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Abstract

Biomedical data are growing at an incredible pace and require substantial expertise to

organize data in a manner that makes them easily findable, accessible, interoperable and

reusable. Massive effort has been devoted to using Semantic Web standards and technol-

ogies to create a network of Linked Data for the life sciences, among others. However,

while these data are accessible through programmatic means, effective user interfaces for

non-experts to SPARQL endpoints are few and far between. Contributing to user frustra-

tions is that data are not necessarily described using common vocabularies, thereby mak-

ing it difficult to aggregate results, especially when distributed across multiple SPARQL

endpoints. We propose BioSearch — a semantic search engine that uses ontologies to en-

hance federated query construction and organize search results. BioSearch also features a

simplified query interface that allows users to optionally filter their keywords according to

classes, properties and datasets. User evaluation demonstrated that BioSearch is more

effective and usable than two state of the art search and browsing solutions.

Database URL: http://ws.nju.edu.cn/biosearch/

Introduction

Over the last few years, there has been a groundswell of in-

stitutional support for using Semantic Web technologies to

make life science data easily findable, accessible, interoper-

able and reusable. Major biomedical data providers,

including EBI (1), NCBI (https://www.ncbi.nlm.nih.gov/),

NLM (http://id.nlm.nih.gov/mesh) and SIB (2), followed

the linked data principles and provided life science Linked

Data to public access. Bio2RDF (3), Neurocommons (4),

Chem2Bio2RDF (5), Protein Data Bank Japan (6) and

W3C HCLS LODD (http://www.w3.org/wiki/HCLSIG/

LODD) also conducted efforts towards establishing Linked

Data over hundreds of life science datasets. Data in these

sources are generally available in RDF formats (e.g. RDF/

XML, Turtle and JSON-LD), as well as being queryable

using SPARQL, a standardized query language for RDF
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(http://www.w3.org/TR/rdf-sparql-query/). While power-

ful, SPARQL may be challenging to formulate for users

without technical training. Composing a good query also

needs high familiarity with the dataset (7, 8). Therefore,

developing effective methods to query these data is key for

increased adoption and reuse across the life sciences and

health care communities as well as the Semantic Web

community.

To date, keyword search is the most popular paradigm

to retrieve information on the Web. It is also widely

adopted by applications to the life sciences, such as

GoWeb (9) and Drug Encyclopedia (10). However, key-

words are often ambiguous and could have multiple mean-

ings. For example, given a keyword ‘Alzheimer’, the user

intent can be searching the information for this disease or

for some drugs to treat it. To address this problem, seman-

tic search was proposed to improve search accuracy by

understanding user intent and search context (11). It par-

ticularly suits to investigative search (as compared to navi-

gational search), where a user gathers a number of data

which together will provide the desired information.

Another main obstacle in querying life science Linked

Data lies in its heterogeneity. While the use of Semantic

Web standards such as RDF and OWL aids in providing a

uniform representation across data structures, at least at

the syntactic level, it is now the diversity of vocabularies

that makes it more challenging to get all the data of interest

(e.g. an issue of completeness). Ontologies, which are for-

mal representations of knowledge in a domain, can be used

to unify the different data vocabularies by matching

classes, properties and instances with one another. So,

ontology-based query answering (a.k.a. ontology-based

data access) aims to realize the semantic interoperability

between applications using different biomedical datasets

(12–14).

In this paper, we introduce BioSearch, a semantic search

engine that leverages semantic search and ontology-based

query answering over a wide range of life science Linked

Data, obtained from Bio2RDF. The main contributions of

this paper are summarized as follows:

• We define an Effective Accessible Semantic quEry inter-

face (EASE), which accepts not only plain keywords but

also three types of semantic tags to specify the class,

property and dataset constrains. EASE can support a set

of frequently-used SPARQL queries in Bio2RDF and be

easily learned without technical training.

• We leverage the Semanticscience Integrated Ontology

[SIO, (15)] for the mediating ontology and use hierarch-

ical relations between ontology classes to conduct query

expansion (13). By using ontology matching to match

classes and properties in SIO with each target dataset,

we propose an ontology-based query answering method

to rewrite a query against SIO to a query against the

dataset semantically.

• We design a fine-grained presentation to show the life

science Linked Data. Search results can be filtered using

various facets and entity descriptions are clustered in

groups. Additionally, users can follow links to traverse

across different datasets.

• We developed an online system for BioSearch, and con-

ducted user-involved experiments to compare it with

two widely-used SPARQL endpoint solutions on four

different groups of tasks. Our experimental results dem-

onstrated that BioSearch gained significantly better ef-

fectiveness and usability (in average þ16.5% and

þ30.5%, respectively) than the next best system for

searching and browsing the life science Linked Data.

The remainder of the paper is structured as follows. In

Section 2, we describe the system architecture of BioSearch

and the statistics of currently involved datasets. In Section

3, we present our methods for semantic query interface,

ontology matching, mapping-based query answering and

entity browsing and filtering. Evaluation is reported in

Section 4, and related work is discussed in Section 5.

Finally, we conclude the paper with future work in

Section 6.

Overview of biosearch

An RDF dataset is comprised of a set of RDF triples that

are often published, maintained, and aggregated by a single

provider. An RDF triple consists of three components: the

subject, which is a URI or a blank node; the predicate,

which is a URI; and the object, which is a URI, a literal or

a blank node. An ontology may include classes, properties,

instances and their descriptions. Classes and properties to-

gether are often referred to as terms, while instances are

referred to as entities. A SPARQL query contains a set of

triple patterns matching a subgraph of RDF data, where a

triple pattern contains variables to match the RDF triples.

The query result contains the terms and entities substitut-

ing for the variables in the matched subgraph.

The architecture of BioSearch is depicted in Figure 1,

which follows the widely-used Client-Server paradigm

(more specifically, the Browser-Server paradigm) providing

the system with high bandwidth, processing and storage on

a large amount of data. Furthermore, the Global-as-View

[GAV, (16)] solution is chosen for data integration, be-

cause it is very efficient for query processing and the used

datasets are not frequently updated. This flexible architec-

ture enables us to continue adding more life science data-

sets without paying much extra effort.
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We select eight Bio2RDF datasets, Drugbank (http://

www.drugbank.ca/), InterPro (http://www.ebi.ac.uk/inter

pro/), KEGG (http://www.genome.jp/kegg/), MeSH (http://

www.nlm.nih.gov/mesh/), NCBI Gene (http://www.ncbi.

nlm.nih.gov/gene/), OMIM (http://www.omim.org/),

Orphanet (http://www.orpha.net/), PharmGKD (http://

www.pharmgkb.org/), based on their popularity and

coverage (Table 1). We briefly describe four important

components in BioSearch as follows:

• EASE-based user interface accepts user inputs containing

plain keywords as well as class, property and dataset

constrains and formulates the semantic queries based on

SIO and the language of EASE. These semantic queries

are passed to the server side for searching Bio2RDF

datasets.

• Ontology matching component leverages two linguistic

matchers V-Doc (19) and I-Sub (20) to match classes and

properties in SIO with each Bio2RDF dataset schema.

The offline-computed mappings are used by the

mapping-based query answering component for

SPARQL query rewriting.

• Mapping-based query answering component accepts a

semantic query from the client side and formulates it to a

‘global’ SPARQL query w.r.t. SIO. Based on the map-

pings between SIO and Bio2RDF datasets, this SPARQL

query is rewritten as a set of ‘local’ SPARQL queries and

executed on the target Bio2RDF datasets.

• Entity browsing and faceted filtering component organ-

izes query results and display them to users. Faceted fil-

ters are dynamically constructed based on the query

results. Additionally, users can follow links to traverse

across different datasets.

A typical workflow of query answering in BioSearch is

shown in Figure 2. Assume that a user first submits an

EASE-based query to BioSearch, which contains a plain

keyword Alzheimer and two semantic tags (class con-

straints) C:Disease and C:Phenotype. Next, this query is

formulated to a semantic query according to SIO and the

definition of EASE (Step 1) and then rewritten to a ‘global’

Figure 1. BioSearch architecture.

Table 1. Statistics of involved Bio2RDF Release 3 datasets

and SIO

Names Entities Classes Prop. RDF triples

DrugBank 316 950 91 105 3 672 531

InterPro 176 579 30 41 2 323 345

KEGG 6 533 307 63 141 50 197 150

MeSH 305 401 7 61 7 323 864

NCBI Gene 185 330 642 34 70 1 966 214 397

OMIM 1 013 389 34 101 8 750 774

Orphanet 28 871 19 38 377 947

PharmGKB 25 325 504 50 88 278 049 209

SIO 0 1471 235 11 120

The statistics were queried on December 10, 2015.
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SPARQL query against SIO (Step 2). Based on the pre-

computed mappings between SIO and Bio2RDF dataset

schemas, the ‘global’ query is semantically translated to a

set of ‘local’ SPARQL queries against some Bio2RDF data-

sets like PharmGKB (Step 3). Finally, the query results are

collected and returned to the user for further browsing and

filtering.

Methods

EASE: Effective Accessible Semantic quEry

interface

One of our main goals is to find a balance between simple

keyword search and complex SPARQL query. Using five

million SPARQL queries against Bio2RDF between May

12, 2013 and September 28, 2014, Buil-Aranda et al. (17)

observed that almost 50% of the queries just consist of a

single triple pattern plus one filter (e.g. containing some

text), suggesting that most users are specifically looking for

matches using a search phrase. The second most popular

query involves a Describe, which yields the set of informa-

tion relevant to a specific entity. The authors concluded

that the general usage of SPARQL in Bio2RDF is very

basic and the users do not know the datasets well, which

motivated us to design a simple, but effective accessible se-

mantic query interface called EASE. Based on the previous

analysis (17), EASE can directly support >50% of the

SPARQL queries from our logs, which is admittedly more

than we anticipated when we set out to design a simpler

interface. Moreover, ontology-based integration with SIO

means that there are fewer classes and properties for users

to worry about, and it directly offers users a simpler way

to query the information in Bio2RDF — without knowing

the intricacies of namespaces and mappings that would

otherwise be required. The ease of use was demonstrated

by our user study (Section 4), which revealed that the users

thought that BioSearch (featuring EASE) was substantially

easier to use than either keyword queries or the controlled

natural language of Sparklis (Q3 in Table 7, scores: 3.87,

2.47 and 2.27, respectively).

At the end of the day, we firmly believe that a multipli-

city of interfaces will improve adoption of Semantic Web

technologies. We think that BioSearch will be well used by

some subset of our users, e.g. biomedical users who are

non-experts in SPARQL. Even for users familiar with

SPARQL, they do not always require high expressiveness

but sometimes want to find information quickly, thus

BioSearch can be a good option. In fact, our current

Bio2RDF portal, openlifedata.org, features three inter-

faces: BioSearch, Virtuoso SPARQL Query Editor, and an

API. In future work, we hope to study how these interfaces

are naturally being used by our users, but this is beyond

the scope of our current study.

The definition of EASE is shown in Table 2, which re-

ceives four different categories of keywords. In addition to

plain keywords like ‘penicillin’, we define three kinds of se-

mantic tags to constrain the searching scope, where the

class tag ‘C:’ limits the class or type of entities, the property

tag ‘P:’ compels entities to have the specified property, and

the dataset tag ‘S:’ gives the source of entities. The set of

class tags are derived from the SIO, the mediating ontol-

ogy. To better fit the Bio2RDF datasets, we also extend

SIO with 54 commonly-used properties from RDF(S) (e.g.

rdfs:label), OWL (e.g. owl:sameAs), DC (e.g. dc:title) and

FOAF (e.g. foaf:homepage).

We use ‘AND’ logic to combine keywords across the

four categories while ‘OR’ logic is used for multiple key-

words within the same category. For instance, the seman-

tics of the query ‘alzheimer C:Phenotype C:Disease’ is

‘(Alzheimer) AND (C:Phenotype OR C:Disease)’. Using

the ‘OR’ logic to combine keywords within the same cat-

egory may produce many search results containing only

one keyword. To avoid the users to spend too much effort

to find the expected result, in practice we rank the results

that simultaneously contain more keywords within the

same category higher, similar to traditional search engines

like Google.

According to the analysis framework of controlled lan-

guages in (18), the scores of EASE are shown in Figure 3.

In comparison to the propositional logic and natural lan-

guage (e.g. English), our semantic query interface is very

simple, moderately natural and precise, as well as weakly

expressive, which meets our goal to make it easier to

search the life science Linked Data for non-technical users

in the biomedical domain. Complex logic queries are be-

yond EASE’s competence, but faceted filtering can partly

Figure 2. A running example.
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make up and we would like to extend EASE to support

more expressive information needs in the future. Also, it-

eratively search on previous results are expected.

We employ keyword auto-completion for the users who

are not familiar with the classes or properties in the media-

ting ontology SIO. The query interface shows candidate

classes, properties or data sources when a user types in

‘C:’, ‘P:’ or ‘S:’. Additionally, faceted filtering provides the

users dataset-specific classes and properties that are not

involved in SIO. The details of faceted filtering are

described in Section 3.4.

Ontology matching

Different terminologies are often used in different datasets.

Therefore, answering queries across datasets requires that

either the data are integrated to a common terminology

(e.g. warehouse), or that a mediator translates a query

against target sources. In our work, we adopt the latter, in

which we establish mappings between Bio2RDF classes

and properties to the SIO ontology, and execute queries by

translating them to the target datasets via these mappings.

We use ontology matching to find corresponding classes

and properties between Bio2RDF datasets and SIO.

To match an ontology with SIO, we use two linguistic

methods, namely V-Doc (19) and I-Sub (20), which are

both from our Falcon-AO ontology matching system (21).

We select it due to its stable performance in several years’

OAEI contests (http://oaei.ontologymatching.org/), but

other alternative systems, e.g. S-Match (22), can be used

for this purpose as well. Note that comparing the perform-

ance of different ontology matching systems is beyond the

scope of this paper. Structural methods are ignored here

due to the weak structures of Bio2RDF schemas.

V-Doc forms a virtual document, denoted by VDðÞ, to

represent each term. The novelty of V-Doc is that both

local descriptions, denoted by LDðÞ and neighboring infor-

mation are involved to increase the robustness. For a lit-

eral, its local description is a bag of words from its lexical

form; while for a term, it is a bag of words extracted from

the local name of its URI or other annotations. To incorp-

orate the descriptions of neighbors in a virtual document,

we define three neighboring operations to cover different

kinds of neighbors: subject neighbors SNðÞ, predicate

neighbors PNðÞ and object neighbors ONðÞ. Also, syno-

nyms from MeSH are queried to enrich the documents.

The measure to determine whether two terms are similar is

the cosine similarity of their virtual documents.

Specifically, let ts, tb be two terms to be matched, the simi-

larity of them using V-Doc is defined as follows:

V-Docðts; tbÞ ¼
VDðtsÞ•VDðtbÞ
jVDðtsÞj � jVDðtbÞj

; (1)

VDðtÞ ¼ LDðtÞ þ cs

X

t02SNðtÞ
LDðt0Þ þ cp

X

t02PNðtÞ
LDðt0Þ

þco

X

t02ONðtÞ
LDðt0Þ;

(2)

where cs, cp, co are weighting factors in range ½0;1�, and

they are recommended to be 0.5 (19). ‘•’ denotes the dot

product of two vectors.

I-Sub is an improved string matcher considering not

only the commonalities between the local descriptions of

two terms but also their differences. Specifically, let ts, tb

be two terms to be matched, the similarity of them using

I-Sub is defined as follows:

I-Subðts; tbÞ ¼ CommðLDðtsÞ;LDðtbÞÞ–DiffðLDðtsÞ;LDðtbÞÞ

þWinklerðLDðtsÞ;LDðtbÞÞ;
(3)

where CommðÞ and DiffðÞ measure the commonality and

difference of the two local descriptions, respectively, and

WinklerðÞ is a refinement.

To meet various use scenarios, the overall similarity be-

tween two terms are measured as the maximal value of

V-Doc and I-Sub (21):

Simðts; tbÞ ¼ maxfV-Docðts; tbÞ; I-Subðts; tbÞg: (4)

Note that this similarity combination strategy is com-

pletely different from the original one used in Falcon-AO.

Another difference is that synonyms from MeSH are com-

plemented to resolve the semantic heterogeneity.

Furthermore, the threshold for the overall similarity is ad-

justed to 0.9, in order to achieve a high accuracy.

Table 3 lists the class and property mappings between

SIO and eight Bio2RDF dataset schemas. We invited an ex-

pert to judge the quality of the class mappings and found

that the precision and recall are very good (Table 3). Our

approach finds not only simple mappings between string

variations (e.g. sio:010038 (drug) vs. kegg:Drug), but also

lexically problematic mappings such as sio:010299 (disease)

vs. orphaned:Disorder. However, some mappings such as

sio:011125 (molecule) vs. drugbank:Small-molecule are

Table 2. Definition of the effective accessible semantic query

interface

Keyword types Regular Expressions examples

Plain text ˆ(?![CPS]:)\wþ penicillin

Class constraint ˆC:\wþ C:Drug

Property constraint ˆP:\wþ P:label

Dataset constraint ˆS:\wþ S:DrugBank

‘\w’ denotes case-insensitive alphanumeric characters.
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missing due to conservative thresholds. One mapping be-

tween sio:000133 (descriptor) and mesh:Descriptor was

marked as wrong due to sio:000133 is broader than

mesh:Descriptor, rather than equivalent. We evaluated the

quality of property mappings. A majority of the properties

in these mappings for each Bio2RDF dataset are the same as

the commonly-used properties (e.g. rdfs:label) that we added

to SIO. We observed that the derived mappings are all cor-

rect. It is worth noting that our architecture supports to use

other ontologies as the mediating ontology to filter classes

and properties in different datasets. However, most biomed-

ical ontologies currently focus on one specific domain in the

life science [e.g. Basic Formal Ontology, (23)] or provide

domain-independent classes and properties [e.g. Human

Phenotype Ontology, (24)]. Using these ontologies would

decrease the coverage of the matched classes and properties.

Table 4 lists the coverage rate of the matched classes

and properties against the involved Bio2RDF datasets. In

average, about 45% classes and properties are covered by

SIO. The coverage on DrugBank is not good, because it

contains many classes specific to drugs (e.g. Half-life)

while SIO does not have them currently. However, the

frequently-used classes (e.g. Drug, Disease, Gene) and

properties (e.g. dc:title, rdfs:label) have all been matched.

NCBI Gene and PharmGKB also encounter the similar

problem. The low coverage would lead to the failure of our

mapping-based query rewriting, because a ‘global’ query

against SIO cannot be translated to the ‘local’ query

against a specific Bio2RDF dataset. We alleviate this short-

age by using faceted filtering, which provides the users

dataset-specific classes and properties that are not involved

in SIO. To clarify, we did not use expert judgement to im-

prove the mappings in our experiments.

Mapping-based query answering

With equivalence mappings, the queries against SIO are

immediately converted to the queries against a specific

dataset. A class constraint is translated to a triple pattern

h?s a ci, and a property constraint is translated to h?s p ?oi,
where c, p denote the matched class and property in that

specific dataset, respectively. Plain keywords are converted

to SPARQL filters, and dataset constraints are converted

to named graphs. One pattern in each type is combined to

constitute a SPARQL query, and all combinations form the

federated query. For the dataset-specific classes and prop-

erties that cannot find mappings in SIO, the users can use

faceted filtering instead, in order to refine the information

of interest.

Example 1. To help understand the mapping-based

query answering, let us recall the running example in

Figure 2. Assume that a user wants to search information

about ‘Alzheimer’. To make her query more accurate, she

specifies the class must be Disease OR phenotype (Steps

1-2). This information need is automatically translated to a

SPARQL query against SIO (Step 3). Then, this query is

rewritten into local Bio2RDF datasets based on the dis-

covered mappings. For example, Orphanet uses Disorder

instead of Disease; OMIM has two disjoint classes

Phenotype and Predominantly-phenotypes. Thereafter, the

disease and phenotype information about Alzheimer can

be queried from distributed life science datasets.

Entity browsing and faceted filtering

The returned entities are displayed with highlighted key-

words. The external image of each entity (if available) is

also retrieved on the fly. To view the details of an entity,

because it may have hundreds of properties and values, we

arrange the properties by categorizing them into three

groups: the metadata group (e.g. properties from RDF(S),

OWL or DC), the domain-specific group, and the entity-

linking group. Within each group, properties and values

are ordered alphabetically. The entity-linking group

Table 3. Matching results between SIO and Bio2RDF datasets

Names Class

mappings

Property

mappings

Precision Recall

of class mappings

DrugBank 9 54 1.00 0.90

InterPro 5 50 1.00 1.00

KEGG 14 52 1.00 1.00

MeSH 8 49 0.88 0.88

NCBI Gene 6 50 1.00 1.00

OMIM 9 52 1.00 1.00

Orphanet 7 40 1.00 1.00

PharmGKB 9 51 1.00 0.82

Figure 3. PENS scores for the effective accessible semantic query

language.
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mainly consists of the x-link relations (e.g. kegg:

x-pharmgkb), which form a majority of entity links in

Bio2RDF (25). These cross-references enable users to easily

traverse linked entities across different datasets.

Also, we extract the classes, properties and datasets of

the returned entities to construct faceted filters, with which

users can further refine search results. Extracted classes

and properties are organized as the leaf nodes in a tree

structure with the non-leaf nodes being the matched SIO

classes and properties, or being the data source names for

the unmatched ones, so that the dataset-specific classes and

properties would not be ignored. Note that both property

grouping, facet organization and term mappings can be

configured based on application scenarios.

Implementation details

We implemented the server side of BioSearch in Java and

the browser side in JavaScript. Biosearch is currently de-

ployed on an IBM x3850 M2 server with two Xeon Quad

2.4 GHz CPUs and 16GB memory, using Apache Tomcat

as the Web server on CentOS Linux. SPARQL queries are

serialized using Apache Jena and submitted to different

SPARQL endpoints, typically using OpenLink Virtuoso to

store RDF data. The user interfaces of BioSearch are

shown in Figure 4, where the drugs about ‘penicillin’ are

found in DrugBank and PharmGKB. The current imple-

mentation of BioSearch depends on SIO and its mappings

with Bio2RDF datasets. With a proper mediating ontology

and ontology mappings, we believe that BioSearch can be

applied to other application domains without taking too

much effort.

Evaluation

In this section, we report our experiments to evaluate

BioSearch in addition to two comparative systems with

user-involved tasks. We mainly aim to test the following

two hypotheses:

H1. Combining traditional Web search and semantic

query is more effective than using one of them in the life

science Linked Data.

H2. Conducting ontology-based query answering is

more effective than querying isolated datasets in the life

science Linked Data.

Comparative systems

We compared BioSearch with two types of widely-used

SPARQL endpoint solutions: one follows the classic key-

word search paradigm just like Google; the other aims at

facilitating SPARQL query construction. In our tests, we

chose two state of the art Web applications – the Virtuoso

search and faceted browser [VFCT in abbr., (26)] and

Sparklis (27) – and deployed them to work with the same

datasets as BioSearch. The user interfaces of VFCT and

Sparklis are shown in Figure 5, and we briefly introduce

them below:

• VFCT is currently the Bio2RDF query engine for full-text

search and faceted browsing. For a dataset, it accepts

plain-text keywords as input just like Google search en-

gine and helps users refine search results with entity rela-

tionship filters (see the top-right corner of Figure 5).

• Sparklis facilitates users to explore a SPARQL endpoint

via directing them to the interactive construction of ques-

tions and answers. For a SPARQL endpoint, it combines

the fine-grained guidance of faceted search, most of

Table 4. Coverage rate of matched classes and properties

against the involved Bio2RDF datasets

Names Coverage rate of

classes Properties

DrugBank 12.3% 38.0%

InterPro 41.7% 63.3%

KEGG 66.7% 29.1%

MeSH 66.7% 45.8%

NCBI Gene 30.0% 47.6%

OMIM 69.2% 37.4%

Orphanet 43.8% 52.6%

PharmGKB 33.3% 38.6%

Figure 4. User interface of BioSearch.
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SPARQL expressivity, and readability of controlled nat-

ural languages.

Alternatively, we may use SPARQL query editors like

YASGUI (http://about.yasgui.ort/) or Lodestar (http://www.

ebi.ac.uk/fgpt/sw/lodestar/) for our intended comparison.

But we left them out of consideration, since this would bring

too heavy burdens for non-technical domain users to partici-

pate in the experiments. We also omitted existing biomed-

ical search engines like NCBI search (http://www.ncbi.nlm.

nih.gov/) or EBI search (http://www.ebi.ac.uk/), because

they run on different datasets and schemas, which are diffi-

cult for us to compare. The Optique Platform supports fed-

erated queries and helps non-IT experts construct complex

queries (28). Currently, we are unable to obtain the software

and deploy it on Bio2RDF. However, comparing the

Optique Platform with BioSearch for the ontology-based

query answering would be our important future work.

Users, tasks and procedure

Users. We invited 30 domain users to participate in the

evaluation. 10 of them are biologists and physicians

(denoted by BP), and they have adequate knowledge of the

life sciences but limited knowledge of the Linked Data; an-

other 10 users are graduate students studying the Semantic

Web (denoted by SW), but they are unfamiliar with the life

sciences; the remaining 10 users are professionals in

Biomedical Informatics, who know both areas very well

(denoted by Both). The three groups of users with varied

backgrounds reflect diversity (29), and we can compare

their opinions on the three systems.

Tasks. We designed 12 tasks of four categories, listed in

Table 5, to search entities or associations within a single

dataset or across different datasets in Bio2RDF. The tasks

involve some well-known drugs, diseases and genes, and

represent common scenarios to use Bio2RDF according to

the query log analysis in (17) and our interview on its users

from Stanford University who use Bio2RDF frequently.

We selected the keywords (e.g. Smallpox) in the tasks by

ourselves, but they are independent to EASE, and no prop-

erty constraint is required to complete the tasks. For

equity, we explicitly gave the dataset names (except for

three enumeration tasks T4, T5, T6), since VFCT and

Sparklis do not support federated queries on multiple data-

sets at present, and some users (especially from the SW

group) may be not very familiar with the datasets.

Figure 5. User interfaces of Virtuoso FCT and Sparklis.
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Procedure. Before experiment, a tutorial and training

exercise (i.e. Example 1) was given for each user to under-

stand the functionality of the three systems. Then, the user

conducted a randomly assigned task in each category using

BioSearch, VFCT and Sparklis arranged in a balanced

order, that is, each system was rotated to different places

equally, and was required to finish the task in 10 min. For

example, one user was arranged to conduct (T1, T5, T9,

T10) on VFCT, (T3, T4, T8, T11) on BioSearch and (T2,

T6, T7, T12) on Sparklis. Completion time of each task

was recorded.

Once users completed the tasks on all the three systems,

they then completed a survey (Table 6) on domain famil-

iarity and task difficulty, a customized questionnaire

(Table 7), which we designed to assess information quality,

functionality and response time of the systems, and the

standard System Usability Scale (SUS) chart (30) which is

widely accepted to evaluate the general system usability.

Note that, although there is some overlap between our

questionnaire and the SUS chart, our questionnaire was

specifically customized for this evaluation and more

focused on the effectiveness of the systems rather than the

usability in SUS. We used a five-point Likert item from 1

for ‘strongly disagree’ to 5 for ‘strongly agree’. We then

calculated the average scores and significance in statistics

(e.g. repeated measures ANOVA) to compare the effective-

ness and usability of the systems. We also evaluated users’

performance by analysing completion recall, precision and

time consuming of conducting tasks. Finally, we collected

and analysed any additional comments.

Results and discussion

Domain familiarity and task difficulty. Table 6 lists the

average scores, including means and standard deviations

(SD), of the 10 users in each group. Users with the life sci-

ence background (i.e. in BP and Both) thought that they

are more familiar with this domain and users known both

areas felt easier to finish the assigned tasks. One-way

ANOVA reveals the significant difference (P < 0.005).

However, all the users confirmed that they had no diffi-

culty in understanding the English tasks.

Concerning the three tasks in each category, there is no

significant difference in statistics between them (P > 0.41),

which excludes the factor that task assignment would affect

user scoring. However, all the users agreed that the associ-

ation search tasks among multiple datasets are harder and

entity search tasks in single dataset is easier (P<0.001).

Effectiveness. Table 7 illustrates the result of the ques-

tionnaire for effectiveness assessment, where the former

two questions focus on information quality while the latter

three aim at system functionality and response time. From

the table, we find that BioSearch achieved the highest

scores on the first four questions. Repeated measures

ANOVA indicates the significant difference in statistics

among Q1, Q2, Q3 and Q4 (P < 0.005), and LSD post-

hoc test reveals that BioSearch is consistently better than

VFCT and Sparklis. For Q2, Spaklis provided less abun-

dant information (P < 0.005). For Q5, BioSearch used

slightly more time on responding. Table 8 shows the effect-

iveness assessment results of different user groups. For Q3,

Q4 and Q5, users in BP group gave lower points for all

three systems (P < 0.001).

Usability. Table 9 presents the average SUS scores of the

sytems, where BioSearch achieved the highest score and

Sparklis obtained the worst. Repeated measures ANOVA

demonstrates the significant difference in statistics

(P< 0.001), and LSD post-hoc test confirms this. Table 10

shows the detailed SUS scores of different user groups.

Users in BP group gave lower points for all three systems

because they were not such familiar with Semantic Web

and ontology. Based on (31), an SUS score above 68 would

be considered above average, thus the score of BioSearch

(72.28) indicates it usable.

User Performance. Users’ performance on conducting

tasks is described in Table 11 using recall, precision and

completion time, where BioSearch achieved best recall and

precision with least time. Users finished more tasks on

BioSearch. Repeated measures ANOVA indicates the sig-

nificant difference in statistics between BioSearch and

Sparklis (P < 0.005). For completed tasks, users achieved

slightly better precision on BioSearch, and repeated meas-

ures ANOVA indicates the difference is significantly differ-

ent (P < 0.005). Users spent less time on BioSearch to

Table 5. Tasks for effectiveness and usability assessment

Entity search Association search

Single dataset T1/T2/T3 T7/T8/T9

Multiple datasets T4/T5/T6 T10/T11/T12

T1. Find the description of drug ‘Penicillin V’ in DrugBank.

T2. Find the category of disease ‘Smallpox’ in KEGG.

T3. Find the synonym of gene PHF8 in NCBI Gene.

T4. Find the identifiers of gene ‘BRCA1’ in any two datasets.

T5. Find the URIs of drug ‘Norgestrel’ in any two datasets.

T6. Find the entity whose disease is Malaria in any two datasets.

T7. Find the interaction between two drugs ‘Fluoxetine’ and ‘Phenelzine’ in

DrugBank.

T8. Find the association between disease ‘Schizophrenia’ and gene ‘DRD2’

in PharmGKB.

T9. Find the association between warfarin and gene APOC1 in

PharmGKB.

T10. Find the toxicity of a drug in DrugBank that treats disease

‘Tuberculosis’ in KEGG.

T11. Find the dosage of a drug in DrugBank that treats disease ‘Syphilis’ in

KEGG.

T12. Find the indication in DrugBank of a drug that treats disease Type I

diabetes in KEGG.
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complete each task, and repeated measures ANOVA indi-

cates the difference is significantly different (P < 0.001).

Table 12 shows the detailed performance results of differ-

ent user groups, where users in BP group got a lower

completion recall and spent much more time on tasks be-

cause of their unfamiliarity (P< 0.001).

User behavior. Let us take T10 for example. Using the

VFCT solution, a user might first initiate a keyword search

‘tuberculosis’ on the Bio2RDF KEGG database and then

select disease kegg:H00342 from 316 unordered results

simply containing this keyword. Using the Type facet, the

user could then manually examine the entries for a disease

type entry. Selecting this, the user could then find the

kegg:drug property and follow the link for kegg:D00144.

The user would then have to use the dc:title or the dc:iden-

tifier as a keyword search on the DrugBank VFCT. Using

the title, the user would have to further examine or refine

the 11 results to identify drugbank:DB00339.

On Sparklis, the user first specifies the KEGG SPARQL

endpoint and searches for ‘tuberculosis’ in the entity

Table 6. Questions and results for task difficulty and domain familiarity

Questions Scores: Mean (SD) LSD post-hoc

BP SW Both (P < 0.01)

Q1. This domain is familiar to me. 2.80 2.19 3.08 Both, BP > SW

(1.12) (1.43) (2.62)

Q2. These tasks are difficult to me. 2.80 2.79 2.27 SW, BP > Both

(1.12) (1.41) (1.34)

Task difficulty (P< 0.001): T10/T11/T12>T7/T8/T9, T4/T5/T6 > T1/T2/T3.

Table 8. Effectiveness assessment results of different user

groups

Questions User group Scores: Mean (SD)

BioSearch VFCT Sparklis

Q1 BI 4.2 (0.60) 4.1 (0.70) 3.1 (0.94)

SW 4.6 (0.49) 3.4(1.02) 3.7 (0.90)

Both 4.7 (0.64) 3.3 (0.90) 2.8 (1.08)

Q2 BI 3.3 (0.64) 3.4 (0.66) 3.0 (0.77)

SW 3.8 (0.98) 3.8 (0.98) 3.1 (1.04)

Both 4.1 (0.94) 3.7 (1.27) 2.5 (1.02)

Q3 BI 2.8 (0.75) 2.1 (0.70) 1.8 (0.60)

SW 4.4 (0.49) 2.5 (0.81) 2.3 (1.10)

Both 4.4 (0.66) 2.8 (0.75) 2.7 (1.10)

Q4 BI 3.0 (0.63) 2.5 (0.92) 2.2 (0.60)

SW 3.9 (0.70) 2.3 (0.64) 2.6 (0.80)

Both 4.3 (0.78) 3.3 (1.42) 2.6 (1.11)

Q5 BI 2.7 (0.90) 3.2 (1.08) 2.1 (0.83)

SW 4.1 (0.70) 4.4 (0.66) 2.9 (1.51)

Both 4.3 (0.64) 4.1 (0.70) 2.6 (0.66)

Table 9. SUS results for usability assessment

Scores: Mean (SD) F(2, 87) LSD post-hoc

BioSearch VFCT Sparklis (P-value) (P < 0.01)

72.28 50.25 32.25 49.941 BioSearch> VFCT>

Sparklis(17.36) (16.48) (12.29) (< 0.001)

Table 7. Questions and results for effectiveness assessment

Questions Scores: Mean (SD) F(2, 87) LSD post-hoc

BioSearch VFCT Sparklis (P-value) (P < 0.01)

Q1. This system provided me with accurate information. 4.50 3.60 3.20 16.183 BioSearch > VFCT, Sparklis

(0.63) (0.97) (1.06) (< 0.001) SW, BP, Both

Q2. This system provided me with abundant information. 3.73 3.63 2.87 6.799 BioSearch, VFCT > Sparklis

(0.94) (1.03) (1.01) (< 0.005) SW, BP, Both

Q3. This system helped me easily find information of interest. 3.87 2.47 2.27 24.55 BioSearch > VFCT, Sparklis

(1.01) (0.82) (1.05) (< 0.001) Both, SW > BP

Q4. This system helped me clearly understand related information. 3.73 2.70 2.47 13.851 BioSearch > Sparklis, VFCT

(0.91) (1.15) (0.90) (< 0.001) Both> BP

Q5. This system rapidly responded to my queries. 3.70 3.90 2.53 14.441 VFCT, BioSearch > Sparklis

(1.06) (0.99) (1.14) (< 0.001) SW, Both > BP
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column. However, a common issue is that the user cannot

find any KEGG types in the concept column due to user-

configurable application limit to the number of search

results. The user must then manually type kegg:Disease to

filter the desired entity. The steps that follow are then simi-

lar to VFCT.

With BioSearch, the user initiates her search by typing

the keywords ‘tuberculosis’, ‘C:Disease’ and ‘S:KEGG’.

From the short list of results, the user then clicks on the of-

ficial tuberculosis entry, chooses one drug name (e.g.

Pyrazinamide), and can immediately follow the link to a

DrugBank entry as specified with kegg:x-drugbank.

However, the current semantics of EASE does not support

the user to directly express the input query with kegg:x-

drugbank, because it is dataset-specific.

User comments. We summarized all the major comments

that were made by at least 20% users. 70% of the users

appreciated the user-friendly interface of BioSearch, espe-

cially the semantic query input and faceted filtering. 33% of

the users said that it is clear in semantics to search with

BioSearch across multiple data sources based on ontology-

based query answering. On VFCT, 27% of the users said

that it is also easy to use, however, 50% of the users com-

plained that its result presentation is less than ideal. For in-

stance, VCFT lacks snippets in an accessible format, and the

facets are not obvious to the user. 30% of the users thought

that Sparklis can make complex queries step by step, but

40% of the users believed that this needs a lot of training be-

fore actually using it, especially for the modifier column.

27% of the users commented that a weakness of Sparklis is

it can only query a single SPARQL endpoint at a time. Users

complained that VFCT and Sparklis require to remember

and type in endpoint addresses when switching datasets.

Discussion. The above reported scores, user behavior

and comments are consistent between different groups of

the users, so we discussed comprehensively. These results

support our two hypotheses.

To H1, BioSearch leveraged keyword search and se-

mantic query for finding information more accurately and

efficiently. Only using keyword search like VFCT failed to

interpret user intent precisely, while constructing semantic

queries with Sparklis was difficult for users without tech-

nical training.

To H2, BioSearch conducted ontology-based query an-

swering to automatically retrieve information from distrib-

uted datasets, which not only realized the federated

SPARQL queries but also coped with the heterogeneity

issue with ontology matching. Neither VFCT nor Sparklis

supported this presently. Users need to switch datasets

manually and repeat typing in very similar queries to re-

trieve the federated search results.

However, there are some issues that have not been well

covered in our evaluation. First, the motivation of EASE is to

support biomedical users who are not familiar with SPARQL

or the schemas of Bio2RDF datasets, but its current expres-

siveness is relatively limited. The users sometimes need to div-

ide their information needs into several steps of querying,

browsing and filtering (e.g. as explained by T10). Enriching

the expressiveness of EASE or using another mediating ontol-

ogy has not been conducted in the evaluation yet.

Second, the ontology-based query answering retrieves

information from distributed Bio2RDF datasets, but our

main focus is to resolve the heterogeneity between different

dataset schemas. It cannot support complex federated

queries compared with existing federated SPARQL query

engines, e.g. (28). In future work, we plan to make an in-

depth comparison on their capability and efficiency of

query answering, to better assess the benefits of different

components in BioSearch.

Table 10. SUS results of different user groups

User Group Scores: Mean (SD)

BioSearch VFCT Sparklis

BI 50.33 (4.35) 44.50 (10.89) 30.50 (10.59)

SW 84.75 (10.27) 51.50 (17.47) 34.50 (12.24)

Both 81.75 (4.75) 54.75 (17.59) 31.75 (12.94)

Table 11. Results for user performance

Scores: Mean (SD) LSD post-hoc

BioSearch VFCT Sparklis (P < 0.01)

Recall 0.94 0.89 0.78 BioSearch >

Sparklis(0.11) (0.17) (0.23)

Precision 0.94 0.90 0.90 BioSearch > VFCT,

Sparklis(0.11) (0.18) (0.13)

Time (s) 198 239 328 BioSearch < VFCT <

Sparklis(154) (167) (187)

Table 12. User performance results of different user groups

User group Scores: Mean (SD)

BioSearch VFCT Sparklis

Recall BI 0.85 (0.12) 0.78 (0.18) 0.64 (0.23)

SW 1.00 (0.00) 0.93 (0.16) 0.83 (0.20)

Both 0.98 (0.08) 0.90 (0.08) 0.98 (0.08)

Precision BI 0.92 (0.13) 0.93 (0.13) 0.92 (0.13)

SW 0.95 (0.10) 0.84 (0.20) 0.89 (0.13)

Both 0.95 (0.10) 0.93 (0.16) 0.90 (0.12)

Time (s) BI 317 (187) 341 (183) 420 (184)

SW 139 (73) 208 (146) 291 (178)

Both 136 (94) 169 (111) 272 (160)
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Related work

Semantic Web search engines such as Swoogle (32),

Sindice (33), Falcons (34) have been developed to index an

increasing amount of RDF data. They accept keyword

queries and display relevant results similar to conventional

search engines, and are intended to be general and do not

cover the life science domain well (9). Different from these

IR-based search engines, semantic search (11) aims to pro-

vide more accurate results, which transforms keyword

queries to formal SPARQL queries. User interaction is

often considered (27), which may be difficult for users

without technical skills.

In the life science and health care domains, GoWeb (9)

combines keyword search with ontologies and text mining

to navigate large results sets and facilitate query answering.

BioGateway (35) provides a single-entry point to query

ontologies in the OBO foundry, GO annotation files,

SWISS-PROT protein set, NCBI taxonomy and several in-

house ontologies through SPARQL. Bioqueries (36) is a

wiki-based portal to aid domain users in developing

SPARQL queries to access biological linked data. FedViz

(37) is a step towards interactively formulating federated

SPARQL queries using classes and properties visually pre-

sented per dataset. GoPubMed (38) exploring PubMed

with the GO to filter results. QuerioDALI (39) provides a

question-answering interface to search against biomedical

data sources. These systems cannot query distributed data-

sets with heterogeneous vocabularies and different data

types. More generally, ontology-based data access is a

paradigm for accessing data sources through an ontology

that acts as an integrated view of the data, and declarative

mappings that connect the ontology to the data sources

(12–14, 28, 40). In BioSearch, we specifically used SIO as

the mediating ontology and conducted automated ontol-

ogy matching for query translation.

To handle heterogeneity, Linked Biomedical Dataspace

(41) integrated data from multiple sources by a mediating

model named CanCO for cancer chemoprevention drug

discovery. Drug Encyclopedia (10) proposed the data mart

to represent the Linked Data and enables physicians to fa-

ceted search and browse clinically relevant information

about drugs. Disease ontology cancer project (42) matched

cancer terms from different dataset and provides a website

for keyword search. Compared with them, BioSearch uses

an automated ontology matching method and supports se-

mantic search over distributed datasets.

Conclusion

In this paper, we described a semantic search engine

BioSearch for the life science Linked Data, using Bio2RDF

as our main source. BioSearch leverages semantic search

and ontology-based query answering for information re-

trieval from distributed datasets. The proposed semantic

query interface is effective to support major use scenarios,

and the ontology matching method resolves the heterogen-

eity between different dataset schemas. Also, entity brows-

ing, filtering and traversing can be all easily conducted.

Our evaluation involving both non-technical and technical

domain users showed that BioSearch is more effective and

usable than two existing systems. In the future, we will

continuously integrate new datasets and functions. We will

also extend the query interface to support more expressive

queries. Additionally, we will try to combine our ontology-

based query answering with other federated SPARQL

query engines.
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