP

[13]. The age at sampling of patients with PSP was significantly greater than that of MSA or

controls. There were no significant differences in sex ratio or disease durations between

groups, and all patients with MSA and PSP were able to perform gait with assistance.

Sample collection

The sample collection process was described in our previous report [13]. Briefly, following

overnight fasting, a plasma sample was obtained using 7 ml EDTA-2Na blood tubes (PN,

SRL). After resting for 30–60 minutes at 4˚C, the spots were centrifuged for 10 minutes at

2,660 × g. After the plasma separation, the collected samples were placed in liquid nitrogen

and kept until analysis. The metabolome analysis was performed in February 2017.

Metabolome analysis

The details of this method were described in our previous report [13]. Metabolite extraction

and metabolome analysis were performed by Human Metabolome Technologies (HMT) based
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on methods described previously [14]. Briefly, for CE-TOFMS analysis, 50 μl plasma samples

were added to 450 μl methanol containing internal standards (H3304-1002, HMT) on ice, and

then mixed with 500 μl chloroform and 200 μl Milli-Q water. The solution was centrifuged at

2,300 × g for 5 min at 4˚C and the upper aqueous layer was centrifugally filtered through Milli-

pore 5 kDa cutoff filter (UltrafreeMC-PLHCC, HMT) at 9,100 ×g for 120 min at 4˚C to

remove macromolecules. The filtrate was then centrifugally concentrated and reconstituted in

25 μl Milli-Q water prior to CE-TOFMS analysis. The analysis was performed using an Agilent

CE system equipped with an Agilent 6210 TOFMS, an Agilent 1100 series binary HPLC pump,

a G1603A CE-MS adapter kit and a G1607A CE-ESI-MS sprayer kit (Agilent Technologies).

These systems were controlled by Agilent G2201AA ChemStation software and connected by

a fused silica capillary (50 μm i.d. × 80 cm) filled with commercial electrophoresis buffer

(H3301-1001 and H3302-1021 for cation and anion analyses, respectively; HMT). Exact mass

data were acquired over a 50–1000 m/z range.

For LC-TOFMS analysis, 500 μl plasma samples were mixed with 1,500 μl acetonitrile with

1% formic acid containing internal standard solution (H3304-1002, HMT) on ice. The solu-

tion was centrifuged at 2,300 ×g for 5 min at 4˚C and the supernatant was applied to a Hybrid

SPE phospholipid cartridge (55261-U, Sigma-Aldrich). The filtrate was dried by nitrogen gas

and reconstituted in 200 μl of 50% isopropanol. LC-TOFMS analysis was conducted by an Agi-

lent 1200 series RRLC system SL and an Agilent 6230 TOFMS (Agilent Technologies)

equipped with ODS column (2 × 50 mm, 2 μm). These systems were controlled by Agilent

G2201AA ChemStation software (Agilent Technologies).

Data obtained from both CE-TOFMS and LC-TOFMS were processed by MasterHands

(Keio University) for extracting peak information including m/z, peak area, migration time

(MT) for CE-TOFMS, and retention time (RT) for LC-TOFMS. Signal peaks corresponding to

isotopomers, adduct ions, and other product ions of known metabolites were excluded, and

remaining peaks were annotated according to the HMT metabolite database. The annotated

peak areas were then normalized based on internal standard levels and sample volumes for rel-

ative quantification.

Statistical analysis

Statistical analysis was carried out using JMP13 (SAS Institute Inc.). To exclude the influence

of age and gender, all metabolites were analyzed by multiple regression analysis, followed by

Wilcoxon’s test or analysis of covariance to compare MSA or PSP and controls. To visualize

the observed metabolomic profile as a heat map representation, we performed hierarchical

clustering analyses for each disorder with JMP13. After imputation of missing values with half

of the minimum observed value for each metabolite, we used the Steel-Dwass test for

Table 1. Characteristics of the cohort.

Controls MSA PSP pa

N 20 16 20 -

Age (SEM) [years] 66.2 (2.05) 64.8 (1.76) 72.6 (1.45)c 0.0067

Duration (SEM) [years] - 3.56 (0.580) 4.95 (0.510) 0.0594

Sex (F:M) 9:11 8:8 7:13 0.646b

Abbreviations: MSA = multiple system atrophy; PSP = progressive supranuclear palsy; SEM = standard error of the mean.
ap-value obtained by analysis of variance
bp-value obtained by chi-square test.
cp = 0.0291 compared with control, 0.0039 compared with MSA by Steel-Dwass test.

https://doi.org/10.1371/journal.pone.0223113.t001
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comparing each metabolite among the three groups (MSA, PSP, and controls). Receiver oper-

ating characteristics (ROC) curve analysis was carried out using JMP12 or 13. The optimal

cut-off value and area under the curve (AUC) were calculated.

Results

The metabolome datasets

We analyzed the metabolomic profiles of plasma obtained from 20 controls, 16 MSA, and 20

PSP patients using CE-TOFMS and LC-TOFMS. Based on m/z values, migration times and

retention times, 123 metabolites were identified in all participants (Supplementary Data S1

File). In addition, 193 metabolites detected in more than 50% of participants were analyzed in

detail. In terms of medication-associated metabolites, we excluded 3-methoxytyrosine detected

in patients with MSA or PSP treated with levodopa, because its level clearly reflected the medi-

cation dose S1 Table.

Metabolites significantly changed in MSA

The list of significantly changed metabolites is summarized in Table 2. We performed Wilcox-

on’s test to identify significantly altered metabolites followed by reconfirmation of the signifi-

cance under normalized conditions of age at sampling using analysis of covariance. Fifteen

metabolites exhibited significant differences in patients with MSA compared with controls

using both statistical methods. In MSA, the levels of 11 metabolites were significantly in-

creased, while the levels of four were significantly decreased. Four of these metabolites were

fatty acids (FA): FA(14:0), FA(14:1)-1, FA(14:1)-2, and FA(18:0), none of which were identi-

fied in PSP. Likewise, neurosteroids like pregnenolone sulfate (Preg-S) and dehydroisoandros-

terone 3-sulfate (DHEAS) were significantly increased in MSA (Table 2). Although decreased

Table 2. Metabolites specific for MSA.

Compound Canonical pathway Mean SEM Ratio� p-value��

FA(14:0) Fatty acid metabolism 8.20E-05 6.63E-06 1.41 0.0103

FA(14:1)-1 Fatty acid metabolism 6.91E-06 6.18E-06 1.40 0.0184

FA(14:1)-2 Fatty acid metabolism 5.59E-06 7.49E-07 1.57 0.0400

FA(18:0) Fatty acid metabolism 9.76E-04 7.00E-05 1.30 0.0314

LysoPC(16:0) Lysolipid 7.38E-06 1.00E-06 0.67 0.00278

Pregnenolone sulfate Neurosteroid 5.10E-05 6.41E-06 2.13 0.001

DHEAS Neurosteroid 1.77E-03 1.70E-04 1.75 0.0027

Betaine Choline metabolism 1.88E-02 1.07E-03 0.78 0.0014

Ergosterol-1 Cholesterol metabolism 7.17E-06 5.67E-07 1.40 0.0038

7-Dehydrocholesterol-1 Vitamin D3 metabolism 1.90E-05 8.50E-07 1.12 0.0059

4-Androsten-3,17-dione-2 Endogenous steroid 1.10E-05 1.82E-06 1.64 0.0261

Hecogenin Intake? 1.46E-04 8.21E-06 0.77 0.0049

Guanidinosuccinic acid Argininosuccinic acid metabolism 1.67E-04 2.51E-05 2.01 0.0014

Methionine Amino acid 4.29E-03 2.30E-04 0.77 0.0017

Urea Urea cycle 6.43E-01 3.71E-02 1.26 0.0078

Abbreviations: FA: fatty acid; LysoPC(16:0): 1-Palmitoyl-glycero-3-phosphocholine; MSA: multiple system atrophy; DHEAS: dehydroisoandrosterone 3-sulfate; SEM:

standard error of the mean. Statistical methods: All metabolites were analyzed by multivariate logistic regression to exclude the influence of age and gender.

� The metabolite level ratio of MSA to controls.

��p-value obtained by Wilcoxon’s test, compared with controls.

https://doi.org/10.1371/journal.pone.0223113.t002
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levels of lysophosphatidylcholine (LysoPC) (16:0) were detected, the results revealed a signifi-

cant increase in levels of 7-dehydrocholesterol-1.

Next, we performed hierarchical clustering analysis (HCA) to visualize metabolomic data

of controls and MSA. As shown in Fig 1, more than 60% of MSA patients formed a single clus-

ter. To examine whether these metabolites could be useful as diagnostic biomarkers for MSA,

we performed ROC curve analysis. The individual AUCs of all 15 metabolites showed good

predictive accuracy (AUC > 0.7) (Table 3) and combination of 2 or 3 MSA-specific metabo-

lites with higher significance, Preg-S, guanidinosuccinic acid, and methionine, efficiently dis-

criminated MSA from controls (Fig 1B).

Metabolites significantly changed in PSP

Eight metabolites were significantly different in patients with PSP compared with controls

when normalized for age (Table 4). Four metabolites exhibited increased levels, while four

exhibited decreased levels. Although significant changes of LysoPC(16:0) and 7-dehydrocho-

lesterol-1 were also detected in MSA, LysoPC(16:0) levels were decreased significantly more in

PSP. Five metabolites have been reported to be related to oxidative stress. Symmetric

Fig 1. Metabolites showing significant changes in MSA patients compared with controls. Hierarchical clustering analysis was performed. Red indicates higher than

average metabolite concentrations, while green indicates below average metabolite concentrations. Abbreviations: MSA: multiple system atrophy; FA: fatty acid;

DHEAS: dehydroisoandrosterone 3-sulfate; LysoPC(16:0): lysophosphatidylcholine (16:0); Met: methionine.

https://doi.org/10.1371/journal.pone.0223113.g001
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dimethylarginine (SDMA), 5-oxoproline, and cysteine glutathione disulfide were increased,

while uric acid and diosgenin-1 were decreased.

Next, we performed HCA to visualize metabolomic data of controls and PSP. As shown in

Fig 2, more than 85% of patients with PSP formed a single cluster based on the levels of the

eight significantly changed metabolites, suggesting promising clinical applications of this set of

metabolites. ROC analysis for differentiating PSP from controls confirmed that the predictive

accuracy was moderate (AUC > 0.7) for seven of eight metabolites, excluding acylcarnitine

(AC) (13:1). By using combination of LysoPC(16:0) and 7-Dehydrocholesterol-1 with or with-

out Diosgenin-1, which were top 3 metabolites with higher AUC in this analysis, PSP was dis-

tinguished with higher accuracy (Table 5).

Differential diagnosis between MSA and PSP

We selected 21 metabolites because two metabolites, LysoPC(16:0) and 7-dehydrocholesterol-

1, overlapped in both diseases, and investigated the accuracy of differential diagnosis between

the two parkinsonian disorders. As shown in Fig 3, most of the upper cluster consisted of PSP

patients, while the lower part primarily consisted of MSA patients. ROC curve analysis showed

that FA(18:0), preg-S, and DHEAS were effective for differentiating patients with MSA from

patients with PSP, and the AUC value for these 3 metabolites revealed that patients with MSA

were differentiated from patients with PSP with relatively moderate accuracy (Table 6).

Discussion

In the current pilot study, we identified several metabolites as potential biomarkers to distin-

guish patients with parkinsonian disorders from controls using comprehensive metabolome

Table 3. Diagnostic values of each metabolite specific to MSA.

AUC Cut-off value

FA(14:0) 0.753 0.463

FA(14:1)-1 0.733 0.475

FA(14:1)-2 0.703 0.463

FA(18:0) 0.713 0.463

LysoPC(16:0) 0.717 0.450

Pregnenolone sulfate 0.825 0.613

DHEAS 0.795 0.575

Betaine 0.814 0.475

Ergosterol-1 0.786 0.575

7-Dehydrocholesterol-1 0.769 0.413

4-Androsten-3,17-dione-2 0.719 0.438

Hecogenin 0.777 0.475

Guanidinosuccinic acid 0.816 0.663

Methionine 0.809 0.525

Urea 0.753 0.463

Pregnenolone sulfate +

Guanidinosuccinic acid

0.847 0.638

Pregnenolone sulfate +

Guanidinosuccinic acid +

Methionine

0.931 0.788

Abbreviations: MSA: multiple system atrophy; AUC: area under the curve; FA: fatty acid; LysoPC(16:0):

lysophosphatidylcholine (16:0); DHEAS: dehydroisoandrosterone 3-sulfate

https://doi.org/10.1371/journal.pone.0223113.t003
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Table 4. Metabolites specific for PSP.

Compound Canonical pathway Mean SEM Ratio� p-value��

SDMA Inhibitor of NO synthase 2.59E-04 1.16E-05 1.18 0.0081

LysoPC(16:0) Lysolipid 6.15E-06 6.79E-07 0.56 0.0009

5-Oxoproline L-glutamic acid metabolism 8.77E-04 3.00E-05 1.18 0.0052

7-Dehydrocholesterol-1 Vitamin D3 metabolism 1.90E-05 4.11E-07 1.12 0.0020

AC(13:1) Acyl-CoA metabolism 2.83E-06 3.91E-07 0.67 0.0489

Cysteine glutathione disulfide Glutathione metabolism 2.52E-04 2.69E-05 1.56 0.0109

Diosgenin-1 Steroid sapogenin 3.18E-06 4.66E-07 0.63 0.0042

Uric acid Purine nucleotides metabolism 1.72E-02 1.24E-03 0.77 0.0158

Abbreviations: PSP: progressive supranuclear palsy; SDMA: symmetric dimethylarginine fatty acid; AC: acylcarnitine; SEM: standard error of the mean.

Statistical methods: All metabolites were analyzed by multivariate logistic regression to exclude the influence of age and gender.

� The metabolite level ratio of PSP to controls.

��p-value obtained by Wilcoxon’s test, comparing PSP with controls.

https://doi.org/10.1371/journal.pone.0223113.t004

Fig 2. Metabolites showing significant changes in PSP patients compared with controls. Hierarchical clustering analysis was performed. Red indicates higher than

average metabolite concentrations, while green indicates below average metabolite concentrations. Abbreviations: PSP: progressive supranuclear palsy; SDMA:

symmetric dimethylarginine fatty acid; LysoPC(16:0): lysophosphatidylcholine (16:0); AC: acylcarnitine.

https://doi.org/10.1371/journal.pone.0223113.g002
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analysis with a dual separation method. FA and neurosteroids were increased in MSA, and

LysoPC(16:0), and oxidative stress markers were changed in PSP. ROC curve analysis using

these identified metabolites revealed relatively high AUC values for MSA and PSP. Likewise,

MSA patients were distinguished from PSP patients using levels of three metabolites.

We observed significantly increased levels of FAs (FA(14:0), FA(14:1)-1, FA(14:1)-2, and

FA(18:0)) in MSA. FA is mainly catalyzed to acyl-coenzyme A (acyl-CoA) by long-chain acyl-

CoA synthetase in the mitochondrial outer membrane in the skeletal muscles, but acyl-CoA is

unable to penetrate mitochondrial membranes. Acyl-CoA is transformed to acylcarnitine and

shuttled into the mitochondrial matrix for degradation via the β-oxidation system by carnitine

palmitoyltransferase 1 (CPT1) and carnitine-acylcarnitine translocase (CACT) [15]. Therefore,

high levels of FA suggest the disruption of β-oxidation or FA transport across the mitochon-

drial membrane. Previous studies reported that plasma FA levels were increased in PD [16,

17]. Likewise, we previously reported decreased long-chain acylcarnitine and increased FA in

PD, suggesting β-oxidation suppression [13]. In this study, levels of long-chain acylcarnitines

were at the lower limit of detection in more than 50% of participants. However, a similar sup-

pression of β-oxidation might occur in MSA.

Two steroid hormones, Preg-S and DHEAS, were found to be increased in MSA in the cur-

rent study. Preg-S is synthesized from pregnenolone, which is a precursor to all steroid hor-

mones, and DHEAS is produced from DHEA, which occurs upstream of sex hormones in

steroidogenesis. These two steroids are classified as neurosteroids, and could modulate synap-

tic activity [18]. DHEAS has also been reported to have neuroprotective effects against oxi-

dants [19]. Moreover, a previous study using a rodent model reported that pregnenolone

sulfate levels are correlated with cognitive performance [20].

Levels of LysoPC(16:0) were decreased in MSA and PSP. Because LysoPC is synthesized

from phosphatidylcholine (PC) by the enzyme phospholipase A2, the decrement of LysoPC

indicated impairment of these enzymes in PC re-acylation or de-acylation [21]. Because signif-

icantly higher levels of 6 LysoPC have been detected in diabetic males [22], it is currently

unclear how phospholipid levels in the brain and peripheral blood are related [23]. In patients

with Alzheimer’s disease (AD), decreased plasma levels of LyoPC have been reported [24],

Table 5. Diagnostic values of each metabolite specific for PSP.

AUC Cut-off value

SDMA 0.745 0.400

LysoPC(16:0) 0.808 0.550

5-Oxoproline 0.759 0.500

7-Dehydrocholesterol-1 0.783 0.450

AC(13:1) 0.681 0.350

Cysteine glutathione disulfide 0.736 0.450

Diosgenin-1 0.765 0.450

Uric acid 0.724 0.450

P LysoPC(16:0) +

7-Dehydrocholesterol-1

0.808 0.4947

LysoPC(16:0) +

7-Dehydrocholesterol-1 +

Diosgenin-1

0.918 0.747

Abbreviations: PSP: progressive supranuclear palsy; AUC: area under the curve; SDMA: symmetric dimethylarginine

fatty acid; LysoPC(16:0): lysophosphatidylcholine (16:0); AC: acylcarnitine

https://doi.org/10.1371/journal.pone.0223113.t005
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suggesting that two tauopathies, PSP and AD, might share a disturbance in phosphatidylcho-

line metabolism, leading to suppression of LysoPC synthesis.

Oxidative stress is one of the major causes of neurodegenerative diseases, including MSA

and PSP [25]. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) produc-

tion in mesenchymal stem cells from patients with PSP have been previously reported [26].

The current results revealed changes in five oxidative stress markers in patients with PSP. Uric

acid is considered an antioxidant, and previous studies have indicated that low serum uric acid

levels are correlated with the risk of disease and progression in PSP [27]. Cysteine glutathione

disulfide is produced by oxidative stress, while 5-oxoproline functions as an oxidant associated

with glutathione synthesis, and SDMA, an inducer of oxidative stress in endothelial cells, is

upregulated, while the antioxidative effects of diosgenin-1 are downregulated in PSP [28, 29].

Taken together, these results suggest that patients with PSP may be exposed to excessive oxida-

tive stress.

To investigate whether the biomarkers identified in the current study were able to distin-

guish MSA and PSP from PD, we compared the present data with previous metabolomics data

of serum or plasma samples from PD S2 Table [30–37]. Increased FA levels and decreased

Fig 3. MSA and PSP patients effectively differentiated the disorders using the indicated metabolites. Hierarchical clustering analysis was performed. Red indicates

higher than average metabolite concentrations, while green indicates below average metabolite concentrations. Abbreviations: MSA: multiple system atrophy; PSP:

progressive supranuclear palsy; AUC: area under the curve; FA: fatty acid; LysoPC(16:0): lysophosphatidylcholine (16:0); DHEAS: dehydroisoandrosterone 3-sulfate;

SDMA: symmetric dimethylarginine fatty acid; AC: acylcarnitine; Met: methionine.

https://doi.org/10.1371/journal.pone.0223113.g003
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levels of uric acid have been reported in PD. Although the comparison between the present

results and previous findings limited by differences in the measurement methods and condi-

tions used, overall the results suggest several potential biomarkers for distinguishing PD from

parkinsonian disorders.

The current study involved several limitations that should be considered. First, the study

was performed in a single cohort with a relatively small sample at a single university hospital.

In addition, although there were no significant differences in serum levels of creatinine among

the three groups (controls vs MSA, p = 0.472; controls vs PSP, p = 0.625 by Wilcoxon’s test),

because plasma levels of SDMA are strongly correlated with renal function [38], we cannot

completely exclude the possibility that renal function affected SDMA levels in the current

study. Because all patients with MSA and PSP in this study exhibited relatively mild condi-

tions, we were unable to evaluate the influence of severity on the levels of metabolites. MSA

and PSP have several clinical phenotypes. However, it is difficult to draw conclusions about

the relationship between a phenotype and changes of metabolites because the sample size was

too small.

In recent years, there have been many attempts to diagnose neurological diseases from

blood or other biological samples even in the prodromal stage by metabolomic, proteomic,

and transcriptomic analysis, and several candidate biomarkers have been reported. As

Table 6. Diagnostic values of each metabolite specific to MSA differentiating from PSP.

AUC Cut-off value

FA(14:0) 0.691 0.425

FA(14:1)-1 0.697 0.463

FA(14:1)-2 0.622 0.413

FA(18:0) 0.769 0.563

LysoPC(16:0) 0.595 0.313

Pregnenolone sulfate 0.734 0.463

DHEAS 0.788 0.588

Betaine 0.509 0.100

Ergosterol-1 0.595 0.375

7-Dehydrocholesterol-1 0.556 0.263

4-Androsten-3,17-dione-2 0.549 0.188

Hecogenin 0.684 0.463

Guanidinosuccinic acid 0.597 0.225

Methionine 0.634 0.375

Urea 0.623 0.263

SDMA 0.500 0.213

5-Oxoproline 0.591 0.213

AC(13:1) 0.575 0.263

Cysteine glutathione disulfide 0.622 0.275

Diosgenin-1 0.690 0.438

Uric acid 0.578 0.263

DHEAS + FA(18:0) 0.827 0.550

DHEAS + FA(18:0) +

Pregnenolone sulfate

0.816 0.525

Abbreviations: MSA: multiple system atrophy; PSP: progressive supranuclear palsy; AUC: area under the curve; FA:

fatty acid; LysoPC(16:0): lysophosphatidylcholine (16:0); DHEAS: dehydroisoandrosterone 3-sulfate; SDMA:

symmetric dimethylarginine fatty acid; AC: acylcarnitine

https://doi.org/10.1371/journal.pone.0223113.t006
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mentioned in introduction, serum/CSF neurofilament light chain and some other proteins

were reported as biomarker of MSA and/or PSP. In the future, we would like to conduct large-

scale multi-cohort studies to identify combination biomarkers including proteins and

metabolites.

Conclusions

We identified 15 and 7 metabolites as potential diagnostic plasma biomarkers for MSA and

PSP, respectively. Importantly, three of these metabolites were found to be useful for differen-

tial diagnosis between the two disorders, and all of the metabolites appeared to beneficial for

differentiating the two disorders from PD. Further investigation in larger samples, including

PD patients, would be valuable to confirm the clinical utility of these biomarkers.
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