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Abstract. In this paper, we present a multimodal deep model for detection of
abnormal activity, based on bidirectional Long Short-Term Memory neural net-
works (LSTM). The proposed model exploits three different input modalities:
RGB imagery, thermographic imagery and Channel State Information fromWi-Fi
signal reflectance to estimate human intrusion and suspicious activity. The fused
multimodal information is used as input in a Bidirectional LSTM, which has the
benefit of being able to capture temporal interdependencies in both past and future
time instances, a significant aspect in the discussed unusual activity detection sce-
nario. We also present a Bayesian optimization framework that fine-tunes the
Bidirectional LSTM parameters in an optimal manner. The proposed framework
is evaluated on real-world data from a critical water infrastructure protection and
monitoring scenario and the results indicate a superior performance compared to
other unimodal and multimodal approaches and classification models.

Keywords: Abnormal activity detection · Human intrusion · Multimodal data
fusion · Bidirectional LSTM · Critical infrastructure monitoring

1 Introduction

Abnormal activity detection is a research problem that attracts significant interest in the
image and video analysis research community (e.g. [9, 10]). Many different techniques
have been proposed in the field of computer vision and video analysis, includingmethods
based on trajectory analysis [12], pixel-level processing [11], combined trajectory and
low-level analysis [1], background modelling [14], object detection [13] and tracking
[15], activity recognition [16], and crowd behavior analysis [17]. Despite the efficacy of
such techniques, their dependence on strictly visual information makes them susceptible
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to occlusions, difficult fields of view and poor illumination circumstances. This limi-
tation has motivated the exploration of vision techniques beyond the visible spectrum.
Thermographic data can provide a useful alternative stream of information. Thermal
camera sensors are not sensitive to illumination changes [4]; on the other hand, thermal
information does not entail texture or color information. Since both RGB and thermal
sensing are actually based on visual cues, an interesting idea is to supplement them by
additional data that are not limited by the restrictions of visual information (such as
occlusions).

Recent studies have indicated that wireless signal reflection can be effectively lever-
aged to sense human presence. Different kinds of techniques have been described in the
literature, including device-free Software Defined Radio (SDR) methods, which process
the Received Signal Strength of a transmitted signal. However, the accuracy of such tech-
niques is often not sufficiently high [18]. In contrast, it has been shown that techniques
based on commercial off the shelf (COTS) equipment [5] can yield good performance
rates in human presence detection, by making use of Channel State Information (CSI)
[7].

Moving on from the input modalities to the machine learning models used for abnor-
mal activity detection, it is clear that deep learning techniques, and especially Convo-
lutional Neural Networks (CNN), have been shown to outperform traditional classifiers
[1, 6, 16], which is explained by their high representational capabilities. However, one
limitation of CNNs is that they cannot inherently capture temporal interdependencies
in a bidirectional manner, i.e. from both past and future time instances, which is an
important aspect in time series modeling problems.

In this work, we propose a model based on a Bayesian optimized multimodal bidi-
rectional LSTM neural network for abnormal activity detection. Our model harnesses
the power of LSTM networks to capture long and short term dependencies, while the
backward and forward pass of the bidirectional version of LSTM ensure the consid-
eration of both past and future time instances. Our proposal also includes a Bayesian
optimization framework that optimally tunes the parameters of the utilized bidirectional
LSTM. Finally, the combination of heterogeneous input modalities, such as RGB and
thermal imagery with Channel State Information (CSI) from wireless signal reflection
leads to a significantly improved detection performance compared to cases that are solely
based on a single information modality.

2 Fusion of RGB and Thermal Imagery with Channel State
Information

2.1 RGB Imagery

Contrary to traditional abnormal activity detection systems which are usually based on
RGB video sequence input, in the work at hand an additional modality is considered,
that of thermographic imagery. Visual streams fromRGB cameras are initially processed
using the object detection module YOLO (You only look once) [13]. YOLO locates
spatial bounding areas on the frame and allocates each area a probability for an object
class. A Convolutional Neural Network is used for object detection, comprising 24
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convolutional layers and 2 fully connected layers. Each image frame is described as a
class image CLRGB, having the same size as the initial RGB image, where the (x,y) pixel
of the RGB image I(x,y) is denoted as ok,RGB(x, y), in the class in the following way:

CLRGB(x, y) = ok,RGB(x, y) (1)

where k denotes the object with identity k in the object detection module employed.

2.2 Thermal Imagery

Data acquired by thermographic sensors undergo background subtraction [14]. A class
label image CLT is extracted, having the same size as the input thermal frame T, where
the (x,y) pixel of T is denoted in the class label image as:

CLT (x, y) = ob,T (x, y), b = {Background ,Foreground} (2)

In order to facilitate the subsequent processing steps, the RGB and thermal image
frames are resized so as to become of identical sizes, NxM . In other words, xRGB(n) ∈
RNxM stands for an image, whereby each pixel indicates the object ID that pixel belongs
to. In a similar manner, tensor xthermal(n) ∈ RNxM denotes the class label image of the
thermographic modality.

2.3 Channel State Information

Channel State Information (CSI) can be leveraged for human movement detection using
WiFi devices, based on propagation modeling of a signal from the transmitter to the
receiver, supporting many subcarriers due to the Orthogonal Frequency Division Multi-
plexing (OFDM) principle. CSI includes physical attributes of the wireless channel, such
as scattering, power decay per distance, fading, shadowing and effects of interference
[7], which are measured by the amplitude/phase over all K available subcarriers:

H (n) = [H (n, f1),H (n, f2), ...,H (n, fk)]T (3)

where H(n, fi) refers to the amplitude and the phase of the i-th subcarrier with central
frequency fi.. Therefore, we have that: H(n, fi) = |H(n, fi)|ej � H(n,fi).

Usually, H (n) input data contain noise and are distorted by outliers. For this reason,
CSI signals H(n) need to undergo a pre-processing stage. First, outliers are removed
using a Hampel identifier [8] or density-based clustering algorithms such as DBSCAN
[23]. In the sequel, noise is removed with wavelet denoising, followed by normalization,
correlation of subcarriers and, finally, eigenvector processing of the signals. After pre-
processing, CSI data are used as input to a linear SVM for human intrusion detection.
The SVM’s output classification IDs, say CCSI (n), will be used as input to our proposed
multimodal bidirectional LSTM framework. The CSI related input xCSI (n) is given by:

xCSI (n) = [H (n)CCSI (n)]T (4)

For spatial coherency with the visual input data, tensor xCSI (n) is expanded over the
RNXM grid, forming an additional input channel.
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2.4 Fusion of RGB, Thermal and CSI Modalities

Approaches based on solely one of the above types of information are unavoidably
plagued by the limitations of each information modality (e.g. occlusions, noise, etc.).
We hereby propose the fusion of the above described information channels to create a
multimodal input tensor x(n):

x(n) = [xRGB(n), xthermal(n), xCSI (n)]T (5)

where xRGB(n) is the data tensor pertaining to RGB visual signals, xthermal(n) the respec-
tive data tensor of the thermal component, and xCSI (n) the data tensor pertaining to the
WiFi reflection signal.

3 Bayesian Optimized Multimodal Bidirectional LSTM

3.1 Bidirectional LSTM

LSTMs is a type of Recurrent Neural Network (RNN) which was designed to address
the problem of exploding and vanishing gradient that can arise when training traditional
RNNs. LSTM networks are a good fit to classifying, processing and making predictions
based on time series data, since there can be lags of unknown duration between important
events in a time series [25–27]. In LSTMs, each node in the hidden layer is replaced
by a memory cell, instead of a single neuron [25]. The structure of a memory cell is
illustrated in Fig. 1.

The LSTM memory cell is composed of the following: the forget gate, the input
node, the input gate, and the output gate. The input gate controls the extent to which a
new value flows into the cell, the forget gate controls the extent to which a value remains
in the cell and the output gate controls the extent to which the value in the cell is used to
compute the output activation of the LSTM unit. The activation function of the LSTM
gates is often the logistic sigmoid function.

(a) (b)

Fig. 1. (a) The memory cell of a LSTM network. (b) Bidirectional LSTM unfolded in time

The goal of the forget gate is to decide what information should be discarded out of
the memory cell [24]. The output, denoted as f (n) ranges between 0 and 1, according
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to the sigmoid activation function. The forget gate learns whether a previous or future
vector state is necessary for the estimation of the current value state. The input node
performs the same operationwith that of a hidden neuron of a typical recurrent regression
model. We denote the output of this node as In(n). The goal of this node is to estimate
the way in which each latent state variable contributes to the final model.

As far as the input gate is concerned, its role is to regulate whether the respective
hidden state is sufficiently important. The output of this gate is denoted as Ig(n). It has
the sigmoid function, therefore its response ranges between 0 and 1. This gate addresses
problems related to the vanishing of the gradient slope of a tanH (·) operator. Finally,
the output gate regulates whether the response of the current memory cell is sufficiently
significant to contribute to the next cell. Therefore, this gate actually models the long
range dependency together with the forget gate. The output of this gate is denoted as
O(n).

One of the disadvantages of the memory cell of Fig. 1, is that it considers only past
state information. On the contrary, bi-directional forms of LSTMcan process data in both
directions, and include, therefore, apart from the forward pass an additional backward
operation. The structure of a bi-directional LSTM, unfolded in time is presented in
Fig. 1(b). Detection of abnormalities in video and CSI time series is an application
which can inherently benefit from this additional backward operation of the bidirectional
LSTM, which is the base model adopted in this work.

3.2 Bayesian Optimization

We hereby present a Bayesian optimization method for the selection of the bidirectional
LSTM model parameters. In lieu of employing manual tuning of model parameters,
we hereby present and use a probabilistic Bayesian approach through which model
parameters are optimally tuned.

As in all models, let us denote by πi the set of configurable parameters, e.g. in our
case the number of memory cells, the learning rates, etc. Supposing a set Q of differ-
ent configurations, i.e., D1:Q = {π1 . . . πQ}, we can then evaluate the error E(x, d , π)

yielded when (i) the model receives input data x, (ii) its output is compared against the
target outputs d and (iii) we consider a specific model configuration π . Let Emin be the
minimum Mean Square Error across all Q configurations. The following can then be an
improvement function:

I(x, d , π) = max{0,Emin − E(x, d , π)} (6)

In the sequel, the expectations of Eq. (6) can be computed in a probabilistic con-
text. The probability distribution of the error function for a given set of configurations,
P
(
E|D1:Q

)
, is written in a Bayesian context as:

P
(
E|D1:Q

) ∝ P
(
D1:Q|E)

P(E) (7)
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Usually P(E) follows a Gaussian distribution and P
(
D1:Q|E)

is then expressed as a
Gaussian process of mean μ(π) and standard deviation � [28]:

� =
⎡

⎢
⎣

k(π1, π1) . . . k(π1, πQ)
...

. . .
...

k(πQ, π1) . . . k(πQ, πQ)

⎤

⎥
⎦ (8)

where k(•) is a kernel function. The target of our optimization is to find out a new
configuration π∗ ≡ πQ+1, which will further reduce the MSE or equivalently increase
the improvement I(x, d , π∗). Then, for the new augmented set D1:Q+1, that includes
π∗ ≡ πQ+1, P(D1:Q+1|E) will again be a Gaussian process of standard deviation

[
� b
bT k(πQ+1, πQ+1)

]
(9)

Where b = [k(πQ+1, π1) . . . k(πQ+1, πQ). Then, according to [28], it can be proven
that the P(EQ+1|D1:Q, πQ+1) is also a Gaussian with mean value and standard deviation
related with previous variables. Therefore, the new configuration π∗ is estimated, which
is actually the integral of I(•) and P(EQ+1|D1:Q, πQ+1), that is the probability that I(•)

follows.

4 Experimental Evaluation

4.1 Experimental Setup

To scrutinize the effectiveness of the proposed model, we have used a dataset that has
been created in the context of the European Horizon 2020 STOP-IT Project (https://stop-
it-project.eu/). STOP-IT aims at tackling the protection of critical water infrastructure
using novel methods. The dataset includes RGB and thermal video sequences as well as
Channel State Information. The RGB data were captured using an OB-500Ae camera
with 1280 × 720 pixel resolution at 30 fps. The thermal data were obtained by means of
a Workswell InfraRed Camera 640 (WIC) with a 640 × 512 pixel resolution at 30 fps.
WiFi data were acquired using a transmitter-receiver couple that comprised aWiFi router
(TP-Link N300 TL-WR841N) and an Intel 5300 NIC receiver, with a 0.1 Hz capturing
frequency. Data annotation was performed on the basis of pre-determined scenarios by
end users that prescribed whether the captured activity over all data modalities should
be considered as irregular/abnormal.

The entirety of data across all modalities were normalized so as to be in the same
range (0–1). The computer used for all training and testing was an Intel® Core™ i7-
6700 CPU@ 4000 GHz CPU with 16GB RAM and an NVIDIA GeForce GTX 1070
with 8GBDDR5memory. CUDA 9.2 Toolkit was also used for deep learning classifiers.

4.2 Experimental Results

The first round of experiments focuses on the impact of using fused multimodal data as
input, instead of solely considering a single modality. We have initially experimented

https://stop-it-project.eu/
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with the following popular machine learning models: (i) a linear kernel SVM, (ii) a
non-linear Radial Basis Function SVM (RBF-SVM), two different architectures of a
traditional feedforward neural network: (iii) with 1 hidden layer of 10 neurons/layer and
(iv) 2 hidden layers of 10 neurons/layer respectively, (v) a CNN and (vi) a plain LSTM
(without bidirectionality or optimization). Fig. 2 depicts the accuracy rates attained by
the above classifiers in cases with (a) only RGB and thermal input, (b) CSI (WiFi) and
(c) multimodal input. From the results, it is evident that the proposed data fusion scheme
of significantly increases the achieved performance detection performance regardless of
classification scheme.

In the second round of experiments, we conduct experiments to validate the effec-
tiveness of the proposed multimodal Bayesian optimized bidirectional LSTM. Focusing
on the multimodal case, we compare the performance of the proposed model with the six
models mentioned above (SVM-linear, SVM-RBF, FNNs, CNN, LSTM). The results
of the experiments in terms of precision, recall, F1-score and accuracy are depicted in
Table 1. We observe that all deep learning models (CNN, LSTM) clearly outperform
shallow classifiers, which is explained by the greater representational and understanding
power of the deep models in complex scenarios such as the discussed abnormal activity
detection application. Moreover, the proposed approach based on optimized bidirec-
tional LSTM attains higher performance rates compared to the other examined deep
learning models, revealing the contribution of both the bidirectionality and the proposed
framework for Bayesian optimization of the network parameters.

Table 1. Performance metrics on multimodal experiments

Method Precision Recall Accuracy F1 score

SVM-Linear 68.51% 61.71% 77.36% 64.93%

SVM-RBF 66.99% 60.06% 76.11% 63.34%

FNN1 69.95% 63.30% 78.52% 66.46%

FNN2 70.13% 63.50% 78.66% 66.65%

CNN 80.62% 76.09% 86.56% 78.29%

LSTM 81.14% 76.12% 87.11% 78.55%

Proposed Optimized Bidirectional LSTM 90.01% 87.42% 88.70% 88.77%

Finally, we have experimented with providing as input to the classifiers a “window”
of past frames of different sizes, in other words feeding the model with “memory”. We
have explored three cases for window length: no window, brief window (50 frames) and
longer window (100 frames). The results for the multimodal case are depicted in Fig. 3.
We can see that the presence of a time window in the input increases the performance
in the examined cases of CNN, LSTM and the proposed optimized bidirectional LSTM,
but the improvement ratio decreases as the window length increases. Furthermore, the
improvement attained by the window is less significant in the proposed model compared
toCNNandplainLSTM,where there ismore room for improvement. In any case, though,
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the performance attained by the proposed model steadily outperforms the remaining
examined approaches by a considerable difference.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SVM-linear SVM-RBF NN1 NN2 CNN LSTM

Detec�on rates (F1-score)

RBG + Thermal CSI Mul�modal

Fig. 2. Attained F1-score of shallow and deep learning models for: (i) visual (RGB + thermal),
(ii) WiFi-CSI, and (iii) multimodal input.
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Fig. 3. AttainedF1-score for different inputwindow lengths (number of frames) in themultimodal
case for: (i) CNN, (ii) plain LSTM, and (iii) the proposed optimized bidirectional LSTM.

5 Conclusion

In this paper, we proposed a multimodal bidirectional Long Short-TermMemory neural
network (LSTM) model for detection of abnormal activity in critical infrastructures.
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Three input modalities are considered: RGB, thermal and Channel State Information,
the fusion of which is proved to provide significant added value in the unusual activ-
ity detection scenario. The multimodal input is fed into a bidirectional LSTM, which
allows for an effective capturing of both forward and backward temporal dependencies.
Moreover, a Bayesian optimization method is used to optimally select the parameters of
the employed model. The presented methods have been experimentally evaluated with a
real-world critical water infrastructure monitoring and protection dataset, and have been
shown to achieve very promising detection rates.

Funding. The research leading to these results has received funding from the EUH2020 research
and innovation programme under grant agreement No. 740610, STOP-IT project.
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1. Coşar, S., Donatiello, G., Bogorny, V., Garate, C., Alvares, L.O., Brémond, F.: Toward abnor-
mal trajectory and event detection in video surveillance. IEEE Trans. Circuits Syst. Video
Technol. (2017).

2. Kosmopoulos, D.I., Doulamis, N.D., Voulodimos, A.S.: Bayesian filter based behavior recog-
nition inworkflows allowing for user feedback. Comput. Vis. ImageUnderst. 116(3), 422–434
(2002)

3. Sze, V., Chen, Y.H., Emer, J., Suleiman, A., Zhang, Z.: Hardware for machine learning:
challenges and opportunities. In: IEEECustom Integrated Circuits Conference (CICC), pp. 1–
8 (2017)

4. Makantasis, K., Nikitakis, A., Doulamis, A., Doulamis, N., Papaefstathiou, Y.: Data-driven
background subtraction algorithm for in-camera acceleration in thermal imagery. IEEETrans.
Circuits Syst. Video Technol. (2017)

5. Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11n traces with
channel state information. ACM SIGCOMM Comput. Commun. Rev. 41(1), 53 (2011)

6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

7. Zhu, H., Xiao, F., Sun, L., Wang, R., Yang, P.: R-TTWD: robust device-free through-the-wall
detection of moving human with WiFi. IEEE J. Selected Areas Commun. 35(5) (2017).

8. Davies, L., Gather, U.: The identification ofmultiple outliers. J. Amer. Statist. Assoc. 88(423),
782–792 (1993)

9. Popoola, O., Wang, K.: Video-based abnormal human be-havior recognition -a review. IEEE
Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 865–878 (2012)

10. Li, T., Chang, H., Wang, M., Ni, B., Hong, R., Yan, S.: Crowded scene analysis: A survey.
IEEE Trans. Circuits Syst. Video Technol. 25(3), 367–386 (2015)

11. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1975–1981,
June 2010

12. Ouivirach,K.,Gharti, S.,Dailey,M.N.: Incremental behaviormodeling and suspicious activity
detection. Pattern Recogn. 46(3), 671–680 (2013). https://www.sciencedirect.com/science/art
icle/pii/S0031320312004426

13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time
object detection. In: 2016 IEEE CVPR, Las Vegas, NV, pp. 779-788 (2016)

14. Herrero, S., Bescs, J.: Background subtraction techniques: Systematic evaluation and com-
parative analysis. In: 11th International Conference on Advanced Concepts for Intelligent
Vision Systems, ACIVS 2009. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04697-1_4

https://www.sciencedirect.com/science/article/pii/S0031320312004426
https://doi.org/10.1007/978-3-642-04697-1_4


86 N. Bakalos et al.

15. Yeo, D.S.: Superpixel-based tracking-by-segmentation using markov chains. In: IEEE
Conference in Computer Vision and Pattern Recognition (CVPR) (2017).

16. Kosmopoulos, D., Voulodimos, A., Doulamis, A.: A system for multicamera task recognition
and summarization for structured environments. IEEE Trans. Industr. Inf. 9(1), 161–171
(2013)

17. Mousavi, H.M.: Analyzing tracklets for the detection of abnormal crowd behavior. In: IEEE
Winter Conference on In Applications of Computer Vision (WACV) (2015)

18. Wu, K., Xiao, J., Yi, Y., Gao, M., Ni, L.M.: FILA: fine-grained indoor localization. In: Proc.
IEEE INFOCOM, pp. 2210–2218, March 2012

19. Jiang, D., Zhuang, D., Huang, Y., Fu, J.: “Survey of multispectral image fusion techniques in
remote sensing applications”, Image Fusion and its applications, Y. Zheng, INTECH Open
Access Publisher 1, 1–22 (2011)

20. Pal, A.R., Singha, A.: A comparative analysis of visual and thermal face image fusion based
on different wavelet family. In: 2017 International Conference on Innovations in Electronics,
Signal Processing and Communication (IESC), Shillong, pp. 213–218 (2017)

21. Connor, J., Martin, D., Altas, L.: Recurrent neural networks and robust time series prediction.
IEEE Trans. Neural Networks 5, 240–254 (1994)

22. Doulamis, A.D., Doulamis, N.D., Kollias, S.D.: An adaptable neural-networkmodel for recur-
sive nonlinear traffic prediction and modeling of MPEG video sources. IEEE Trans. Neural
Networks 14(1), 150–166 (2003)

23. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters
in large spatial databases with noise. KDD 96(34), 226–231 (1996)

24. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with
LSTM. In: 1999 Ninth International Conference on Artificial Neural Networks ICANN 99.
(Conf. Publ. No. 470), vol. 2, pp. 850–855 (1999)

25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

26. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks.
In: ICML, pp. 1310–1318 (2013)

27. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
NIPS, pp. 3104–3112 (2014).

28. Bardenet, R., Balázs, K.: Surrogating the surrogate: accelerating Gaussian-process-based
global optimizationwith amixture cross-entropy algorithm. In: 27th International Conference
on Machine Learning (ICML 2010), Omnipress (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Fusing RGB and Thermal Imagery with Channel State Information for Abnormal Activity Detection Using Multimodal Bidirectional LSTM
	1 Introduction
	2 Fusion of RGB and Thermal Imagery with Channel State Information
	2.1 RGB Imagery
	2.2 Thermal Imagery
	2.3 Channel State Information
	2.4 Fusion of RGB, Thermal and CSI Modalities

	3 Bayesian Optimized Multimodal Bidirectional LSTM
	3.1 Bidirectional LSTM
	3.2 Bayesian Optimization

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	References 




