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Abstract

ORCTL3 is a member of a group of genes, the so-called anticancer genes, that cause tumour-

specific cell death. We show that this activity is triggered in isogenic renal cells upon their 

transformation independently of the cells’ proliferation status. For its cell death effect ORCTL3 

targets the enzyme stearoyl-CoA desaturase-1 (SCD1) in fatty acid metabolism. This is caused by 

transmembrane domains 3 and 4, which are more efficacious in vitro than a low molecular weight 

drug against SCD1, and critically depend on their expression level. SCD1 is found upregulated 

upon renal cell transformation indicating that its activity, while not impacting proliferation, 

represents a critical bottleneck for tumourigenesis. An adenovirus expressing ORCTL3 leads to 

growth inhibition of renal tumours in vivo and to substantial destruction of patients’ kidney 

tumour cells ex vivo. Our results indicate fatty acid metabolism as a target for tumour-specific 

apoptosis in renal tumours and suggest ORCTL3 as a means to accomplish this.
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INTRODUCTION

Recent studies have led to the emergence of a new class of genes with a specific anti-cancer 

activity. Upon ectopic expression these factors cause the specific destruction of tumour cells 

by various forms of cell death such as apoptosis, autophagy, or mitotic catastrophe, while 

normal cells are spared. Among those genes are apoptin, mda-7/IL-24, par-4, and also 

TRAIL.1-5 Some of the factors are in clinical trials and show promising results.6 Their 

modes of action are currently under intense investigation fuelled by the expectation that they 

reveal novel therapeutic interference options. We have recently presented ORCTL3 as one of 

the members of this growing, functionally defined gene family that we collectively named 

“anticancer genes”.6 ORCTL3 was isolated in a systematic screen for such genes and its 

transfection into numerous tumourigenic cells induced apoptosis, while normal and primary 

cells remained healthy.7 How this is accomplished remained unknown.

Recently, the metabolism of tumour cells has intensely been studied for differences to 

normal cells with the expectation that this will lead to novel targets and treatment options.8,9 

Several studies indicated that fatty acid metabolism is changed in malignant cells, which is 

mainly interpreted as a consequence of the increased requirement of lipids for their 

excessive proliferation.10 Indeed, most conventional anticancer compounds target actively 

proliferating cells and their efficiency, as well as their side effects, are correlated with 

enhanced proliferation. However, many tumour cells, in particular cancer stem cells, do not 

feature changes in their proliferation rate. Hence, the usefulness of targeting fatty acid 

metabolism for tumour treatment is currently unknown.

Renal cancer is the fourteenth most common cancer worldwide, with an estimated 273,500 

new cases diagnosed in 2008. So far the therapy of renal tumours relies mainly on surgery 

and there is hardly any systemic drug treatment that can be used against advanced renal 

tumours.11 The majority of tumors eventually become refractory even to novel targeted 

therapies.12 The survival rate is only around 50% within the first five years after diagnosis. 

Hence, there is an urgent need to discover novel treatment options.

Here we show that ORCTL3 is activated for apoptosis induction when renal cells become 

transformed, independently of the proliferation status of the cells. For its apoptosis effect 

ORCTL3 targets stearoyl-CoA desaturase, an enzyme that introduces a double bond in the 

fatty acid stearic acid. We have found that ORCTL3 exerts its tumour-specific effect on 

renal cancer cells in vitro, in vivo and ex vivo.

RESULTS

ORCTL3 is activated for apoptosis induction by transformation

We chose an isogenic system of transformed versus normal renal cells in order to implement 

the most stringent test for ORCTL3’s tumour specificity. To focus on a proven 

transformation system we turned to the primate renal CV-1 cells, which have extensively 

been used in the past and become transformed by individual tumourigenic mutations.13 The 

sequencing of kidney cancer genomes has revealed considerable genetic inter- and intra-

tumour heterogeneity of renal tumours.14,15 Because of this we asked whether ORCTL3 can 
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target changes emerging from renal cell transformation per se rather than changes based on 

specific mutations found in subpopulations of renal tumours. We transfected these cells with 

myc, an activated allele of H-ras, and also with a mutant allele of p53, which establish cell 

transformation by various signalling pathways and have previously been connected with at 

least some human kidney cancers.16-18 We also transfected the viral oncogenes E6 and E1A 

that have long been used for a partial transformation of cells.19 In order not to introduce a 

bias by picking individual colonies, we used pools of transfected cells with a range of 

expression levels of the transfected genes to more accurately recapitulate the genetic 

heterogeneity in tumours.20 These mutations caused morphological changes, ranging from 

profound, especially for H-ras and myc, which lost their contact inhibition, to more subtle 

changes such as for E1A, which mostly resembled their wild type (WT) CV-1 counterparts 

(Supplementary Figure S1a,b). Nevertheless, all tumourigenic mutations led to the 

immortalisation of the cells, while the parental CV-1 cells cease proliferation after about 10 

passages. Transfection of WT CV-1 cells with a number of known pro-apoptotic genes such 

as RIP1, caspase-8, ANT1, and caspase-2 caused efficient cell death confirming the integrity 

of apoptosis signalling pathways in these cells (Supplementary Figure S1c, S2). The 

transformed as well as the WT CV-1 cells were then transfected with an expression 

construct for ORCTL3 and caspase-2 as a positive control. In parallel a fusion construct of 

ORCTL3 with an ER retention signal (ORCTL3-ER) was introduced that was found to 

generate higher apoptosis levels.7 In the WT CV-1 cells we detected no appreciable 

apoptosis with both ORCTL3 constructs (Figure 1a), while caspase-2 was an efficient 

apoptosis inducer indicating, as before (Supplementary Figure S1c, S2), the intact apoptosis 

sensitivity of these cells. In contrast, when ORCTL3 was transfected into the transformed 

CV-1 cells we observed significant apoptosis induction with all cells harbouring 

tumourigenic mutations, except the E1A transfected cells, which correlated with their minor 

transformed phenotype (Figure 1b-f and Supplementary Figure S1a). No further increase of 

apoptosis induction was observed with the ORCTL3-ER construct. In some of the 

transformed cells such as those transfected by H-ras the general apoptosis inducer caspase-2 

was less efficient, in agreement with reports that attribute an apoptosis-inhibiting activity to 

this oncogene.21 The lack of apoptosis induction in the WT CV-1 cells was not due to a 

lower expression level of ORCTL3 in those cells. Rather, we detected a considerably higher 

transfection efficiency and consequently a higher expression of ORCTL3 in WT CV-1 cells 

than in their transformed counterparts (Figure 1g,h).

We compared ORCTL3 with the other anticancer genes apoptin, par-4, and mda-7/IL-24. 

Like ORCTL3, they remained ineffective for apoptosis induction in parental CV-1 cells 

(Supplementary Figure S3a-f). Par-4 became an apoptosis inducer in all CV-1 cell variants 

with tumourigenic mutations, as was the case for apoptin with the exception of p53-mut 

transformed cells and for IL-24/mad-7 with the exception of E6 and myc transformed cells. 

Just like ORCTL3, all three anticancer genes remained inactive in E1A transformed cells. A 

similar trend with higher absolute apoptosis values was observed when high amounts of the 

recombinant TRAIL ligand were exogenously added to the cells (Supplementary Figure 

S3g).
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As a first step to determine the cell characteristics that underlie ORCTL3’s specificity we 

assessed the proliferation status of WT and transformed CV-1 cells and found that in an 

MTT assay only myc-transformed cells seemed to replicate slightly faster than WT CV-1 

cells. All other tumourigenic mutations caused a slower proliferation (Figure 2a). Cell cycle 

analysis revealed that cells with tumourigenic mutations, with the exception of E1A, had a 

reduced population of cells in the G1 phase and an increase in subG1 cells indicating that 

some of them underwent spontaneous apoptosis (Figure 2b).

ORCTL3 causes ARCosome activation and an incomplete ER stress response

We recently characterised the ARCosome, a caspase-8-activation complex that physically 

connects the ER with mitochondria and consists of mitochondrial Fis1 and Bap31 at the 

ER.22 Upon recruitment of caspase-8 to the ARCosome Bap31 is cleaved and activates 

downstream signals for apoptosis. ORCTL3 induces its apoptosis signal from the ER7 and 

the physical proximity of the ARCosome to ORCTL3 led us to test the involvement of this 

apoptosis sensor. Co-transfection of ORCTL3 led to the cleavage of a fusion protein of 

Bap31-EYFP after 18 hours (50%), a time point at which no overt apoptosis could be 

observed (Figure 3a,b and Supplementary Figure S4a) suggesting that it is an early event of 

the apoptosis signalling by ORCTL3. In agreement with this, when we individually 

inactivated the three components of the ARCosome, we observed a reduction of apoptosis 

induced by ORCTL3 (Figure 3c,d). Moreover, ORCTL3 could interact with Bap31 in a co-

immunoprecipitation experiment (Supplementary Figure S4b). However, transfection of the 

ARCosome activator Fis1 elicited cell death in WT CV-1 cells indicating that this complex 

is not exerting the tumour-specific effect. We previously observed an accumulation of the 

ER stress sensor ATF4 but not of BiP/Grp78 as a signature of ORCTL3-transfected tumour 

cells.7 We extended these results and also did not detect the upregulation of the proapototic 

transcription factor CHOP, a ATF4 target gene in the canonical ER stress response (Figure 

3e), while ATF3 was found to accumulate upon ORCTL3 expression (Supplementary Figure 

S4c). The same ER stress response was observed when we assessed Bap31, ATF4, ATF3, 

and BiP in H-ras transformed CV1 cells. Normal CV1 cells, on the other hand, showed a 

much reduced Bap31 cleavage and no increase of the other ER stress markers 

(Supplementary Figure S4d). Nevertheless, in Hela cells the mRNA of XBP-1 was spliced 

upon ORCTL3 expression, a signal more proximal to the chaperone BiP (Figure 3f). The 

knock-down of ATF4 led to a weak but significant reduction of ORCTL3 apoptosis (Figure 

3g). These results indicate that some, but not all, consequences of canonical ER stress are 

instigated by ORCTL3 expression.

ORCTL3 targets stearoyl-CoA desaturase for tumour-specific apoptosis induction

Downregulation of stearoyl-CoA desaturase (SCD) has recently been revealed to cause 

apoptosis in lung and colon tumour cells lines,23 which is mediated by a cellular response 

that, like ORCTL3, leads to an incomplete ER stress response with ATF4 upregulation but 

not BiP.24 Because of this and since both the SCD and ORCTL3 proteins are localised to the 

ER membrane, we tested whether this enzyme is a target of ORCTL3 for apoptosis 

induction. We added BSA-complexed oleic acid, the enzymatic product of SCD, to the cells 

after they were transfected with ORCTL3 or caspase-2 as a control. ORCTL3-induced 

apoptosis in p53- and H-ras-transformed CV-1 cells was significantly reduced, while cell 
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death caused by the upregulation of caspase-2, Bax, and caspase-8 remained unaffected 

(Figure 4a and Supplementary Figure S5a,b). The transformed Hela and 293T cell lines also 

showed a reduced apoptosis by ORCTL3 upon addition of oleic acid (Supplementary Figure 

S5c). We observed an increase of p53- and H-ras-transformed cells undergoing apoptosis 

over their normal WT CV-1 counterparts when an inhibitor of SCD1 (CAY10566) was 

applied (Figure 4b). The application of this SCD1 inhibitor also caused Bap31 cleavage in 

the H-ras transformed CV1 cells but not in the normal CV1 cells (Supplementary Figure 5d).

Furthermore, co-immunoprecipitation revealed an interaction between ORCTL3 and SCD as 

we could detect endogenous SCD1 by western blot when we immunoprecipitated 

overexpressed ORCTL3. Conversely, when the endogenous SCD1 was immunoprecipitated, 

we detected the overexpressed ORCTL3 as a discrete band, rather than a smear as detected 

in the input probably representing differentially glycosylated forms of the ORCTL3 

transporter (Figure 4c). Moreover, the expression of both mouse and human ORCTL3 

reduced the desaturation index (18:1n-9/18:0 ratio) in normal and transformed CV1 cells, 

with the mouse gene being slightly more effective (Figure 4d). The reduction of the 

desaturation index in H-ras transformed CV1 cells was not a consequence of apoptosis 

induction as the pro-apopotic p20 Bap31 fragment did not lead to a significant change in the 

desaturation index. We also measured the fatty acid composition in normal and H-rad 

transformed CV-1 cells (Supplementary Figure S5e). Co-transfection of SCD1 reduced 

ORCTL3’s apoptosis induction but not cell death by RIP, ANT1, p20 and par-4 expression 

(Figure 4e and Supplementary Figure S5f,g). We also observed the co-localisation of 

transfected mouse and human ORCTL3 with endogenous SCD1 (Supplementary figure S6). 

These results indicated that SCD activity is required for the survival of transformed, but not 

WT CV-1 cells. In agreement with this, we found that the transformed CV-1 cells harbour 

an upregulated SCD1 compared with normal cells (Figure 4f). We also tested the expression 

level of SCD5 and found a pronounced upregulation of this enzyme in H-ras transformed 

CV1 cells (Supplementary Figure S7a). Moreover, we detected an interaction between 

mouse and ORCTL3 with SCD5 (Supplementary Figure 7b).

ORCTL3’s apoptosis induction is specific for the mouse gene and critically depends on 
transmembrane domains 3 and 4

The mouse ORCTL3 gene and its human homologue are 73% identical at the protein level 

(84% similarity). Surprisingly, when we transfected human ORCTL3, we did not detect 

appreciable apoptosis induction in transformed HeLa and 293T cells (Figure 5a). Even 

titration experiments revealed that the degree of cell death attainable with human ORCTL3 

remained significantly below the mouse ORCTL3 (Supplementary Figure S8a). We 

investigated the accumulation of the protein in transfected cells and found that mouse 

ORCTL3 was considerably more stable (Supplementary Figure S8b). Moreover, the human 

ORCTL3 interacted slightly weaker than mouse ORCTL3 with SCD1 (Supplementary 

figure S8c). To determine whether it is the accumulation and interaction of the proteins or 

whether the mouse ORCTL3 also comprises unique pro-apoptotic sequences, we mapped 

the domain(s) responsible for this differential apoptosis effect starting with the smallest 

ORCTL3 deletion construct that still induces apoptosis comprising the 5 N-terminal 

transmembrane domains (TM5).7 While only the construct TM5 caused apoptosis, construct 
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TM2 was nevertheless expressed to an appreciable level as assessed by FACS analysis to 

monitor sub-populations with various expression levels (Figure 5b and Supplementary 

Figure S8d). These data suggested that the TM domains 3, 4, and 5 are required for 

apoptosis induction. Since the construct TM3 was unstable, we focused our further fine-

mapping on the TM domains 4 and 5. We found that when the TM5 was partially or fully 

deleted (TM5b, TM5c) or when the loop between the 5th and the 6th TM was deleted 

(TM5a), the protein was rendered unstable and inactive for apoptosis induction. A construct 

harbouring the first four TM domains (TM4) was even more efficient than the larger 

construct TM5 for apoptosis induction (Figure 5c). Apoptosis correlated with the expression 

levels of the constructs (Supplementary Figure S8e). The minimal construct TM4 could still 

be inhibited by SCD1 co-transfection (Supplementary Figure 8f). Given that the first four 

TM domains were sufficient for apoptosis (TM4) and the first two TM domains were stable 

but not active for apoptosis, we concentrated in a new round of mapping experiments on the 

third and the forth TM domain. It is known that during protein synthesis pairs of TM 

domains are co-inserted into the ER membrane.25 However, neither the two TM domains on 

their own (TM34) nor when fused to the N-terminal signal sequence of ORCTL3 (NTM34), 

or when attached to two arginine residues, which when flanking α-helical transmembrane 

domains ensure their correct orientation in the membrane (NPosTM34), could elicit 

apoptosis (Supplementary Figure S8g). All of these constructs were found not to be stable 

(Supplementary Figure S8h).

We speculated that the two TM domains from mouse ORCTL3 could enable human 

ORCTL3 to initiate apoptosis when put into the human sequence context. Figure 5d (top and 

left bottom panel) reveals that the chimera (DSTM3&4) caused apoptosis as efficiently as 

the mouse ORCTL3. The stability of the construct was substantially increased over the 

human ORCTL3 (Supplementary Figure S8i). A sequence comparison indicated that both 

TM domains comprise a number of amino acids that differ between mouse and human and 

that the loop between the two TMs contains one exchange (Supplementary Figure S8j). We 

swapped the TMs individually and converted the loop domain of the human ORCTL3 into 

the mouse sequence (Supplementary Figure S8k). None of these constructs were capable of 

apoptosis induction or accumulated to an appreciable level (Figure 5d right bottom panel). 

When we inserted the two human TM domains into the mouse ORCTL3 gene 

(DSTM3&4HtoM), despite its expression level being comparable with the mouse protein 

(Supplementary Figure S8l), only a very modest apoptosis was observed (Figure 5d, right 

bottom panel). We then asked whether apoptosis is a consequence of an incompatibility of 

the mouse ORCTL3 protein in a human cellular environment but the mouse ORCTL3 gene 

was also active for cell death in mouse N2a cells, in which it also accumulated to a higher 

level than its human equivalent (Supplementary Figure S9).

An ORCTL3-expressing adenovirus causes tumour growth inhibition in vivo and retains its 
specificity for malignant cells explanted from patients

As the above mapping results highlighted the requirement of sufficient accumulation of 

ORCTL3 for apoptosis induction, we used an adenovirus vector, which can express genes to 

high levels. Based on our observation that ORCTL3, when retained at the ER, is more 

efficient for apoptosis,7 as also detected with the TM4 deletion mutant (Supplementary 
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Figure S10a), we inserted an ORCTL3-ER construct into the adenovirus genome. We first 

adjusted the infection conditions so that we achieved equal expression in WT CV-1 cells and 

the E1A-transfected variants. The same titres were then used to express ORCTL3 in the 

other transformed cells. Figure 6a shows that ORCTL3 still did not cause cell death in the 

non-transformed CV-1 cells but all transformed cells showed considerable cell death after 

24 hours, including the E1A-transformed CV-1 cells that had not responded to the 

transfection of the ORCTL3 expression plasmid (Figure 1f). When the extent of apoptosis 

was normalised to the expression levels (Supplementary Figure S10b), it became evident 

that ORCTL3 could induce cells death in 91% of myc-transformed CV-1 cells, in 72% of 

E6-transformed cells, 50% of H-ras-, 55% of p53-transformed cells, 20% of E1A-expressing 

cells and none in the WT CV-1 cells (Figure 6b). This efficiency and specificity was 

supported by the apoptosis effects when the cells were infected twice, which likewise did 

not indicate any toxicity in the WT CV-1 cells (Supplementary Figure S10c). To evaluate 

the effects of ORCTL3 in an in vivo xenograft model we made use of the human clear cell 

renal carcinoma cells Caki-2. In vitro experiments showed that these cells succumb to cell 

death upon ORCTL3 expression by the adenovirus, particularly when infected repeatedly 

(Supplementary Figure S10d,e). 2×106 of these cells were injected into the flanks of nude 

mice and after the tumours reached approximately 50mm3 the ORCTL3-expressing 

adenovirus or a luciferase control virus were injected once every 6 days and the size of the 

tumours was determined. Figure 6c and Supplementary S10f,g show that in all tumours 

ORCTL3 inhibited growth compared to the increase in tumour size seen with the luciferase 

control over a period of six weeks after which the animals were sacrificed.

The ORCTL3-expressing adenovirus was then used on explanted primary renal tumour and 

normal cells obtained from the same patient. A total of six tissue specimens (3 from normal 

cortex and 3 from advanced kidney cancers of Fuhrman grade 3) were maintained in culture. 

Clear cell renal cell carcinoma (ccRCC) was diagnosed by a specialised pathologist in all 

cases upon inspection of the tissues taken from the same tumorous lesions used for the 

primary cell cultures. Similar to what has been reported26 normal kidney epithelial cells 

showed higher proliferation rates than tumour cells and displayed a homogeneous 

population of cells with cobblestone appearance, whilst ccRCC cells displayed flattened 

polygonal morphology and many lipid vesicles in the cytoplasm (Figure 6d). The required 

concentration of the virus was optimised by infecting normal and tumour cells and 

examining the expression of ORCTL3 or GFP (Supplementary Figure S10h). Figure 6e 

shows that in primary tumour cells from all patients ORCTL3 caused a specific apoptosis-

inducing signal (27, 22, and 23% cell death) but exerted negligible toxicity in normal renal 

cells.

DISCUSSION

Anticancer genes have attracted considerable interest based on the expectation that the 

specificity of their proteins would aid in defining their mode of action and reveal additional 

targets in cancer treatment. For some anticancer genes, such as apoptin and par-4, several 

aspects of their downstream signalling have been elucidated.27,28 For ORCTL3 we 

identified here an effector - the fatty acid metabolism enzyme steaoryl-CoA desaturase 

(SCD) - as a target responsible for ORCTL3’s tumour-specific pro-apoptotic effect in renal 
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tumours. This connection was discovered based on ORCTL3’s activation of an incomplete 

ER stress response, which comprises the activation of ATF4 but not BiP (Figure 3e), and 

which was also found when SCD was downregulated to initiate apoptosis.24 This cell death 

was found to cause the demise of all tested tumour cells in one24 but not in another study23 

suggesting that the cellular transformation scenario in which this enzyme can be targeted 

had not yet been established.

We have found kidney cancers as a tumour model that responds to the inhibition of this 

metabolic enzyme. This was indicated when individual tumourigenic mutations were 

introduced into renal cells in an otherwise isogenic cell system (Figure 1, 6a,b) and when 

kidney tumours were studied ex vivo (Figure 6e). Previous work from our group had already 

shown that ORCTL3 is non-toxic to primary renal cells.7 So far the therapy of renal tumours 

relies mainly on surgery. As they often do not respond to chemotherapy and radiotherapy, 

there is hardly any systemic treatment against disseminated renal tumours.11 Consequently, 

renal tumours constitute a model in which conventional drugs are failing and only recently 

have targeted therapy treatments against VEGF and mTOR been approved for ccRCC. 

Nevertheless, the vast majority of tumors eventually also become refractory.12

Studies on changes in the metabolism of cancer cells currently define a dynamic field. The 

commonly held view is that the increase in the proliferation makes it imperative for 

malignant cells to alter the metabolism of ATP production, macromolecule synthesis, redox 

status, and fatty acids. Because of their increased proliferation, tumour cells are thought to 

become dependent on (addicted to) desaturated fatty acids through their increased 

requirement of phospholipids that constitute membranes.10 Our results represent a new 

paradigm as the cells with tumourigenic mutations did not feature an increased proliferation 

rate (Figure 2) but nevertheless became sensitive to the inhibition of the metabolic enzyme 

and succumbed to ORCTL3. Most established antineoplastic agents act against rapidly-

proliferating cells, which, however, is one of the reasons why these compounds also exert 

considerable side effects in, for example, blood cells. Our data indicate that ORCTL3 does 

not merely target cells with a higher proliferation rate (Figure 2).

SCD catalyzes the introduction of a double bond between carbons 9 and 10 of saturated fatty 

acids and in particular palmitic (16:0) and stearic (18:0) acid to yield the monounsaturated 

fatty acids palmitoleic (16:1) and oleic (18:1) acid, respectively. The presence of double 

bonds in FA has been shown to increase the fluidity of the membrane, a feature that has 

been implicated in facilitating tumour and metastasis formation.29,30 However, how specific 

these effects are for tumour cells remained unknown. By comparing isogenic normal with 

transformed renal cells we have shown here for the first time that inhibition of SCD is 

synthetic lethal with transformation by various tumorigenic mutations (Figure 1, 4b, 6a,b). 

Interestingly, the transformation of these cells is also accompanied by the upregulation of its 

transcript (Figure 4f) confirming this gene as a treatment target, even though this was not 

accompanied by an increase of the desaturation index (Figure 4d).

The role of SCD in obesity has been the focus of many studies most of which concluded that 

targeted inhibition of SCD1 is effective in preventing diet-induced obesity 31 thus 

establishing SCD1 as a therapeutic target for this indication. This finding in combination 
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with our data presented here suggest an interesting connection between obesity and cancer 

through SCD1. Various studies concluded that obesity was associated with an increased risk 

of developing cancer or metastasis.32-34 The abnormally elevated levels of SCD1 linked to 

the metabolic alterations found in obesity, as well as diabetes, and the upregulated levels of 

SCD1 in cancer cells, suggests SCD1 to be a molecular link between cancer and obesity.35 

Its inhibition is positively correlated to preventing obesity31 and in this study we propose 

that its inhibition by ORCTL3 overexpression also results in specific toxicity to renal cancer 

cells.

We found ORCTL3 in a complex with Bap31 (Supplementary Figure S4b), a component of 

the previously identified ARCosome22 and its apoptosis induction depends on the 

components of this protein complex (Figure 3c,d). Various results presented here indicate 

that the tumour-specific effect of ORCTL3 is accomplished through SCD inhibition and that 

the activation of the ARCosome is a downstream effect: The pro-apoptotic cleavage product 

of Bap31 cannot be inhibited for apoptosis induction by SCD1 co-transfection 

(Supplementary Figure S5g) and does not impact on the desaturation index (Figure 4d). 

Also, caspase-8, which is activated in the ARCosome22, is not inhibitable by the addition of 

oleic acid and is not tumour-specific (Supplementary Figure S5b).

High affinity compounds against SCD have been already developed. In agreement with the 

assumed higher specificity of anticancer genes and their encoded proteins, in vitro ORCTL3 

elicited higher apoptosis and lower non-specific activity (background in normal tissue) than 

the high affinity SCD1 inhibitor CAY10566 (Figure 4b and Figure 6b). For a therapeutic 

application of ORCTL3 it is essential to efficiently introduce the gene into target cells. This 

is evident by the increased apoptosis exerted by the adenovirus expressing ORCTL3 (Figure 

1 and 6) and the difference between the human and the mouse ORCTL3, which seems to be 

caused by the increased stability in combination with a higher affinity to SCD1 of the mouse 

protein in cells (Figure 5, Supplementary Figure S8c). The stronger apoptosis activity of 

mouse ORCTL3 was reflected by a slightly increased reduction of the desaturation index 

(Figure 4d) suggesting that a critical enzyme inhibition has to be reached for cell death. The 

ORCTL3-expressing adenovirus was more efficient in vitro (Figure S8e) than in vivo 

(Figure 6c) in reducing the tumour cells. However, the hemorrhagic tissue observed in the 

tumours could have obscured the in vivo effects, as indicated by the more pronounced size 

difference when the tumours were removed from the animals (Figure S10g). Gene therapy 

of tumours is still evolving but has recently made progress 36 and this work establishes proof 

of concept and biological validation of an ORCTL3-based therapeutic application.

Previously we found that ORCTL3 is downregulated in a number of tumours suggesting that 

it is a tumour suppressor gene, which when re-expressed in tumour cells, re-constitutes a 

pro-apoptotic pathway that is initiated by oncogenes. However, since the human ORCTL3 is 

less efficient for apoptosis induction, it is more likely that the overexpression of mouse 

ORCTL3 creates a neomorphic mutation in the tumour cells. The finding that the transfer of 

the 3rd and 4th TM domain from human to mouse retained its stability but did not lead to 

apoptosis (Figure 5d) indicates that the two mouse TM domains have another function than 

just providing sufficient protein stability. This is a surprising finding as interactions with 

other proteins, if any, should be more conserved in the same species. Our data indicate that 
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for high protein stability at least two mouse TM domains, either the 1/2 or the 3/4 pair in the 

correct context, are required. Accumulation within cells, however, is insufficient for 

efficient apoptosis induction as exemplified by the chimeric constructs with the human 3/4 

TM domains (Figure 5d). Hence, for efficient apoptosis the mouse TM domains 3/4 are 

necessary.

We have in this work focused on renal cancer, but our previous data indicate that ORCTL3 

is active against a wide variety of cancers.7 Future studies have to address the range of 

tumours that can be targeted with ORCTL3.

MATERIALS AND METHODS

DNA constructs

The mouse WT ORCTL3 and its ER fusion construct have been described.7 Deletion 

mutants and domain swapping were generated using suitable primers and recombinant PCR 

with Phusion® High-Fidelity DNA Polymerase (Finnzymes). PCR products were subcloned 

into the mammalian expression vector pcDNA3 (Invitrogen) and fused to an HA-tag at the 

C-terminal ends either by conventional restriction digestion and subsequent ligation using 

T4 DNA ligase (Promega) or by PCR Cloning using In-Fusion™ Advantage Kit (Clontech 

Laboratories, Inc.). All subcloning products were sequenced to verify the correct sequence. 

Plasmid DNA was isolated using Invitrogen’s maxi-prep kit according to the manufacturer’s 

instructions. Human ORCTL3 and SCD1 cDNAs were obtained from OriGene 

Technologies, Inc.

Cell culture

CV-1 cells (ATCC no: CCL-7), which are untransformed normal kidney fibroblasts, HeLa 

cells (ATCC no: CCL-2), HEK293T cells,7 and N2a cells (M.Sastre, Imperial College) were 

cultured in DMEM (Sigma-Aldrich) supplemented with 10% fetal calf serum (Sigma-

Aldrich). CV-1 cells were cotransfected by a plasmid containing the G418 resistance gene 

and an empty control vector or the gene of interest in a 1:9 ratio using Xfect transfection 

reagent (Clontech) and selected using 2.5mg/ml G418 (Gibco). HeLa cells were transfected 

with JetPEI (Peqlab) or Effectene (Qiagen) and HEK293T cells were transfected with Xfect 

(Clontech) according to the manufacturer’s instructions. All cell lines were validated by 

short tandem repeat (STR) DNA profiles prior to the start of the project.

MTT assay

CV-1 cells were cultured in a 96-well plate at a density of 5×103 cells/well containing 100μl 

complete phenol red-free DMEM medium (Sigma-Aldrich). 20 μl of 5 mg/ml MTT solution 

(Sigma-Aldrich) was added to each well and the manufacturer’s protocol followed.

Cell cycle analysis

Cell cycle analysis was performed by propidium iodide (PI) staining and flow cytometry. 

Cells were cultured for 72 hours in 24-well plates in complete DMEM. Cells were 

harvested, washed, and stained with PI lysis buffer (10μg/ml PI (Sigma-Aldrich), 0.05% 

sodium citrate (Sigma-Aldrich), 0.05% Triton (Sigma-Aldrich) in PBS). The fluorescent 
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signal was detected with FACS and cell cycle distribution was analysed using Flowjo 7.6.2 

software.

In vivo experiment

Caki-2 cells were obtained from ATCC and cultured in McCoy’s 5A medium with 10% 

FCS. At 24hours and 4hours before inoculation, the cells in culture were fed with fresh 

medium. At the time of inoculation cells were harvested, resuspended in media-free of 

serum and antibiotics, and kept under sterile conditions in sterile bijous. To form bilateral 

tumours 2×106 cells were inoculated subcutaneously in a volume of 100 l into the right and 

the left flank of each female nude mice. When tumour size reached 50-80mm3 ORCTL3- or 

luciferase-expressing adenovirus (50 l of 5×109 viral particles) was injected intratumouraly 

once every 6 days to investigate the therapeutic potential of ORCTL3.

Collection and isolation of primary renal cells

Human kidney tissue samples were obtained from patients undergoing radical nephrectomy 

for renal cell carcinoma at Charing Cross Hospital (London). Tissue was collected from 

areas macroscopically identified as normal or tumourous immediately after extracting the 

specimen by an expert pathologist (tissue bank licence number 12275). Isolation procedure 

was performed within an hour of tissue removal according to an established protocol 26.

Adenoviral infection

Three different adenoviruses (constructed and produced by Welgen, Inc) were used 

expressing ORCTL3-ER cDNA, luciferase as a negative control, and GFP as an infection 

efficiency control. Cells were plated at low density (20×103 cells/well of 24 well plate) and 

cultured overnight. On the day of infection, cells from one representative well were counted. 

Viruses at an original concentration of 1×1012 virions/ml were diluted in 2% FCS DMEM to 

obtain the required multiplicity of infection (MOI). 200μl of virus-containing medium was 

added to the cells, which were incubated for 7 hours. After which the cells were washed and 

kept in 10% DMEM until analysed. Primary renal carcinoma cells from patient #3 lacking 

the coxsackievirus and adenovirus receptor (CAR) were infected with the help of AdBooster 

(Vector Biolabs). The appropriate amount of the adenovirus was incubated with the 

recommended amount of the reagent in 2% FCS medium for 30 minutes at room 

temperature on a rotating wheel. The same procedure of the viral infection above was 

followed.

Immunofluorescence

Cells transfected with HA-tagged plasmids were fixed with 2% paraformaldehyde (Sigma-

Aldrich) 24 hrs post transfection. Fixed cells were stained with Alexa flour 488-labellebd 

monoclonal antibody against HA (Covance Inc.) as described 22.

Apoptosis quantification

Apoptosis in HeLa, HEK293T, CaKi2 and primary cells was quantified using 3,3′-

dihexylocarbocyanine iodide (DiOC6)/propidium iodide (PI) double staining and flow 

cytometry as described.37 Apoptosis in normal CV1 and transformed CV1 was determined 
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by phenotype quantification as described.7 For the FDA assay harvested cells were 

resuspended in 200μl of 2μg/ml FDA (Sigma-Aldrich) in PBS, incubated for 15 min at 37° 

C, and analysed on flow cytometer with excitation at 488nm using FL1 channel.

Cell lysate preparation

Cell were lysed in 100μl RIPA buffer (1% Nonidet P-40, 50 mM Tris pH 8 (Sigma-Aldrich), 

150 mM sodium chloride (Sigma-Aldrich), 0.1% SDS (Biorad), 0.5% deoxycholate (Sigma-

Aldrich)) containing 1x protease inhibitor (Thermo Scientific) and incubated on ice for 30 

minutes. Cell lysates were centrifuged at 13,300 rpm for 30 minutes at 4°C.

Western blot analysis

Using BCA protein assay (Sigma Aldrich), equal amounts of proteins were denatured with 

1X protein loading buffer (ThermoFisher Scientific) at 100°C for 10 minutes. Samples were 

electrophoresed in an SDS-PAGE and transferred onto a polyvinylidene difluoride 

membrane (Millipore) by semidry electroblotting (Bio-Rad) as described.22 Membranes 

were probed with primary antibodies for HRas (1:200; sc-520, Santa Cruz Biotechnology), 

c-Myc (1:200; sc-789, Santa Cruz Biotechnology), p53 (1:500; sc-126, Santa Cruz 

Biotechnology), COX2 (1:1000; clone CX229, Caymann Chemicals), E6 (sc-460, Santa 

Cruz Biotechnology), E1A (1:1000, clone M73, Millipore), ATF4 (1:250, sc-200, Santa 

Cruz Biotechnology), CHOP (1:1000, sc-7351, Santa Cruz Biotechnology), SCD1 (1:300, 

sc30435, goat polyclonal, Santa Cruz), β-actin (1:1000, A1978, Sigma-Aldrich), BiP (1:250, 

sc-1050, Santa Cruz Biotechnology), HA (1:1000, H6908 Sigma), SCD-5 (AP53809PU-N, 

2BScientific Ltd), ATF-3 (sc-188(C-19), Santa Cruz), and against GAPDH (1:1500, 

sc-32233, Santa Cruz). The antibody against Bap31 was kindly provided by Dr Gordon 

Shore. Antibody binding was detected by enhanced chemiluminescence (Thermo Sientific) 

and visualised on film.

Co-immunoprecipitation

After harvesting the cells and washing them once with PBS, they were lysed in 500μl Tris/

Triton buffer (20 mM Tris-HCl pH 7.4, 150mM NaCl, 0.5 mM EDTA, 0.5 mM EGTA, 1% 

triton X-100) together with protease inhibitors on ice for 30 mins. Cell lysates were then 

processed as described22 with the relevant antibody -HA (H3663, mouse monoclonal, 

Sigma) (1:100) or -SCD1 (sc30435, goat polyclonal, Santa Cruz) (1:100). Isotype-specific 

antibodies were used in the controls.

Fatty acid analysis

Total fatty acid composition of frozen CV1 cells was determined by gas chromatography 

following total lipid extraction and transesterification according to Lepage and Roy (1986) 

with modifications38. Briefly, 1 ml of methanol/toluene (4:1) was added to frozen CV1 

pellets followed by vortexing and sonification. Acetyl chloride (100 μl) was added to cell 

lipid extract suspension then incubated for 2 hours at 60°C. Extraction suspensions were 

cooled to room temperature and 2.5 ml of 6% K2CO3 solution was added to each sample. 

The organic phase was then transferred to GC vials, evaporated to dryness under a stream of 

nitrogen then dissolved in 300 μl of n-hexanes. Samples were then analysed by gas 
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chromatography (Agilent Technologies, UK; GC-7890A) equipped with a BPX70 capillary 

column (SGE Analytical Science, UK; 25 m × 0.22 mm (ID) and 25 μm film thickness). 

Fatty acid composition was expressed as a percentage of the total of all fatty acids (weight 

% or wt%).

Statistical analysis

Statistical analysis was performed using the unpaired student’s t-test. Data were obtained 

from n>3 experiments for every figure unless otherwise specified and were regarded as 

statistically significant if P < 0.05 (*), 0.01 (**), and 0.001 (***) based on student’s t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ORCTL3 induces apoptosis in transformed but not in normal CV-1 kidney cells.
(a-f) ORCTL3, ORCTL3ER, Luc, and Caspase 2 were transfected into the H-ras-, myc-, 

E6-, and P53-transformed CV-1 cells as well as into E1A- and empty vector-transfected 

CV-1 cells. Apoptosis was monitored after 24 hours. Data represent the means of 

independent experiments ± SD, (n=3). (g) ORCTL3 is more efficiently expressed in WT 

CV-1 compared to transformed CV-1 cells. WT and transformed CV-1 cells transfected with 

HA-tagged ORCTL3 were harvested 24 hours after transfection and stained with an 

Alexa-488 conjugated antibody against HA. Data represent the means of independent 

experiments ± SD, (n=3). (h) Cells transfected with a plasmid expressing GFP were 

harvested 24 hours after transfection and assayed by flow cytometry to quantify the GFP 

signals. Each bar represents the mean ± SD, (n=3).
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Figure 2. Analysis of cell proliferation and cell cycle in WT CV-1 and transformed CV-1 cells.
(a) Cell proliferation evaluated at different time points by the MTT assay. Results represent 

the means ± standard deviations (n=6). (b) The percentage of normal and transformed CV-1 

cells in subG1, G1, S and G2/M phase of the cell cycle was determined by analysis with the 

cell cycle platform of the Flowjo software. The means ± standard deviations are shown 

(n=3).

AbuAli et al. Page 17

Oncogene. Author manuscript; available in PMC 2015 September 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. ORCTL3 induces apoptosis via the ARCosome and elicits an incomplete ER stress.
(a) Expression constructs for Bap31-EYFP and ORCTL3 or β-gal were co-transfected into 

HeLa cells in a 1:3 ratio, cellular extracts were probed for cleavage of the Bap31-GFP 

fusion protein with an anti-GFP antibody at the indicated time points. (b) the percentage of 

cleaved product to the total signal of the Bap31-EYFP fusion constructs was quantified after 

scanning in the Western blots. Each bar represents the mean ± SD (n=2). (c,d) HeLa cells 

harbouring shRNA constructs against the indicated genes (inserts) were transfected with an 

expression construct for ORCTL3 and apoptosis was scored after 24 hours. Raw data were 

normalised to transfection efficiency estimated by GFP for each cell type. Data represents 

the means ± SD (n=6). (e) Protein levels of the ER stress factors Grp78/Bip chaperone 

protein, ATF4/CREB2, and CHOP were determined in Hela cells at different times post-

transfection of either ORTCL3 or β-galactosidase using 5 ng/μl tunicamycin for eight hours 

as a positive control and ß-actin and GAPDH as loading controls. (f) After transfection of an 
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expression plasmid for ORCTL3 the conversion of XBP-1 from its unspliced form 

(uXBP-1) into its spliced form (sXBP-1) was monitored by RT-PCR with β-actin as a 

control. (g) HeLa cells were stably transfected with an shRNA construct against ATF4 

(insert), followed by introducing an expression construct for ORCTL3, Bax or β-gal. After 

24 hours apoptosis was quantified evaluated by flow cytometry analysis. Data represent 

means ± SD (n=3).
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Figure 4. ORCTL3 targets stearoyl-CoA desaturase.
(a) H-ras and p53mut transformed CV-1 cells were transiently cotransfected with GFP and 

luciferase, ORCTL3, or caspase 2 in a 1:3 ratio and cultivated with either 100 μM BSA-

conjugated oleic acid or BSA for 24 hours. Luciferase-control background was subtracted. 

Data are means ± SD (n=4). (b) The SCD1 inhibitor CAY10566 or equal volumes of DMSO 

were applied to WT as well as H-ras and p53mut transformed CV-1 cells and apoptosis was 

quantified after 48 hours by fluorescein diacetate (FDA) staining. (c) ORCTL3-HA was 

transfected into 293T cells (right, input). Cell lysates were immunoprecipitated with an α-

HA antibody (left panels) that revealed multiple, probably glycosylated, forms of ORCTL3 

or with an antibody against the endogenous SCD1 (middle panels). The immunoprecipitates 

were analysed using appropriate antibodies. (d) The desaturation index (18:1n-9/18:0) upon 

transfection of the indicated expression constructs into normal (top panel) and H-ras 

transfected (bottom panel) CV1 cells. (e) 293T cells were transfected with ORCTL3, RIP1 
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and ANT1 with either β-Gal or a plasmid expressing SCD1 in a 3:1 ratio. 48 hours post-

transfection, apoptosis was assessed by staining the cells with DiOC6/PI and analysing by 

flow cytometry. Data represent the means ± SD (n=3). Raw data were normalised to 

transfection efficiency estimated by GFP. (f) Endogenous SCD1 mRNA level was semi-

quantitatively determined in dublicates by RT-PCR in WT-, H-ras-, and P53-mut-

transformed CV-1 cells.
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Figure 5. Analysis of ORCTL3’s apoptosis domain.
(a) Expression constructs for human and mouse ORCTL3 were transfected into HeLa (left) 

and 293T (right) cells and apoptosis quantified after 24 hours by DiOC6/PI and flow 

cytometry analysis. The means±SD are shown (n=3). (b,c) Schematic representation of the 

respective ORCTL3 deletion mutants (left). Upon their transfection the extent of apoptosis 

was quantified by DiOC6/PI and FACS analysis, compared to Luciferase as a background 

control, and normalised with GFP transfection efficiency (right). The histogram shows the 

means ± SD,(n=3). (d) Schematic representation of the swap mutant of the mouse TM 3 and 

4 domains into the human ORCTL3 (“DSTM3&4”) (top). The indicated constructs were 

transfected into HeLa cells and the extent of apoptosis was quantified after 24 hours by 

DiOC6/PI staining and FACS analysis, compared to Luciferase as a background control, and 

normalised with GFP transfection efficiency. The histograms show the means ± SD (n=3) 

(bottom).
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Figure 6. Effects of an ORCTL3-expressing adenovirus on transformed cells in vitro, in vivo and 
on primary human renal tumour cells ex vivo.
(a) WT CV-1 and oncogene-transfected CV-1 cells were infected with an ORCTL3ER-

expressing adenovirus at suitable multiplicities of infection (MOI) for equal expression level 

of the protein using GFP and Luciferase-expressing adenoviruses as infection and negative 

control, respectively. 24 hours post-infection, apoptosis was quantified by fluorescein 

diacetate and comparing the ratios of unstained cells to total cell number between different 

cell types. Toxicity induced by the viral infection itself (luciferase) was subtracted. Data are 

means ± SD (n=3). (b) Cell death induced by the ORCTL3-expressing adenovirus shown in 

(a) was normalized to the expression levels of ORCTL3 determined by immunostaining 

against HA as shown in Fig S8B. (c) Caki-2 renal carcinoma cells were engrafted bilaterally 

into the flanks of nu/nu BALB/c mice. ORCTL3 or luciferase expressing adenovirus were 

weekly (*) injected intratumouraly. The size of the tumours was determined by caliper 

measurements twice a week. Error bars indicate the standard error of the means. (d) 
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Morphology of representative normal and tumour cells explanted from three ccRCC 

patients. (e) The cells in (d) were infected with an MOI of 5000 of ORCTL3- and luciferase-

expressing adenovirus and apoptosis was quantified by DiOC6/PI and flow cytometry 

analysis. Data are the means of representative experiments, patient #1:n=3; patients #2 and 

#3:n=2. The background level generated by luciferase infection was subtracted from each 

reading.
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