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Tumor repopulation during cycles of radiotherapy limits the radio-response in ensuing
cycles and causes failure of treatment. It is thus of vital importance to unveil the
mechanisms underlying tumor repopulating cells. Increasing evidence suggests that a
subpopulation of drug-tolerant persister cancer cells (DTPs) could survive the cytotoxic
treatment and resume to propagate. Whether these persister cells contribute to
development of radio-resistance remains elusive. Based on the genetic profiling of
DTPs by integrating datasets from Gene Expression Omnibus database, this study
aimed to provide novel insights into tumor-repopulation mediated radio-resistance and
identify predictive biomarkers for radio-response in clinic. A prognostic risk index,
grounded on four persister genes (LYNX1, SYNPO, GADD45B, and PDLIM1), was
constructed in non-small-cell lung cancer patients from The Cancer Genome Atlas
Program (TCGA) using stepwise Cox regression analysis. Weighted gene co-
expression network analysis further confirmed the interaction among persister-gene
based risk score, radio-response and overall survival time. In addition, the predictive
role of risk index was validated in vitro and in other types of TCGA patients. Gene set
enrichment analysis was performed to decipher the possible biological signaling, which
indicated that two forces behind persister cells, stress response and survival adaptation,
might fuel the tumor repopulation after radiation. Targeting these persister cells may
represent a new prognostic and therapeutic approach to enhance radio-response and
prevent radio-resistance induced by tumor repopulation.

Keywords: treatment response, persister cells, tumor repopulation, radiotherapy, prognostic index
INTRODUCTION

Radiotherapy constitutes the first line of cancer treatment in over 60% of patients with local
advanced solid malignancies (1). Generally, several cycles of radiation application are needed to
exert the maximum tumoricidal effect with minimum damage to normal tissue. Although these
cytotoxic treatments bring about initial effectiveness in eliminating tumor masses, tumor recurrence
inevitably occurs even after several cycles of treatment, which accounts for 90% of clinical death (2).
Tumor repopulation, describing the revival and re-propagation of residual living cancer cells
between treatment intervals, has been regarded as a major cause of treatment refractory. Hence,
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understanding the mechanism underlying these repopulating
cells is of top priority to overcome cancer resistance.

Recent studies showed that there are always a small
subpopulation of cancer cells surviving through the cytotoxic
treatments (3), which is reminiscent of a drug-tolerant state of
bacteria in response to antibiotics (4). Although the replicating
antibiotic-sensitive bacteria are markedly killed, non-growing or
slow-cycling bacteria bearing greater tolerance are able to resume
growth and reestablish a sensitive population upon drug
withdrawal. Similar phenomenon of drug-tolerant persisters
(DTP) had later been described across a wide range of cancer
types, such as non-small-cell lung cancer (NSCLC) (5),
melanoma, breast cancer, and ovarian cancer (6). It was
estimated that 20% of DTPs could eventually revert to
proliferative state and develop to “drug-tolerant expanded
persisters” (DTEPs) (5, 7). The slow-cycling state of DTP was
recognized as the precondition for further transcriptional
reprogramming on the way to DTEPs (8, 9). Compared with
parental cells, DTPs exhibited an increased dependency on main
anti-apoptotic effectors, BCL-2, and BCL-XL, which might be
regulated through ER stress signaling (10, 11). In addition, these
DTPs highly expressed some cancer stemness markers, like
CD133, which probably play an essential role in the survival
and proliferation through cytotoxic drug treatment (5, 9, 12).

Based on the fact that DTPs serve as founders in drug-
resistance from lower microorganism to mammalian (4, 13), it
seems that DTPs represent a more primitive and evolutionally
conserved phenotype in response to stress. However, persister
cells are originally discovered in condition of drug treatment
while there are rare researches concerning this phenomenon in
radiation, we thus wonder whether persister cells contribute to
tumor repopulation after radiotherapy in the same manner. In
this study, we aimed to explore the role of persister cells in tumor
repopulation following radiotherapy so as to identify certain
persister-gene signatures for monitoring the radio-resistance and
predicting clinical outcome. Besides, to make the most of the
potential clinical translational value of our work, we analyzed the
potential biological pathways, which might provide new avenues
to improve the benefit of radiotherapy.
MATERIALS AND METHODS

Clinical Samples and Data Acquisition
In this study, we searched “NSCLC” and “persister cells” as the
keywords in the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/). Datasets of GSE153183
and GSE114647 with paired parental and tyrosine kinase
inhibitor (TKI)-induced persister cells were downloaded using
the R package “GEOquery”.

We further enrolled radiation-treated patients from The
Cancer Genome Atlas Program (TCGA) database, in which
NSCLC cohorts (lung adenocarcinoma and lung squamous cell
carcinoma, LUAD and LUSC, n = 20) were set as the training set,
while rectum adenocarcinoma (READ, n = 15), cervical
squamous cell carcinoma and endocervical adenocarcinoma
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(CESC, n = 101) and esophageal carcinoma (ESCA, n = 41)
cohorts were used as the validating sets. The mRNA expression
(Illumina HiSeq 2000) of these TCGA samples with clinical
annotations containing radiotherapy details and overall survival
(OS) information was acquired with the R package
“TCGAbiolinks”. According to the clinical response status
from TCGA datasets, NSCLC patients were allowed to be
classified as “sensitive” to radiation, including complete
response (CR) or partial response (PR), as well as “resistance”
to radiation with progressive or recurrent diseases.

Analysis of Differentially Expressed Genes
Background correction, log2 transformation, and quantile
normalization were firstly implemented for each GEO sets. The
“limma” package was then performed to screen the genetic
profiling of DTP. DEGs between parental cells and persister
cells were obtained using |log2FC|>1 and p value <0.05 as cut-off
values. For pathway and function enrichment analysis of DEGs,
“Metascape”, the web-based portal, was employed to annotate
and integrate the results (http://metascape.org/) (12).

Construction and Analysis of Prognostic
Signature
Based on 76 upregulated DEGs of DTP, we used univariate Cox
regression analysis to identify significant prognostic genes (p <
0.05) related with OS of radiation-treated NSCLS patients. Then
a multivariate Cox proportional hazards regression model was
constructed using the following formula,

Risk score = Sn
i=1(Coef i� xi)

where Coefi represents the coefficient and the xi is the mRNA
expression of highly related genes. The patients were divided into
high- and low-risk groups according to the median risk score. To
verify the efficiency of the persister-gene based risk score,
receiver operating character (ROC) curves were further
performed and the area under the curve (AUC) values
were compared.

To reduce the effects of confounding clinical factors, we
further combined the clinical characteristics of TCGA patients,
including gender (male/female), age (whether or not superior to
60), T, N stage, race (white/others), to judge whether the risk
index is an independent prognostic factor. Multivariate Cox
regression was analyzed and the value of p < 0.05 was
considered as statistical significance. The nomogram model
based on these clinical information and risk score was
constructed using R package “rms” (13, 14).

Predicting the Clinical Radio-Therapeutic
Response
To assess the efficiency of the persister-gene panel in predicting
radio-resistance, we used R package “glmnet” to build Logistic
regression models in different TCGA datasets. AUC values of
different persister-gene combinations were calculated and
compared to select the best signature for each cancer type.
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Weighted Gene Co-Expression Network
Analysis
WGCNA is a biological method to systematically analyze gene
expression patterns in multiple samples, which cluster genes with
close interconnection into gene modules, thus enabling to
explore association of gene modules with clinical traits (15).
Using “WGCNA” package, we analyzed TCGA-NSCLC samples
to identify the most representative transcriptional modules with
the worst clinical outcomes. Only the top 10,000 genes with the
highest variance were selected as input data. The function of
GoodSamplesGenes was used to identify outliers and no outlier
sample was detected to exclude. An appropriate soft threshold
power was subsequently chosen to develop the scale-free co-
expression network. The topological overlap measure (TOM)
was evaluated based on the constructed adjacency matrix and the
genes were then clustered in different dendrograms according to
the corresponding dissimilarity (1-TOM). Dynamic tree cut was
conducted and merged dynamic clusters with higher similarity
were further accomplished. The correlation between module and
clinical traits was calculated and the persister-genes involved
modules were then selected to analyze.
Gene Set Enrichment Analysis
GSEA software (version 4.1.0, http://software.broadinstitute.org/
gsea/index.jsp) was applied in the two groups, “high vs low risk”
and “radio-resistant vs sensitive”, with reference to enrich
hallmark gene sets from the Molecular Signatures Database
(MSigDB). For this analysis, the most highly enriched signal
pathways were selected based on the value of normalized
enrichment score (NES); nominal p-value <0.5 was set as the
cut-off value for GSEA results.
Cell Culture and Irradiation
Human NSCLC cell lines used in this study (A549 and H460)
were purchased from the Chinese Academy of Science Cell Bank
(Shanghai, China). A549 and H460 were cultured in RPMI-1640
medium (Life Technologies, USA) supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin (both from
Gibco; Thermo Fisher Scientific, USA) at 37°C with 5% CO2. For
radiation assays, the cells were irradiated or sham-irradiated by
an X-ray generator (Faxitron, USA) in our hospital with a dose
rate of 3.0 Gy/min.
Clonogenic Formation Assay
A459 and H460 were seeded in 6-well plates in triplicate (100,
200, 1,000, 2,500, 10,000, 20,000 cells per well) and incubated for
24 h before irradiation. The next day, cells were exposed to
various doses of radiation (0, 2, 4, 6, 8, 10 Gy, respectively). The
plates were fixed with 4% paraformaldehyde (Sangon Biotech,
China) and stained with crystal violet (Beyotime Biotechnology,
China) after 14 days. The number of colonies containing more
than 50 cells were counted and surviving fraction was calculated
using linear-quadratic model following the published
protocol (16).
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Quantitative Real-Time Polymerase
Chain Reaction
Total mRNA was prepared using RNA-extracting reagent
RNAiso Plus and reverse transcribed with the PrimeScript™

RT Master Mix Kit (both from Takara, Japan). Q-PCR was
performed with TB Green® Premix Ex Taq™ Kit (Takara, Japan)
according to the manufacturer. Relative gene expression was
analyzed based on the equation 2−△△CT and results were
obtained at three independent experiments. The following
primers were used:

LYNX1 5′-CCACGCGCACCTACTACAC-3′ (Forward), 5′-
TGCAGAGGTCGTACTGGCA-3′ (Reversed)

GADD45B 5′-GCCCTGCAAATCCACTTCAC-3′ (Forward),
5′- GTGTGAGGGTTCGTGACCA-3′ (Reversed)

SYNPO 5′-GGCTGAGTCATCTGTGGAGG-3′ (Forward), 5′-
CGGCCCAACGTCTGCTA-3′ (Reversed)

PDLIM1 5′-CCCAGCAGATAGACCTCCAG-3′ (Forward), 5′-
TCTGAGCTTCCAAGTGTGTCATA-3′ (Reversed)
Statistics Analysis
Data were presented as mean ± SD (standard deviation).
Statistical significance was defined as follows: n.s, not
significant; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. Two tailed
student’s t-test or two-way ANOVA test was adopted for mean
comparisons using GraphPad prism 5 software. All statistical
tests were two-sided and analysis mentioned above were
implemented in R/Bioconductor software (version 4.0.2, http://
www.r-project.org). R packages used in this study include:
“GEOque r y ” , “TCGAb io l i nk s ” , “ c l u s t e rP rofi l e r ” ,
“org.Hs.eg.db”, “limma”, “stringr”, “ggplot2”, “pheatmap”,
“dplyr”, “glmnet”, “survminer”, “survival”, “rms”, “foreign”,
“survivalROC”, “ROCR”, “WGCNA”.
RESULTS

Genetic Profiling of DTP in NSCLC
To reveal the character of persister cells, GSE153183 and
GSE114647 datasets were analyzed (Figure 1). Here, data from
TKI-treated NSCLC cell lines were preferentially focused on
since the concept of DTP was mostly studied in vitro in
epidermal growth factor receptor (EGFR)-mutant NSCLC
(Figure 1C). Based on the cut-off with |log2FC|>1 and p value
<0.05, 2,233 DEGs of persister cells compared with parental cells
were recognized in GSE153183 dataset, comprising 1,060
upregulated genes and 1,173 down-regulated genes (Figure
1A). Expression profile of GSE114647 displayed 1,369 DEGs,
in which 707 genes were upregulated and 662 genes were down-
regulated (Figure 1B).

Venn plots were used to integrate these DEGs, and we
obtained 46 down-regulated genes and 76 upregulated genes as
the overlapping gene profile of persister (Figure 1D). Gene
Ontology analysis (GO) using Metascape tools showed that
down-regulated genes were predominantly enriched in cell
November 2020 | Volume 10 | Article 607727
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growth, cell division, cell death and biochemical metabolisms, in
accord with the dormant state that was already reported in
previous researches (9, 17) (Figure 1E; Figure S1). On the
other hand, upregulated genes were mainly involved in the
following GO terms: 1) fibroblast migration, endochondral
bone morphogenesis, and BMP signaling pathway; 2) spinal
cord development and developmental growth; 3) cellular
detoxification (Figure 1F; Figure S1). Consistent with the
model posit by Chisholm et al., the population of persister cells
are able to weather the storm of treatment and possess lower level
of proliferation potential than parental cells (6). Despite in a
long-term of latency, these persister with higher level of survival
potential are believed to propagate into DTEP and result in the
final recurrence (Figure 1G).

Identification of a Persister Gene
Panel for Predicting Clinical Outcomes
of Radiation in NSCLC
To establish the persister gene index for prognosis in NSCLC
patients treated with radiation, we performed univariate and
multivariate Cox proportional hazards regression analysis in
NSCLC patients (n = 20) from TCGA database (18, 19). As the
univariate Cox analysis listed in Table S3, among the above-
mentioned 76 upregulated genes of persister cells, six genes were
collected with their significant association with OS of patients
(p < 0.05). All these survival-related genes (LYNX1, GADD45B,
P2RX6, PDLIM1, SYNPO, and MEIS3) were identified as “high-
risk” factors, with hazard ratios (HR) superior to 1. To optimize
the persister-based gene panel, multivariate Cox regression
model was conducted in the range of these six genes, leaving
Frontiers in Oncology | www.frontiersin.org 4
four genes to construct the prognostic gene model: Risk score =
0.714 × LYNX1 + 0.126 × SYNPO + 0.046 × GADD45B + 0.031 ×
PDLIM1 (Figure 2A). As Figure 2B illustrated, distribution of
patients’ risk score was closely linked to their survival status,
confirming good performance of this prognostic model.
According to the risk formula, all patients were divided into
two groups: high-risk (n = 10, risk scores were from 0.539 to
518.236) and low-risk (n = 10, risk scores were from 0.002 to
0.526) (Figure 2C). The heat map of Figure 2D curated
expression level of the four key genes and their relationship
with risk groups. Grounded on the two groups, we further drew
the survival curve and 3 year-ROC curve for enrolled 20 NSCLC
patients. As shown in Figure 2E, higher risk score was tightly
correlated with worse prognosis. Similarly, AUC of 3 year-ROC
curve was 0.966, indicating that using the persister gene panel to
predict prognosis of radiotherapy is highly reliable.

After Cox analysis combined with clinical features, risk score
was still proved as an independent prognostic factor (p = 0.020)
(Figure S2). The nomogram for evaluating 1-, 3-, 5-year OS was
further established based on clinical characteristics and risk score
(Figure S2). Because NSCLC patients enrolled were all at stage
M0, the nomogram model contains six factors: sex, age, T, N
stage, race, and risk score. The C index was 0.927, indicating a
good predictive ability.

The Persister Gene Panel as an
Indicator for Radio-Resistance and
Tumor Repopulation
To evaluate the potential sensitivity and specificity of the
persister-based gene panel in tumor response judging following
A B

D

E

F

G

C

FIGURE 1 | Differentially expressed genes of drug-tolerant persister cells (DTP) in NSCLC. (A, B) Volcano plots of GSE153183 and GSE114647. Blue/red plots
indicate the down-regulated/upregulated DEGs with the cut-off criteria: |log2FC|>1 and p value <0.05. (C) Experimental design of two GEO datasets involved in this
study. Approaches to construct DTP modules including NSCLC cell lines and target drug treatment are presented. (D) Overlapped down-regulated and upregulated
DEGs as Venn diagrams shown. (E, F) Functional enrichment analysis of down-regulated and upregulated DEGs, colored by p-value. (G) Schematic diagram of
phenotypical transition in cytotoxic drug therapy, representing the evolution of proliferation and survival potential from parental cells to DTPs and the eventual tumor
repopulation (resistant cells). DEG, differentially expressed gene; DTP, drug-tolerant persister cell; NSCLC, non-small-cell lung cancer.
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radiation, multivariate logistic regression analysis was used to
calculate concomitant administration of genes in predicting
treatment response. Compared with AUCs of single biomarker
candidates (from 0.476 of PDLIM1 to 0.762 of SYNPO), the
AUC values of two or more gene groups were generally
increasing (20) (Figure 3A). Among all combination, the AUC
value of LYNX1 combined with SYNPO was equal to the union
of four genes and reached the highest, 0.810 (Figures 3B, C). In
addition, survival curves of single persister genes demonstrated a
coincident trend: higher expression of persister genes indicated
worse clinic outcome (p = 0.191, 0.021, 0.045 and 0.014 for
LYNX1, SYNPO, GADD45B, and PDLIM1, respectively)
(Figures 3D–G). All these data substantiate the hypothesis that
persister gene panel may be employed as a reliable indicator to
monitor tumor resistance and tumor repopulation following
radiotherapy in NSCLC.
Correlation of Persister Gene Panel and
Clinical Traits of Radiotherapy Confirmed
by WGCNA
In this study, we performed WGCNA on the top 10,000
expressed genes of TCGA NSCLC patients to further ascertain
the interrelation among persister gene panel, risk score of
prognosis and radio-resistance. The power b = 6 (scale free
topology fitting index R2 >0.85) was selected as the soft-threshold
value to construct scale-free network (Figure 4A). As shown in
Figure 4B, 15 genes modules with gene numbers greater than 50
were identified after merged dynamic tree cutting (Figure 4B). In
relating these gene modules to clinical information, we found
Frontiers in Oncology | www.frontiersin.org 5
that gene modules with higher predicted risk score held higher
possibility of resistance to radiation and lower overall survival
time, which served as a strong cross-validation for the predictive
role of persister genes-based risk formula in radiotherapy
(Figure 4C).

Afterwards, we found that the four persister genes belonged
to three gene modules with relatively high risk score
correlation index (R2): LYNX1 in dark magenta module with
0.236 (p = 0.317), SYNPO and GADD45B in dark green
module with 0.220 (p = 0.351), PDLIM1 in paleturquoise
module with 0.382 (p = 0.096) (Figure 4D and Tables S8,
S9). Except the low correlation of resistance in darkmagenta
module (R2 = −0.242, p = 0.302), dark green and paleturquoise
modules bore relatively high correlativity with radio-resistance
(R2 = 0.414, p= 0.070 and R2 = 0.269, p= 0.253) and negative
outcome in OS (R2 = −0.183, p = 0.0.439 and R2 = −0.163, p =
491). These data unbiasedly confirmed the tight correlation
between expression of the persister gene panel and clinical
outcome of radiotherapy. Furthermore, the three gene
modules were chosen for GO analysis and we found that
their functional network were more involved in cell adhesion,
cell proliferation, cell cycle pathway and other stress signaling
(Figure 4E).
Associated Biological Pathways by
GSEA Analysis
Understanding the resistant mechanisms behind persister cells is
of importance for further hitting these potential targets. Two
groups, “high vs low risk” and “radio-resistant vs sensitive”, were
A B

D E F

C

FIGURE 2 | Construction of persister-gene based prognostic signature in NSCLC. (A) A radiotherapy prognostic signature containing four persister genes was
developed using stepwise regression analysis. Risk ratio (HR), 95% confidence interval, and coefficient in forest map were calculated by multivariate Cox regression
analysis. (B) Distribution of survival time in enrolled NSCLC patients who received radiotherapy (n = 20). (C) Patients were separated into high- and low-risk groups
based on the median of risk scores. (D) Gene expression matrix of four key persister genes in high- and low-risk groups. Green, red, and black respectively define a
lower expression level, a higher expression level, and no expression difference. (E, F) Survival curve and ROC curve validation of the prognostic efficiency of the risk
score. AUC, area under curve; HR, hazard ratio; ROC, receiver operating characteristic.
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analyzed with GSEA software. Compared to risk-low groups,
expression of risk-high patients was more relevant to “MTORc1
signaling”, “P53 pathway”, “wnt-beta catenin signaling” and
“apical junction” (Figures 5A–D, left panels and Table S5).
Similar pathways were significantly enriched in radio-resistant
patients (Figures 5A–D, right panels and Table S6). Combined
with GO enrichments in WGCNA, we deducted that persister
cells maintained a dynamic persistence, which is characterized by
a balance between stress response (P53 and mTOR signaling
regulated) and survival adaptation (wnt-beta catenin and apical
junction related).
Frontiers in Oncology | www.frontiersin.org 6
Validation That Persister Gene Panel Is
Related to Tumor Repopulation After
Radiation In Vitro and in Other Cancer Types
Considering the limited number of NSCLC patients enrolled, we
firstly applied our persister-based risk formula in vitro. As Figure
6A shown, NSCLC cell line A549 displayed higher transcriptional
expression of the four persister genes relative to H460. It turned out
that the survival fraction of A549 was significantly higher than
H460, which was consistent with our expectation (Figures 6B, S3).
Furthermore, we expanded the persister-gene panel in other cancer
types which were frequently treated with radiotherapy, including
READ (n = 15), CESC (n = 101), and ESCA (n = 41) from TCGA
database. To comprehensively assess clinical predictive role of the
persister gene panel in radiotherapy, logistic regression analysis
were performed and the top five AUCs for each cancer types were
listed in Figure 6. Results revealed that the persister gene panel had
the highest predictive ability in radio-resistant outcome of READ
patients (AUC = 0.929) with the combination of LYNX1 and
SYNPO (Figures 6C, D). The four gene panel exhibited a good
performance in radio-response prediction for CESC patients
(AUC = 0.788) (Figures 6E, F). As for ESCA patients who
received radiotherapy, the panel of SYNPO and GADD45B
displayed the best specificity and sensitivity in resistance forecast
(AUC = 0.671) (Figures 6G, H).
DISCUSSION

Cytotoxic therapies brutally kill cancer cells; however, the progressive
emergence of resistance remains a critical obstacle for achievement
of cures. Tumor repopulation of residual cells has been recognized as
a priming factor in tumor resistance (21). Firstly found in fractioned
radiation, tumor repopulation was also observed in chemotherapy,
especially after multiple doses (22, 23). Although it was
acknowledged that cancer stem cells (CSCs) largely constituted the
repopulating cells, lack of unique or invariable biological properties
makes the concept of CSC somewhat controversial. Accumulating
studies have demonstrated that a small subpopulation of DTPs could
resist the initial onslaught of cytotoxic agents for a long term until
further mutations can be evolved (4, 24). Some of these slow-cycling
persister cells resumed proliferative potential and eventually
repopulated the tumor. However, whether these persister cells are
likewise involved in tumor repopulation after radiation is far from
being well understood.

To address this question, we firstly turned our eyes on TKI-
induced persister cells in NSCLC given the vast number and solid
evidence of researches on this model. By integrating high-
throughput sequencings of GEO, genetic profiling of DTPs
were identified in NSCLC. Based on these upregulated genes in
persister cells, we developed a four genes-composed radio-
resistance signatures in NSCLC patients from TCGA datasets.
The persister-gene panel could not only provide prognostic value
for NSCLC, but was also validated in other three types of cancers.
To our knowledge, our work creatively demonstrates that there is
a significantly positive relation between persister cells and tumor
A B

D E

F G

C

FIGURE 3 | The persister-gene panel acts as an indicator of poor clinical
outcome of radiotherapy in NSCLC. (A) AUC values of the combined
persister genes in ROCs for estimating them as indicators of radio-resistance.
ROCs were constructed with Logistic regression model. (B, C). The best
AUC values were shown as the combination of LYNX1 and SYNPO, as well
as the four-gene group. (D–G). Survival curve of LYNX1, SYNPO, GADD45B,
and PDLIM1, according to the Kaplan–Meier analysis. Red/blue lines indicate
high/low expression of the corresponding genes.
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repopulation after radiotherapy. Furthermore, the persister gene
panel enables tumor assessment as early as the first cycle of
radiotherapy, which might guide the adjustment of treatment
schedule and ameliorate tumor repopulation.

In this study, we firstly found 46 down-DEGs and 76 up-
DEGs of drug-induced persister cells compared to parental cells
(Figures 1G, S1). Down-regulated pathways reflected a dormancy
Frontiers in Oncology | www.frontiersin.org 7
but drug-tolerant profile of DTP, which might be a response to
stress-induced DNA damage (Figure 1E). To maintain genomic
integrity of normal cells, damaged DNA induces checkpoints (e.g.
p53-p21)-controlled cell cycle arrest until that DNA repair is
achieved or cell death is launched (25). Under this premise,
malignant cells might sustain in G0 phase by activating other
epigenetics or genetics-dependent quiescence programs (26). It is
A B

D

E

C

FIGURE 4 | Construction of weighted co-expression network. (A) Scale independence and mean connectivity for various soft thresholds (powers). (B) Hierarchical
clustering tree of the top 10,000 genes with dissimilarity. Gene modules were shown with dynamic tree cut and further merged dynamic. (C) Heatmap of module–
traits relationships. Each column represents a clinical trait and rows correspond to module. Correlation and p-value levels are labeled in each bracket. (D) Description
of four persister-genes and their ownerships to different gene modules. (E) Dot plots of the GO biological processes enrichment in dark magenta, dark green and
paleturquoise module, which contains LYNX1, SYNPO, and GADD45B, PDLIM1, respectively. The dot size and color represent the gene count and enrichment level
(p-value), respectively. GO, Gene Oncology.
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the long-term slow-cycling state that enables additional mutations
for permanent resistance and later repopulation. Furthermore,
this latent state protects persister cells not to be detected or
eliminated by immune surveillance, which is responsible for
tumor progression (27). On the other hand, upregulated
pathways are enriched in higher survival potential, including
developmental growth, cellular plasticity and detoxification,
Frontiers in Oncology | www.frontiersin.org 8
attributing to regeneration and robust adaptation of DTP
(Figure 1F). Thereinto, epithelial–mesenchymal transition
(EMT) is the best-known mechanism for cell plasticity,
encompassing loss of cell-cell junction, increased fibroid
morphology, extracellular matrix-associated migration and
resistance to apoptosis (28). Increasing data suggested that EMT
exerts an essential influence on the emergence of persister cells
A

B

D

C

FIGURE 5 | Possible biological pathways identified by gene set enrichment analysis (GSEA). The highly enriched signal pathways were selected based on the cut-off
value: normalized enrichment score (NES) >1. The common pathways between “high- vs low-risk” (left panel) and “radio-resistant vs sensitive” groups (right panel)
are displayed in (A–D). NES, nominal p-value and FDR are shown in each plot (upper right). mTORC1, mammalian target of rapamycin complex 1; NES, normalized
enrichment score.
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(29, 30). Overall, this genetic profiling of DTP corresponds to
minimal residual disease in clinic, which represents as a transitory
stage between initial response and progressive recurrence.

Whether these persister cells with low proliferative but high
survival potentials are engaged in tumor repopulation is still
largely unknown. Hence, in this study, we focused on the
predictive value of drug-elicited persister DEGs in patients
Frontiers in Oncology | www.frontiersin.org 9
treated with radiotherapy. Utilizing the multiple factor Cox
regression model in NSCLC patients, a prognostic gene
signature based on persister profiling was constructed (Figures
2 and 3). Four “high-risk” genes, LYNX1, GADD45B, SYNPO
and PDLIM1, were further validated their prognostic ability with
radio-resistance in READ, CESC and ESCA patients in different
combination (Figure 6). As Figure 4D summarized, one of the
A B

D

E F

G H

C

FIGURE 6 | Validation the role of persister-gene panel in predicting radio-resistance in NSCLC in vitro and in other cancer types. (A) In order to compare the
baseline expression of persister-gene panel in two NSCLC cell lines (A549 and H460), relative expression of associated genes’ mRNA was assessed by qRT-PCR
conducted in three independent experiments, each done in triplicate (normalized against GAPDH). Data represent mean values ± standard deviation. ***p ≤ 0.001
(B) Survival curves show the survival fraction of A549 and H460 after irradiation performed by clonogenic formation assay in triplicate. Data represent mean values ±
standard deviation. P-values were obtained by two-way ANOVA test; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 (C, E, G) The top five AUC values of the combined persister
genes for estimating them as indicators of radio-resistance in READ (n = 15), CESC (n = 101), and ESCA (n = 41), respectively. (D, F, H) The least number of gene-
panel combination with the highest AUC value were exhibited. CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; ESCA, esophageal
carcinoma; READ, rectum adenocarcinoma.
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Ly-6 protein family, lynx1, is a negative allosteric modulator of
nicotinic acetylcholine receptor (nAChR). Lynx1 is expressed
widely in squamous lung cancer, but with a significantly
decreased level relative to normal adjacent tissue (31). Knock-
down of LYNX1 enhanced the growth of A549 cells;
overexpression of LYNX1 conversely resulted in cell cycle
arrest in lung cancer (32). A recent study revealed that this
growth-suppressing role of LYNX1 was due to activation of
several kinases cascades after interaction with a7-nACHRs (33).
GADD45B, a member of the growth arrest and DNA damage-
inducible gene family, is previously regarded as a tumor
suppressor gene, which participate in apoptosis, growth arrest
and DNA damage repair through TP53 or other means (34). This
seems to be conflictive to our results, where high level of
GADD45B was a radio-resistance predictive marker. However,
the promoting role of GADD45B in tumorigenesis or rapid
disease progression was also reported in colorectal carcinoma
(35, 36), gastric (37), and ovarian cancer (38). As a stress-
response gene, GADD45B might be continuously activated
with the accumulation of DNA damage and loss its normal
function in the tumor progression. SYNPO encodes the proline-
rich, actin-associated protein, synaptopodin, which is enriched in
highly dynamic compartments and mostly studied in podocyte of
kidney (Figure 4D). Ectopic expression of synaptopodin
repressed the migration of human breast cancer MDA-MB 231
(39), which is consistent with the lower migration capability of
persister cells with a high expression of SYNPO than parental
cells. PDZ and LIM domain protein 1 (PDLIM1), is also an
EMT-associated cytoskeleton protein (Figure 4D). Similarly,
elevated expression of PDLIM1 was associated with a reduced
invasive ability of colorectal (40) and hepatocellular cancer cells
(41), which coincides with the mesenchymal phenotype of
therapy-induced persistence.

What we next focused on was the underlying mechanisms
that persister cells engaged in the radio-resistance. The
interesting findings of GSEA analysis (Figure 5) implicated a
subtle balance between the brake signaling of proliferation and
enhanced ability of survival potential in both “risk-high” and
“resistant” groups. As mentioned before, p53 functions as a stress
sensor to trigger cell-cycle arrest in response to cytotoxic
treatment. Mechanistic target of rapamycin complex 1
(mTORC1) signaling is also an evolutionally conserved stress
sensor to couple cell growth with nutrients and energy (42).
Activation of MTOR signaling was shown to confer multiple
cancer types with resistance to chemo-radiation (42, 43). An
elegant work recently using whole-genome RNAi screening
identified MTOR as a common orchestrator in stress-induced
genomic instability, accelerating the adaptation of cancers in
cytotoxic condition and facilitating the cancer resistance to
different oncotherapy (44). Moreover, the combination of 5-FU
and temsirolimus, an mTOR inhibitor, reduced the chemo-
resistance related persister cells in gastric cancer (8). Besides
TP53 and MTORmediated lower proliferation, wnt/beta-catenin
signaling was revealed here to be associated with higher survival
potential. Briefly, binding of Wnt ligands initiates this canonical
pathway, inducing translocation of the nuclear localization of
Frontiers in Oncology | www.frontiersin.org 10
beta-catenin and activating wnt downstream targets to potentiate
cell growth, adhesion and survival (45). Deregulated expression
of wnt/beta-catenin has been reported in different cancer
progression and therapeutic tolerance (46–48). In addition,
dysregulation of apical junction is tightly connected with EMT
(49), which contributes to the flexibility of cell motility and
tissue regeneration.

There are some limitations in current study. For instance,
transcriptome analysis cannot cover the overall alteration in
chemo-radiation induced persister cells, especially the
epigenetics change. Meanwhile, in vivo confirmation is
necessary to validate the role of persister-gene panel in tumor
repopulation after radiation and its generalizability in other
cancer types. With the rapid pace of advancement in high-
throughput sequencing and novel experimental technologies,
higher level and deeper dimension of molecular mechanisms
behind the persisters are awaiting to be evaluated.

In conclusion, our research outlined the genetic characteristic
of DTP based on GEO datasets and applied it to NSCLC patients
from TCGA. The persister gene panel (LYNX1, SYNPO,
GADD45B, and PDLIM1) was established and its role to
elucidate radio-response and clinical outcome after
radiotherapy was subsequently validated across several cancer
types. Finally, the downstream pathways behind persister cells
were disclosed, potentially providing therapeutically exploitable
vulnerabilities of tumor repopulation.
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