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Abstract: This work reports a study on structural, electrical and optical properties of some recently
synthesized pyrrolo[1,2-i][1,7] phenanthrolines derivatives in thin films. The thin films were deposited
onto glass substrates by spin coating technique, using chloroform as solvent. The obtained films
exhibited a polycrystalline structure with an n–type semiconductor behavior after heat treatment in
the temperature range 293–543 K, specific to each sample. The thermal activation energy lies between
0.68 and 0.78 eV, while the direct optical band gap values were found in the range 4.17–4.24 eV. The
electrical and optical properties of the investigated organic semiconductor films were discussed
in relation to microstructural properties, determined by the molecular structure. The investigated
organic compounds are promising for applications in organic optoelectronics and nanoelectronics.

Keywords: organic semiconductors; pyrrolo-phenathrolines; thin films; electrical properties; optical
properties

1. Introduction

In recent years, a special emphasis has been directed toward the development of
new organic semiconductor materials for a broad spectrum of applications. Electron-
ics based on organic semiconductors offer new intriguing opportunities, some of which
cannot be reached by inorganic electronics. Organic electronics enables the building of
inexpensive, high-performance and large-area devices using low-temperature techniques
compatible with flexible devices, thus enabling the exploitation in a broad range of new
applications [1–4]. Due to their small molecular weight (under 1000 g/mol) [5], mechan-
ical flexibility, reduced production costs, low processing temperature (typically below
100 ◦C) [6], solubility (in polar or nonpolar solvents, depending on molecular structure), as
well as abundance, they exhibit a high level of manufacturability (spin coating, reel-to-reel
fabrication, ink-jet printing, evaporation) and versatility, are compatible with flexible sub-
strates and easily integrate with diverse physicochemical and biological functions [7–9].
These materials show potential for multiple applications: organic light-emitting diodes for
display applications and lighting devices, electronic paper, supercapacitors, thin-film fuel
cells, organic photovoltaics, lasers, sensors and biosensors, as well as in nanoelectronics,
optoelectronics, transparent electronics and spintronics [10–13].

Thus, low-molecular-weight organic semiconductors, especially in the form of thin
films with controllable structural and physical characteristics, are often preferable to single-
crystalline ones in many (opto)electronic applications [14]. Furthermore, the mobility of
charge carriers in active low-molecular-weight organics, which substantially affects the
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performance of organic (opto)electronic devices, is much higher (roughly one order of
magnitude) than that of polymer semiconductors, because of a more effective control
of electron transfer properties, facilitated by chemical tunability, mainly in the case of
polycrystalline thin films [15,16].

Being suitable for molecular tailoring, a synthesis of over twenty million organic com-
pounds has been reported so far [17]. A series of notable physical characteristics related to
electroluminescence, high mobility of charge carriers (higher than 10 cm2 V−1 s−1) [18], energy
band gap (typically of 2.5–4 eV) in the IR–Vis domain, etc., combined with their chemical
adjustability, give these materials the ability to cover an extended range of technological ap-
plications. A number of devices have already been developed and commercialized: flexible
displays, smart cards, radio-frequency identification tags, solid state lighting, etc. [19,20].

Continuing our research focused on the synthesis and characterization of new fused
N-heterocyclic functional compounds [21–28], we present in this paper the investigation of
microstructural, electrical and optical properties of a series of pyrrolo[1,2-i][1,7] phenan-
throline derivatives LL(1–3), in the form of thin films.

2. Materials and Methods
2.1. Synthesis of Compounds

Indolizine derivatives with 1,7-phenanthroline skeleton LL(1–3) have been recently
synthesized [29] using, as a key step, a Huisgen [3+2] dipolar cycloaddition of the N-ylides
generated in situ, starting from the monoquaternary 1,7-phenanthrolin-7-ium salts [30] in
basic medium (triethylamine). The ylidic intermediates play 1,3-dipole roles when reacting
with dipolarophyles with activated double or triple bond. In reaction with dimethy-
lacetylene dicarboxylate (DMAD) as symmetric substituted dipolarophile, unisolable cy-
cloadducts with dihydropyrrolo[1,2-i][1,7] phenanthroline structure were first generated,
but under reaction conditions, they undergo a spontaneous oxidation to yield derivatives
LL(1–3) (Scheme 1).
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Scheme 1. Synthesis pathway of the investigated compounds (LL1, LL2 and LL3).

The structure of the compounds (together with the type of substituents) is presented
along with their melting points, in Scheme 1 and Table 1. The products were completely
characterized using spectral (IR (Infrared), 1H- and 13C-NMR (Nuclear Magnetic Reso-
nance), Mass Spectrometry) and analytical techniques [29–31]. Organic compounds under
study were synthesized in the form of polycrystalline powders and were found to exhibit
good chemical stability in ambient atmospheric environment.
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Table 1. Molecular structure and some characteristics of examined compounds.

Compound Molecular Formula Molecular Weight, M (g/mol) Color Melting Point (◦C)

LL1 C26H17ClN2O5 472.88 orange 270–271
LL2 C27H20N2O5 452.46 yellow 245–247
LL3 C26H17N3O7 483.43 orange 284–286

2.2. Thin Films Preparation and Measurement Setup

In order to study their structural, morphological, electrical and optical characteristics,
compounds LL(1–3) were deposited in thin films (surface-type cells) using the spin coating
technique [32–36] on top of glass substrates, at room temperature.

The corresponding pyrrolo[1,2-i][1,7] phenanthroline powder was dissolved in chlo-
roform, yielding the solution from which the thin films were grown. In order to obtain
films with a uniform thickness, we used solutions with concentrations ranging between
2 and 10 mg/mL, a substrate spinning speed of 1500 rpm, 5–8 coating and drying cycles
at a temperature equal to 50–60 ◦C and a heat treatment at about 10 ◦C below the melting
point (Table 1).

The thickness of the obtained films (10–13 µm) was determined using a MII-4 interfer-
ometric microscope (LOMO, St. Petersburg, Russia).

Microstructural characterization of the organic thin films was performed using X-ray
diffraction (XRD) technique (a Shimadzu LabX XRD 6000 diffractometer, with a CuKα

radiation source (wavelength λ = 1.54182 Ǻ)). The morphology of thin-film sample sur-
face was investigated using atomic force microscopy (AFM) (a NT-MDT Solver Pro m
type microscope).

To determine the d.c. electrical properties, glass substrates with parallel conduc-
tive silver electrodes previously deposited were used. The contact between the electrode
surface and the deposited organic film was achieved without forming a junction. Tem-
perature dependence of the electrical conductivity of thin wires was determined by the
two-probe method, using a device equipped with a temperature-adjustable electrical heater
on which the sample was placed, with two electrode contacts and a KEITHLEY Model
6517B electrometer.

To determine the optical properties of organic films deposited on glass, a STEAK-ETA-
OPTIK spectrometer operating in the UV–Vis–NIR field was used.

3. Results and Discussions

From the X-ray diffraction analyses, it can be inferred that the studied organic films
exhibit a polycrystalline structure that differs depending on the sample nature (the position
and nature of the R substituents within the organic molecules). Figure 1 shows the X-ray
diffractograms for the 2θ domain between 10 and 80 deg.

Bragg angles (2θ) were identified from the X-ray diffractograms for the most intense
peaks of the samples, which subsequently led to the calculation of the interplanar distances
(dhkl) and average crystallite sizes (D).

Thus, the interplanar distances (dhkl) were determined using the Bragg equation [37,38]:

2dhkl sin θ = nλ (1)

where θ is the Bragg diffraction angle, λ is the incident X-ray wavelength (λ = 1.54182 Ǻ), n
denotes the order of reflection (n = 1), and h, k, l represent the Miller indices.

The average crystallite sizes (D) were determined using the Debye–Scherrer equation [39–41]:

D =
0.9λ

β cos θ
(2)

where λ is the radiation wavelength as specified above, β is the full-width-at-half maximum
of the peak, and θ is the Bragg diffraction angle.
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The values for Bragg angles, interplanar distances and crystallite sizes for the studied
organic films are given in Table 2.
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Figure 1. XRD patterns for the organic films under study.

Table 2. Structural parameters obtained from X-ray analysis of the studied samples (LL1, LL2 and LL3).

LL1 LL2 LL3

I/I0
(%)

2θ
(deg.)

dhkl
(nm)

D
(nm)

I/I0
(%)

2θ
(deg.)

dhkl
(nm)

D
(nm)

I/I0
(%)

2θ
(deg.)

dhkl
(nm)

D
(nm)

33.23 10.34 0.803 59.5 100 10.37 0.801 27.77 51.4 11.41 0.728 23.16
7.15 10.83 0.767 75.76 21.57 12 0.692 41.71 100 13.76 0.604 21.42
9.61 11.24 0.739 41.68 62.04 12.9 0.644 27.83 21.46 15.53 0.535 18.6

24.07 12.01 0.692 36.27 51.9 13.9 0.598 23.88 9.5 16.29 0.511 25.39
49.69 13.01 0.639 49.12 18.97 15.7 0.53 41.87 5.67 16.67 0.499 29.94
30.07 14.05 0.592 39.81 67.67 16.74 0.497 23.96 18.59 18.36 0.453 23.34
100 16.89 0.493 49.34 27.2 21.15 0.394 28.13 12.44 22.22 0.375 27.27
36 18.34 0.454 20.49 28.42 21.88 0.381 20.12 20.71 22.69 0.368 18.39

27.38 21.81 0.382 42.24 63.34 23.1 0.361 22.28 24.4 24.06 0.347 14.88
15.15 22.63 0.369 42.3 31.02 24.78 0.337 13.7 69.99 27.23 0.307 16.41

37 23.16 0.36 28.23 22.18 26.32 0.318 25.82 20.77 29.44 0.284 32.99
21.84 24.89 0.335 42.48 69.58 27.28 0.307 9.59 22.82 31.16 0.269 10.37
23.23 26.64 0.314 60.9 17.67 46.16 0.184 33.4 12.3 43.3 0.196 14.39
58.23 27.34 0.306 21.34 20.27 48.78 0.175 35.04 12.3 43.32 0.196 14.87
34.76 35.92 0.234 54.51 14.81 56.53 0.152 16.82 15.37 47 0.181 36.19
15.31 39.31 0.215 31.46 17.42 48.66 0.175 21.68
18.38 41.16 0.205 68.17
17.69 43.54 0.195 17.51
19.61 46.64 0.182 39.28
21.38 50.38 0.17 26.96
26.15 53.31 0.161 27.3

I/I0—relative integrated intensity; θ—Bragg diffraction angle; dhkl—interplanar distance for adjacent lattice planes
with h, k, l Miller indices; D—average crystallite size.

The XRD analyses (Figure 1 and Table 2) also revealed that certain values of the
interplanar distances are common for the studied compounds. Additionally, other values
of the interplanar distances caused by the distinct nature of the substituents (R) can be
emphasized, which is also manifested in the values of the crystallite sizes. The average
crystallite size was found to decrease from 42 nm for compound LL1 (R = −Cl) to 26 nm
for compound LL2 (R = −Me) and to 22 nm for compound LL3 (R = −NO2).

Films with thickness in the range of 10–13 µm were obtained (Table 3), showing a
surface with good uniformity, without precipitates or holes. The films comprised granules
of different sizes and shapes, with their base on the substrate surface. Surface roughness
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varied insignificantly with film composition. The average roughness (Ra) of the obtained
films was around 17 nm, the root mean square roughness (Rrms) around 24 nm, and the
size of the polycrystals was in the range of 10–75 nm. Figure 2 shows the 3D AFM images
for the organic thin film LL1, performed at different scales.

Table 3. Results of electronic transport measurements.

Compound d (µm) σc (Ω−1·cm−1) ∆T (K) σT (Ω−1·cm−1) Tc (K) Ea (eV) Eg (eV)

LL1 10 1.92 × 10−4 293–533 7.36 × 10−3 340 0.74 1.48
LL2 13 3.85 × 10−3 293–513 6.17 × 10−3 325 0.77 1.54
LL3 10 3.95 × 10−4 293–543 9.40 × 10−3 310 0.76 1.52
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Film thickness, deposition conditions and molecular structures are the main factors
affecting the structure particularities of the samples. Microstructural properties play an
important role in the electronic transport mechanism in semiconducting organic com-
pounds [4,17]. As-synthesized organic films are characterized by a polycrystalline structure,
which plays a key role in electronic conduction mechanisms in actual organic thin films.
Besides, the possibility of lower values for electrical conductivity and higher values for
charge carrier mobilities due to the scattering mechanisms on the sample surface and
at the crystallite boundaries, is known to be very common in thin films samples with a
polycrystalline structure [42,43].

The electrical conductivity (σ) of the films was found to increase exponentially with
temperature in the studied temperature range (Table 3), according to the known law [44–47]:

σ = σ0 exp
(
− Ea

kBT

)
(3)

where Ea denotes the activation energy for d.c. conductivity, σ0 is a characteristic parameter,
which depends on the nature of the sample, and kB represents the Boltzmann’s constant.

In the measured temperature range, based on the band model representation, two
distinct conduction regimes can be detected: extrinsic and intrinsic. These two temperature
domains are delimited by the Tc, which is a characteristic temperature for each sample
(Table 3). According to the mentioned model, in the intrinsic conduction domain (higher
temperature range), thermal activation energy Ea (Ea = Eg/2) is half of band gap energy
value of the material [48], representing the energy difference between lower occupied
energy level with electrons from the conduction band (CB) and higher energy level occupied
by holes from valence band (VB).

Additionally, in temperature range of the extrinsic conduction regime (T < Tc), it
signifies the energy of donor levels relative to the CB bottom, or that of the acceptor levels
relative to the VB top, respectively [44–46].
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In Figure 3, the conductivity–temperature characteristics (lnσ = f(103/T)) for the
organic thin films in the measured temperature range, ∆T, for two heating/cooling complete
cycles are shown.
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For the first heating (Figure 3), in the temperature range of 20–60 ◦C, a deviation from
the law (3) of the electrical conductivity of the samples can be found, and this may be due to
the influence of the environmental humidity or other (chemical) factors [49–52]. Practically,
the characteristics do not change considerably due to repeated heating and cooling. It can
be said that the studied films present stable structure and reversible electrical conductivity.

The lnσ vs. 103/T characteristics (Figure 3a–c) show two regions with different slopes
corresponding to the mentioned different temperature ranges. In lower temperature range
(T < Tc), we found a smaller slope, compared to that for the higher temperature region
(T > Tc). This reveals that there are two thermal activation energies, which implies two
electrical conduction mechanisms operating in the respective temperature ranges. These
characteristics are typical for the wide band gap semiconductors.

The thermal activation energy (Ea) was determined using the slope of lnσ = f(103/T)
characteristics corresponding to the intrinsic conduction region (in the higher temperature
domain). The values of thermal activation energies thus determined are in the range of
0.68–0.78 eV (Table 3) and are specific for semiconductors.

From the analysis of the characteristics presented in Figure 3, it can be deduced that
the band model representation can be properly used to investigate the electron transfer
mechanisms in actual organic semiconductor thin films, in higher temperature interval
(T > Tc), which corresponds to intrinsic conduction regime.

The semiconductor behavior of the organic compounds under study is determined by
their microstructure and molecular configuration. We performed the Hall measurements
and determined that the organic compounds studied exhibit an n–type semiconductor
behavior. The electron systems within the samples are very sensitive to the modifications
brought by the transport processes that determine excitations and addition/removal of
charge carriers. These electronic configurations typically contain π electrons (because of
aromatic rings) and allow the formation of highly delocalized wave functions along the
molecular backbone, especially on the pyrrolo[1,2-i][1,7] phenanthroline fused skeleton. If
the number of π-electrons increases, this would lead to a decrease in thermal activation
energy, as well as an increase in electrical conductivity [53,54]. The presence of extended
conjugation systems in the studied organic thin films stimulates the electron transfer and
electrical conduction inside molecules. The value of thermal activation energy can be
manipulated through the position and nature of the substituents (R) in the molecules that
determine the degree of conjugation (Scheme 1). Compared to other organic semiconductors
with similar structure, actual compounds exhibit lower thermal activation energy, but
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higher electrical conductivity [44,45]. Moreover, the studied compounds show a good
stability in the considered temperature range (Table 3).

The actual organic semiconductors obtained in the form of thin films were also investi-
gated, regarding the optical properties. With the help of a STEAG ETA-Optik spectrometer,
two series of data were measured: transmittance (T) and reflectance (R), respectively, as
functions of wavelength (λ), in a spectral range between 300 and 1700 nm (Vis–NIR). For
this wavelength range, the films display transmittance values of over 90% (Figure 4a–c)
and reflectance values of less than 10%.
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Using Equation (4) [55]

α =
1
d

ln[
(

1 − R2
)

/T (4)

where d represents thin-film thickness, T is transmittance, and R is reflectance, the absorp-
tion coefficient (α) was determined.

Figure 5a–c presents the spectra of the absorption coefficient (α) (its dependence on
the photon energy (hν)) of the organic films under study. The energy of incident photon
was determined with the help of the relation (5):

E = hν = 1.2398/λ (5)

where λ is incident wavelength in nm, and E is expressed in eV.
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In the vicinity of fundamental absorption edge, the absorption coefficient (α) varies
with energy of the incident photon, according to [56,57]

αhν = A(hν − Ego)n (6)
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where n is 1/2 or 2 for optical direct or indirect allowed transitions, respectively, Ego is the
optical band gap, direct (Ego

d) or indirect (Ego
i), and A is a characteristic parameter, not

dependent on the photon energy.
The refractive index was determined using Equation (7) [58]:

nr =
(1 + R) +

√
4 · R − (1 − R)2 · k2

1 − R
(7)

where R denotes reflectance, k is the extinction coefficient (k = αλ/4π), α is the absorption
coefficient, and λ is the wavelength.

Figure 6a–c shows the spectra of the refractive index (nr) for the studied organic films.
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Equation (6) can be written as [55,59]

d[ln(αhν)]

d[hν]
=

n
hν − Ego

(8)

The type of electron transition can be determined according to the value of n, found
by plotting the dependence d[ln(αhν)]/d(hν) versus hν [59–62]. Thus, to determine the
optical band gap (Ego), we plotted experimental (αhν)2 = f (hν) dependence (Figure 7a–c).
The optical band gap was determined by extrapolation of the linear part of the plot to zero
absorption. This indicates that direct allowed transitions play a key role in determining
the nature of the fundamental absorption edge of actual films. Determined values for the
direct band gaps (Ego

d) were of 4.24 eV, 4,31 eV and 4.17 eV for the studied organic films,
LL1, LL2 and LL3, respectively.
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The magnitude of Ea (activation energy, Table 3) obtained from conductivity measure-
ments is small compared to the half of Ego (optical band gap energy). This fact is due to quite
a different nature of the carrier excitation in the involved processes (electric conduction
and optical absorption). The values of Ego

d correspond to direct (band-to-band) transi-
tions, whereas those of Ea are determined by the prevailing electron transfer mechanism in
present organic films.

The obtained values for thermal activation energy and optical band gap of present
organic films are comparable with those obtained in case of several recently reported series
of fused heterocyclic compounds (polycrystalline thin films) that contain 1,7-fenanthroline
core [30], indolizine skeleton [63] or pyridinium disubstituted ylides [14].

4. Conclusions

The microstructural, electrical and optical properties of some recently synthesized
organic compounds, with pyrrolo[1,2-i][1,7] phenanthroline structure in the form of thin
films, were studied. The films display a polycrystalline structure that differs depending
on the sample composition (the nature of the R substituents within the organic molecules).
The compounds exhibit a n–type semiconductor behavior. The values of thermal activation
energies are specific to semiconductors and are in the range of 0.68–0.78 eV. The band model
representation can be successfully used to investigate the electron transfer mechanisms
in actual organic semiconductor thin films in the higher temperature range (T > Tc, the
intrinsic domain). In the spectral range 300–1700 nm, the films have a transmittance of
over 90% and reflectance values of less than 10%. The optical band gap (direct) has values
in the range of 4.17–4.24 eV. The microstructural properties, determined by the molecular
structure that differs only by the nature of para-substituent (R) of the benzene ring, were
correlated with the electrical and optical properties of compounds. The investigated
organic compounds are promising for applications in nanoelectronics, and especially in
organic optoelectronics.
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54. Rusu, G.I.; Căplănuş, I.; Leontie, L.; Airinei, A.; Butuc, E.; Mardare, D.; Rusu, I.I. Studies on the electronic transport properties of

some aromatic polysulfones in thin films. Acta Mater. 2001, 49, 553–559. [CrossRef]
55. Sta, I.; Jlassi, M.; Hajji, M.; Boujmil, M.F.; Jerbi, R.; Kandyla, M.; Kompitsas, M.; Ezzaouia, H. Structural and optical properties of

TiO2 thin films prepared by spin coating. J. Sol-Gel Sci. Technol. 2014, 72, 421–427. [CrossRef]
56. Kaiser, C.; Sandberg, O.J.; Zarrabi, N.; Li, W.; Meredith, P.; Armin, A. A universal Urbach rule for disordered organic semiconduc-

tors. Nat. Commun. 2021, 12, 3988. [CrossRef]
57. Pancove, J. Optical Processes in Semiconductors; Prentice-Hal: Englewood Cliffs, NJ, USA, 1979.
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