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Abstract: Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants regularly
detected in the environment. This indicates that the existing wastewater treatment techniques are
not successfully removing them beforehand. This study investigated the potential of molecularly
imprinted polymers (MIPs) to serve as sorbents for removal of SSRIs in water treatment. Sertraline
was chosen as the template for imprinting. We optimized the composition of MIPs in order to
obtain materials with highest capacity, affinity, and selectivity for sertraline. We report the maximum
capacity of MIP for sertraline in water at 72.6 mg g−1, and the maximum imprinting factor at 3.7.
The MIPs were cross-reactive towards other SSRIs and the metabolite norsertraline. They showed a
stable performance in wastewater-relevant pH range between 6 and 8, and were reusable after a short
washing cycle. Despite having a smaller surface area between 27.4 and 193.8 m2·g−1, as compared to
that of the activated carbon at 1400 m2·g−1, their sorption capabilities in wastewaters were generally
superior. The MIPs with higher surface area and pore volume that formed more non-specific
interactions with the targets considerably contributed to the overall removal efficiency, which made
them better suited for use in wastewater treatment.

Keywords: molecular imprinting; polymer; wastewater treatment; sertraline; cross-reactivity; SSRI;
template; sorbent

1. Introduction

The fast population growth, advances in industry, and increased agricultural activ-
ity have greatly influenced the environment. In order to continue with the current pace,
we need solutions in environmental management, especially wastewater (WW) reuse.
The development in the area of sample preparation and instrumentation has put the re-
moval of trace-level emerging contaminants in the forefront of environmental research [1,2].
Among them, pharmaceuticals are a very problematic group, since they are particularly
designed to have a pharmacological effect on humans or animals, thus potentially yielding
adverse effects in living organisms [3] after they have entered the aquatic environment.

The selective serotonin reuptake inhibitors (SSRIs) are members of the most prescribed
class of antidepressants in the USA and Europe [4–6]. They have been repeatedly detected
in WW, surface waters, sediments, and aquatic organisms [7–12], and are thus part of
different monitoring programs [13]. In aquatic organisms, SSRIs cause changes in biochem-
ical processes, feeding behavior, survivorship behavior, growth, and potential changes in
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their genetic material [7,14–17]. Hence, it is crucial to improve their removal from WW
before they are introduced into the environment. Among the existing WW treatment
techniques, advanced oxidation processes and biological treatment are most successful in
removing SSRIs from WW [18,19]. While during the former, the leading process of removal
is degradation, sorption to activated sludge seems to be responsible for the removal of
the majority of SSRIs during biological treatment [19]. Hence, other adsorption-based
treatment techniques have been considered. Among them, activated carbon (AC) is by far
the most researched material for SSRI removal [20,21]. AC as a treatment technique is tech-
nologically simple, has relatively fast kinetics, and removes a high variety of contaminants.
Its main disadvantages are a high initial investment, the non-selectivity of the process,
and the need for frequent regeneration due to fouling, which is expensive, time-consuming,
and results in the loss of material in each regeneration cycle [22,23]. Greener alternatives,
such as using products of pyrolysis of primary and secondary paper mill sludge, spent cof-
fee grounds, and pine bark have been reported [24,25]. However, there is a lack of literature
investigating modified synthetic composite materials, such as carbon-based nanomaterials,
different types of membranes, and other forms of modified polymers, which, however,
present promising alternatives to achieve superior SSRI removal from WWs [19,26–29].
On the basis of this knowledge gap, we investigated molecularly imprinted polymers
(MIPs) as an alternative sorption material to AC [23,30,31].

MIPs are polymers that have been imprinted by a chosen template during the polymer-
ization step in order to create selective recognition sites and are therefore often referred to
as artificial antibodies or synthetic receptors [32]. After the template is removed from the
MIP, the same or similar molecule can be rebound. They have already been commercially
used for solid-phase extraction (SPE) [33,34] and researched for several other applications,
such as catalysis, chromatography, and drug delivery [35,36]. In the last few years, the num-
ber of studies considering MIPs for water treatment has increased. Thus far, they have
been utilized to remove non-steroidal anti-inflammatory drugs, antibiotics, antimicrobials,
endocrine-disrupting compounds, herbicides, phenols, and beta-blockers from contaminated
WW [30,35,37–41]. The advantages of using MIPs for water treatment are their high selec-
tivity and affinity for their targets. Hence, we expect to be able to regenerate the material
after longer intervals compared to AC, since slower fouling rates are expected. Literature
reports MIPs as mechanically and chemically stable, and thus they should withstand several
regeneration cycles unchanged, making the treatment more cost-effective [35,38]. The main
disadvantage of MIPs is, however, the initial investment into the production of the polymers.
Among multiple polymerization procedures available today, we chose bulk polymerization
as one of the simplest and cheapest one for MIP production [2].

The aim of this work was to develop a MIP that could be used for removal of not
only our targeted template, but for the whole class of SSRIs. We evaluated the affinity,
capacity, and selectivity of the synthetized MIPs for sertraline (SER) and chose the best
performing materials. Further characterization included cross-reactivity towards other
antidepressants fluoxetine (FLU), paroxetine (PXT), escitalopram (ESC), bupropion (BUP),
two SER metabolites—norsertraline (NS) and sertraline ketone (SEK) [9,10,42], and struc-
turally related compound bupivacaine (BUC) (Figure 1). Potential parameters influencing
the removal were considered and the performance of the MIPs in WW was tested in order
to evaluate their applicability for WW treatment. The composition of the polymers was
confirmed using Fourier transform infrared spectroscopy (FTIR) and elemental analysis.
Surface properties and pore volume were calculated on the basis of the obtained Brunauer–
Emmett–Teller (BET) isotherms, and scanning electron microscopy images of materials
were taken for morphological characterization.



Polymers 2020, 13, 120 3 of 19

Polymers 2020, 12, x  3 of 20 

 

 
Figure 1. Chemical structures of the tested compounds. 

2. Materials and Methods 
The list of chemicals, materials, and the description of standard solution preparation 

and pre-preparation of the polymerization ingredients are reported in the Supplementary 
Material (SM) Section 1. 

2.1. The Synthesis of MIP  
The polymers were prepared via bulk radical polymerization with the ingredients in 

ratios specified in Table 1. 

Table 1. Polymer compositions (molar ratio) and ingredients used for the synthesis of molecularly imprinted polymers 
(MIPs). 

Material Template MAA mMA HEMA EGDMA Initiator (V-65) Porogen 
MIP1 SER×HCl (1) 4 / / 20 1 w

t %
 based on total m

onom
ers 

CHCl3 
MIP2 SER×HCl (1) 4 8 / 12 CHCl3 
MIP3 SER×HCl (1) 4 / 8 12 CHCl3 
MIP4 SER (1) 4 / / 20 MeOH 
MIP5 SER (1) 4 / / 20 CHCl3 
MIP6 SER (1) 4 / / 20 ACN 
MIP7 SER (1) 4 / / 20 toluen 
MIP8 SER (1) 4 8 / 12 CHCl3 
MIP9 SER (1) 4 8 / 12 ACN 

MIP10 SER (1) 4 8 / 12 toluen 
MIP11 SER (1) 4 / 8 12 CHCl3 
MIP12 SER (1) 4 / 8 12 ACN 
MIP13 SER (1) 4 / 8 12 toluen 

The mini-MIP library was synthesized by varying functional monomer, porogen, and 
the form of the template, as illustrated in the Table 1. The molar ratio between the tem-
plate, functional monomer, and cross-linker was 1/4/20. In the case of mini-MIPs, 34.1 mg 
(0.1 mmol) of sertraline in HCl salt form (SER HCl) or 30.8 mg (0.1 mmol) free base ser-
traline (SER), 34 µL (0.4 mmol) methacrylic acid (MAA), and 380 µL (2 mmol) ethylene 
glycol dimethacrylate (EGDMA) was used. A total of 560 µL of porogen (either CHCl3, 
methanol—MeOH, or acetonitrile—ACN) was added, with the exception of anhydrous 
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2. Materials and Methods

The list of chemicals, materials, and the description of standard solution preparation
and pre-preparation of the polymerization ingredients are reported in the Supplementary
Material (SM) Section 1.

2.1. The Synthesis of MIP

The polymers were prepared via bulk radical polymerization with the ingredients in
ratios specified in Table 1.

Table 1. Polymer compositions (molar ratio) and ingredients used for the synthesis of molecularly imprinted polymers (MIPs).

Material Template MAA mMA HEMA EGDMA Initiator
(V-65) Porogen

MIP1 SER×HCl (1) 4 / / 20 1
w

t%
based

on
totalm

onom
ers

CHCl3
MIP2 SER×HCl (1) 4 8 / 12 CHCl3
MIP3 SER×HCl (1) 4 / 8 12 CHCl3
MIP4 SER (1) 4 / / 20 MeOH
MIP5 SER (1) 4 / / 20 CHCl3
MIP6 SER (1) 4 / / 20 ACN
MIP7 SER (1) 4 / / 20 toluen
MIP8 SER (1) 4 8 / 12 CHCl3
MIP9 SER (1) 4 8 / 12 ACN

MIP10 SER (1) 4 8 / 12 toluen
MIP11 SER (1) 4 / 8 12 CHCl3
MIP12 SER (1) 4 / 8 12 ACN
MIP13 SER (1) 4 / 8 12 toluen

The mini-MIP library was synthesized by varying functional monomer, porogen, and the
form of the template, as illustrated in the Table 1. The molar ratio between the template, func-
tional monomer, and cross-linker was 1/4/20. In the case of mini-MIPs, 34.1 mg (0.1 mmol)
of sertraline in HCl salt form (SER HCl) or 30.8 mg (0.1 mmol) free base sertraline (SER),
34 µL (0.4 mmol) methacrylic acid (MAA), and 380 µL (2 mmol) ethylene glycol dimethacry-
late (EGDMA) was used. A total of 560 µL of porogen (either CHCl3, methanol—MeOH,
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or acetonitrile—ACN) was added, with the exception of anhydrous toluene, where 580 µL
was needed due to solubility issues. For polymers prepared using two functional monomers,
we changed the ratio to 1/4/8/12 for the template (30.8 mg SER, 0.1 mmol), functional
monomer (34 µL MAA, 0.4 mmol), co-monomer (860 µL of methyl methacrylate (mMA)
or 970 µL of 2-hydroxyethyl methacrylate (HEMA), 0.8 mmol), and 227 µL of the EGDMA
cross-linker (1.2 mmol). We used 1 wt % of the initiator 2,2’-azobis(2,4-dimethyl valeronitrile)
(V-65) for synthesis of polymers on the basis of total monomers.

The synthetic procedure was identical for all MIPs. The monomers and the template
were first mixed and dissolved in the porogen solvent. Then cross-linker EGDMA was
added and the solution was mixed again. Finally, the initiator V-65 was added. The solution
was mixed, purged with N2 for 10 min, and polymerized at 50 ◦C for 24 h in an oven.
After 24 h, the polymerization was carried out for another 2 hours at 70 ◦C. The correspond-
ing non-imprinted polymers (NIPs) were prepared following the identical procedures in
the absence of the template.

Best-performing MIPs and their corresponding NIPs were later prepared in a 10 times
larger quantity, maintaining the same polymer compositions and ingredients. The polymers
were then crushed and sieved into 25–50 µm particle size. Both MIPs and NIPs underwent
Soxhlet extraction in 10% of acetic acid in methanol for 96 h until no SER was detected by a
high-performance liquid chromatograph coupled with a diode array detector (HPLC-DAD).
The polymers were further washed with water and MeOH to remove the acetic acid, before
drying them in the oven at 50 ◦C for 24 h. The dried polymers were used for further
physical and analytical characterization.

2.2. Selection of the Material: Batch Rebinding

Batch rebinding tests were performed in both water and acetonitrile (ACN). A total of
5 mg of each MIP and the corresponding NIP was weighed and placed in 1.5 mL Eppendorf
tubes containing 500 µL of the SER solution with increasing concentrations: 0.1, 0.4, 1.0,
2.0, 3.0, and 4.0 mM. We used SER × HCl for rebinding in water, and SER in the free base
form for the rebinding in ACN. All the experiments were performed after the equilibrium
had been reached, i.e., after 20 h (see Section 2.5). The suspension was centrifuged at
10,000 rpm for 15 min. The supernatant was diluted 10 times with the mixture of 50% ACN
and 50% 20 mM phosphate buffer at pH 3.70 (mobile phase) and subsequently quantified
by HPLC-DAD analysis. The levels of bound compounds to the MIP/NIP for each solvent
mixture were estimated from plotted calibration curves. We plotted the data in the form of
rebinding isotherms using the bi-Langmuir isotherm as the best fit (R2 > 0.90). The capacity,
affinity, and selectivity were calculated for each polymer. Capacity was reported as the
mass of bound compound per gram of polymer. Affinity was determined as the distribution
ratio (D), the ratio between the amount of SER bound to the polymer (B), and the remaining
SER in the supernatant (F). The selectivity was calculated as the imprinting factor (IF),
comparing the D of MIP to the D of its corresponding NIP. All the parameters were
calculated at equilibrium at the highest added concentration of 4.0 mM. On the basis of the
results in both ACN and water, we chose three best performing MIPs for further testing.

2.3. Reusability Experiments

Reusability of the chosen MIPs and NIPs was tested by repeating 4 times the batch
rebinding of 0.1 mM SER in ultrapure water (UW) on the same material, while following
any changes in the performance. Between the cycles, the polymers were washed with 1 mL
1% trifluoroacetic acid (TFA) in MeOH (30 min) and 1 mL of MeOH (15 min) in order to
remove SER from polymers. Solvent-free polymers were obtained by drying in the oven
for 1 h at 60 ◦C. The experiment was performed in 5 parallels.

2.4. Cross-Reactivity Experiments

The cross-reactivity of the 3 materials selected as described in Section 2.2 was evaluated
by binding experiments for antidepressants and their structurally related compounds: NS,
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SEK, FLU, ESC, PXT, BUP, and BUC. The cross-reactivity was assessed through selectivity
factor (α), the capacity, and the difference in binding between MIP and NIP for each compound.
A was calculated as the ratio between the D of SER and D of the tested compound.

The cross-reactivity experiments were performed separately for each compound in UW,
applying the same conditions as for SER rebinding tests (see Section 2.2.). The experiments
were performed at the concentration of 1 mM, which was selected on the basis of the maximal
solubility of NS in UW. SEK binding was evaluated in ACN due to solubility limitation.
The concentrations in the supernatant were again determined with the HPLC-DAD.

2.5. Time to Reach Equilibrium

The time to reach the equilibrium state was estimated in batch experiments in UW.
A total of 5 mg of each chosen polymer and AC were shaken for 15 min, 30 min, 1 h, 4 h, 8 h
and 20 h. The 0.5 mL solutions contained a mixture of SER and the compounds included in
Section 2.4 (test mixture), each added at the final concentration of 0.1 mM. The removal
percentage was determined by HPLC-DAD.

2.6. Binding in WW Matrix: Influence of pH, Salts, and Chemical Oxygen Demand

The behavior of the chosen polymers and AC was observed in WW matrix spiked with
the test mixture, again at the final concentration of 0.1 mM. The binding experiments were
performed in 3 different matrices: UW, artificial wastewater (WW1) [43], and actual wastew-
ater (WW2) obtained from a Slovenian wastewater treatment plant (WWTP). The WW was
filtered (see SM, Section 1.1) before spiking in order to remove particulates and microor-
ganisms that could have influenced the removal. The pH of the WWs was measured using
the pH electrode by Wissenschaftlich-Technische Werkstätten GmbH (Weilheim, Germany)
and the chemical oxygen demand (COD) was determined on a spectrophotometer using
Hach reagents for water analysis, LCK 314 and 514.

We researched the influence of 2 parameters most often reported to influence the
binding: pH and the presence of salt ions [44–46]. Since the reported pH of WW is between
6 and 8, the performance of the polymers was tested by batch tests in 50 mM phosphate
buffer solutions with pH adjusted to 6.0, 7.0, or 8.0 with either a 2 mM HCl or 1 mM NaOH
solution. The influence of salt ions was observed by comparing the binding in UW and in
NaCl solutions at the concentrations of 0.1 M and 1.0 M.

2.7. Upscale Experiment

In order to observe the performance of the materials on a larger scale and at lower
concentration of substrate, we packed the material into SPE cartridges by separately
weighing 50 mg of MIP, NIP, or AC. MIPs and NIPs were sedimented beforehand in a
mixture of MeOH and water (v/v = 80/20) four-times for 1.5 h to avoid the loss of material
through the frit. For the same reason, AC mesh size 100–400 was used.

The materials were first washed with 5 mL of MeOH and 5 mL of UW water. Then,
the cartridges were stacked on top of Oasis HLB cartridges in order to bind the remainder
of the unbound compounds. The method used for Oasis HLB conditioning, equilibration,
loading, and elution was adapted from our article on photodegradation of SER [9].

A total of 50 mL of WW2 spiked with the mixture of compounds at concentrations of
0.4 µM was loaded at the flow rate of 2 mL min−1 on to each material. The solution then
flowed directly onto the Oasis HLB cartridge. After loading, the Oasis HLB cartridges were
dried for 30 min and then eluted with 3 × 0.6 mL of triethylamine in MeOH. The elution
solvent was evaporated, and the extracts were redissolved in 0.5 mL the HPLC mobile
phase and filtered through 0.45 µm syringe filters before the HPLC measurements.

2.8. Leaching Evaluation

To examine the applicability of developed MIPs as SPE extraction materials, we checked
the potential leaching of the template from the MIP. As reported under the upscale experi-
ment (Section 2.7), 50 mg of each MIP was packed in the SPE column, conditioned, loaded,
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and eluted with 5 mL 1% TFA in MeOH. The extract was dried under nitrogen at 40 ◦C
and the amount of leaching was quantified with a Nexera X2 ultra high performance liquid
chromatograph (UHPLC, Schimadzu, Kyoto, Japan) coupled to the hybrid quadrupole-
linear ion trap mass spectrometry analyzer QTRAP 4500 (Sciex, Framingham, MA, USA)
following the method developed by Gornik et al., (2020a) [9].

2.9. Chemical and Morphological Characterization

Fourier transform infrared (FTIR) spectroscopy was performed on IRAffinity-1S
(Schimadzu, Kyoto, Japan).

Elemental analysis was performed on a 2400, Series II, CHNS/O Analyzer (Perkin-Elmer,
Waltham, MA, USA).

BET surface area analysis was performed with Porozimeter TriStar II (Micromeritics,
Norcross, GA, USA).

The morphological characteristics were observed using a scanning electron microscope
(SEM). The images were recorded with JSM-7600F (JEOL Ltd., Tokyo, Japan).

2.10. HPLC Measurements

For the determination of SER, NS, SEK, FLU, ESC, PXT, BUP, and BUC in the solutions,
we utilized an HPLC-DAD (1260 Infinity Agilent Technologies, Santa Clara, CA, USA).
For separation, we applied the column Zorbax Eclipse C-18 column (150 mm × 4.6 mm,
5 µm) (Agilent Technologies, Santa Clara, CA, USA). The injection volume was 10 µL or
20 µL, depending on the tested concentration range. The mobile phases were (A) ACN
and (B) 20 mM phosphate buffer at pH 3.70. The gradient started with 70% B for 2 min,
decreased to 61% in 13 min, then increased back to 70% B in 0.1 min and was kept as so
for 1.5 min. The flow rate was 1 mL·min−1. The retention times of the compounds were
3.27 min for BUP, 4.04 min for BUC, 6.20 min for ESC, 8.52 min for PXT, 11.95 min for NS,
12.65 min for FLU, and 13.04 min for SER. SEK was determined with a separate method at
flow 2 mL·min−1, isocratic elution at 70% A and 30% B. Other parameters coincided with
the previous method. SEK eluted at 3.80 min.

3. Results and Discussion

All experiments with the exception of the reusability experiments (n = 5) were per-
formed in duplicate. The inter-day repeatability reported as the relative standard deviation
(RSD) for experiments performed in UW was <5% and in WW < 6%.

3.1. MIP Synthesis, Selection, and Reusability

We optimized the polymer composition to tune recognition properties of the material.
The initiator (V-65) and cross-linker (EGDMA) were kept constant for all polymerization
experiments, while different porogens and co-monomers were added in order to obtain
water compatibility, increase capacity, and improve selectivity. The behavior of MIPs
compared to their corresponding NIPs was evaluated in batch rebinding experiments
performed in water and ACN at different concentrations to generate binding isotherms
and calculate the capacity, affinity, and IF. The data we obtained during ACN rebinding
experiments enabled us to quantify the binding on the basis only of specific interactions,
such as hydrogen bonding, with the minimal non-specific hydrophobic effect [47], while our
prime goal was recognition of the investigated compounds in water.

EGDMA in combination with MAA in different porogen solvents is one of the most
commonly reported compositions of MIPs to date [30,48,49], including those in MIPs
imprinted with SER [50,51]. Unlike in the literature [50,51], we observed no imprinting in
MIPs where SER was used in its salt form (MIPs 1–3 in Table 1). Adding the extracted free
base form of SER, on the other hand, resulted in successful imprinting. As shown in Figures
2 and 3, we observed higher capacities and affinities in water compared to those in ACN
for most tested MIPs, except for MIP11 and MIP12. However, compared to ACN, the Ifs in
water were lower in all the cases, indicating loss of selectivity in water. This can be justified
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by the hydrophobic effect established in polar solvents such as water, and disrupting
the formation of hydrogen bonds. In order to improve the recognition abilities in water,
we tested the influence of adding co-monomers mMA or HEMA (see examples MIP8–
MIP13 in Table 1). Here, the ratios between monomers and cross-linker we applied were
based on the results from Dirion et al., (2003). HEMA was chosen on the basis of the
reports on improved Ifs in water [47,48], while the mMA was selected as its more non-polar
alternative. MIPs with the mMA added into the polymerization mixture (MIP8, MIP9,
and MIP10) had a similar IF in ACN, as compared to MIPs 5–7, which were prepared by
MAA only (Table 1). However, the Ifs in water were slightly higher for all three materials
(Figure 3). The capacities and affinities of MIP8, MIP9, and MIP10 in ACN were higher,
yet lower or comparable in water. Compared to MIPs 5–7, adding HEMA as a co-monomer
(MIP11, MIP12, and MIP13) did not improve the capacity or affinity of the MIPs in ACN.
Additionally, both parameters were noticeably lower in UW. The considerable improvement
was, however, observed in IF; the highest was that of MIP13. This high IF is in agreement
with the results of Dirion et al., (2013).
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As seen in Table 1 and Figure 3, the porogen severely influenced the selectivity,
capacity, and affinity of the MIPs. This happens as it affects the stability of the “pre-
polymerization complex” (i.e., interactions between functional monomers and the template
in the chosen porogen), which plays a crucial role in the imprinting effect. If the porogen
disrupts hydrogen bonds between the template and monomers, no specific binding is
observed, as can be seen in the case of MeOH (MIP4). On the contrary, using a more non-
polar aprotic porogen, the pre-polymerization complex is stabilized, resulting in higher
IF, which we showed in MIPs 7, 10, and 13 synthetized in toluene, as compared to those
synthetized in ACN (MIPs 6, 9, 12) or CHCl3 (MIPs 5, 8, 11) (Table 1, Figure 3a,d) [47].

Determining rebinding characteristics allowed us to select three most promising
materials for further testing. In terms of capacity and affinity in water, the material MIP5
was chosen. MIP13 was chosen for its highest IF. Lastly, MIP9 was chosen because it
combines satisfactory selectivity, capacity, and affinity in both water and ACN. The chosen
polymers were reusable, with the maximum observed decrease in the capacity for SER in
four consecutive rebinding experiments being only 2%.

3.2. Cross-Reactivity

We determined the cross-reactivity of three selected MIPs for the following antide-
pressants and structurally related compounds (Figure 1): BUC, BUP, ESC, PXT, NS, SEK,
and FLU. While SEK, the metabolite of SER, was also initially included, it however showed
very poor binding in ACN and no observed selectivity for any of the three MIPs. Its binding
will therefore be based on non-specific interactions only. As for its poor solubility in water,
it was thus excluded from further testing.

The results of cross-reactivity tests are selectivity factors (α) reported in Table 2.
In general, α for each compound were comparable between the three selected MIPs,
with the exception of BUP in MIP13. Here, the factor α 3.29, as compared to 9.60 and
9.76 for MIP5 and MIP9, respectively, indicated more cross-reactivity of MIP13 towards
BUP. As reported in Table 2, for NS the selectivity factor was below 1, indicating better
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binding as compared to SER, which is reasoned by the absence of the methyl group in
the chemical structure (Figure 1). Among the SSRI compounds, FLU and PXT had the
factors slightly above 1, meaning comparable binding, while the factor for ESC varied
between 2.7 and 2.9. The fact that ESC was the only SSRI with a tertiary amine in the
structure, together with the favorable α for NS, suggests the impact of steric hindrance
of the hydrogen bond-forming amino group on cross-reactivity. The size of the binding
site seemed to be of lesser importance, considering that PXT and FLU are larger molecules
as compared to SER and NS. BUC and BUP showed higher α in all three MIPs, which is
justified by them being less structurally related to the SSRI group. Additionally, their amino
groups are also sterically more hindered (tert-butyl group and tertiary amine).

Table 2. The capacity and selectivity factor of MIP5, MIP9, and MIP13 and the difference in binding of each compound
between MIP and the corresponding NIP at 1 mM concentration of each tested analyte.

MIP5 MIP9 MIP13

Compound Capacity
(mg·g−1)

Selectivity
Factor (α)

% (MIP-
NIP)

Capacity
(mg·g−1)

Selectivity
Factor (α)

% (MIP-
NIP)

Capacity
(mg·g−1)

Selectivity
Factor (α)

% (MIP-
NIP)

SER 26.6 ± 0.6 1.0 8.4 24.4 ± 0.4 1.0 17.4 11.0 ± 0.3 1.0 25.6
NS 26.3 ± 0.3 0.8 7.2 23.1 ± 0.4 1.0 17.1 13.0 ± 0.1 0.7 33.5

FLU 25.3 ± 0.6 1.3 4.9 22.4 ± 0.4 1.2 16.2 10.3 ± 0.2 1.1 25.3
ESC 20.3 ± 0.5 2.9 4.7 18.8 ± 0.6 2.7 14.8 5.5 ± 0.2 2.8 10.8
PXT 27.3 ± 0.1 1.0 3.4 26.3 ± 0.4 1.0 16.8 11.3 ± 0.1 1.1 25.0
BUP 7.9 ± 0.1 9.6 2.2 6.5 ± 0.3 9.8 8.0 3.5 ± 0.3 3.3 12.3
BUC 10.3 ± 0.3 8.7 9.4 9.7 ± 0.3 7.0 9.4 2.2 ± 0.4 7.0 6.1

In general, the capacities of the three MIPs for SSRIs followed the same pattern as
in SER binding. The highest capacity was observed in MIP5, closely followed by MIP9,
and with more than half-lower capacities observed in MIP13 (Figure S1). Furthermore,
we compared the binding to the corresponding NIPs. The difference between MIP and NIP
was the largest in the case of MIP/NIP13 and the lowest in MIP/NIP5 (Table 2).

3.3. Time to Reach the Equilibrium

The time to reach equilibrium was tested for the chosen polymers and AC. A 0.1 mM
test mixture was added. Figure S2 illustrates that for AC, the equilibrium was reached
within 1 h; in cases of MIP5 and MIP9, the equilibrium was reached in 4 h; and for MIP13,
in 20 h. For the NIPs, similar times to reach the equilibrium were shown as for their
corresponding MIPs. As also depicted from Figure 4, AC non-selectively bound all the
available compounds until their concentrations in the solvent reached below the limit of
quantification (LOQ ≈ 0.001 mM).
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3.4. Effect of WW Matrix

With the underlying objective to remove pharmaceuticals from WWs, we tested the
capacity of MIPs to bind them. This way, we evaluated the ability of MIPs to be applied
as sorbents in WW treatment systems. Aiming to get closer to the conditions during
WW treatment, we employed the pH adjusted to 6–8 and simulated actual WW matrix
composition. By comparing the results between the binding of BUP, BUC, ESC, PXT, NS,
FLU and SER in UW, WW1, and WW2, we observed large differences in the removals of the
test compounds (Figure 4), whereas AC removed all the tested compounds in any matrix
to below LOQ concentrations (0.001 mM). In contrast with our expectations, as shown
in Figure 4, the removal efficiencies of MIPs were lowest in UW and highest in the most
complex matrix, WW2. In line with the trends shown in the capacity experiments, MIP5
and MIP9 showed best performance, closely followed by NIP5, NIP9, MIP13, and finally
NIP13. By investigating the reason for such behavior, we determined the pH and COD
of each inspected matrix. The pH values of UW, WW1, and WW2 were approximately 7,
7.2, and 8.2, respectively, whereas we measured COD at <15 mg·L−1 for WW1 (LOQ of
the test) and 379 mg·L−1 for WW2. On the contrary, the literature reports either no change
(up to 690 mg·L−1 COD) or a slight decrease in adsorption of their chosen templates to
their MIPs at high COD values (over 800 mg·L−1) [52–55]. The MIPs in these cases used
similar reagents to those in our synthesis, i.e., MAA and EGDMA, albeit in different ratios,
and employed DCM or ACN as porogens and 2,2′-azobisisobutyronitrile (AIBN) as the
initiator [52–55]. Hence, we did not expect the higher COD values to be the cause behind
the increased removal.

In order to deeper investigate the reasons behind the positive impact of matrix com-
plexity on the removal of pharmaceuticals, we performed the rebinding experiments at
different pH values and salt concentrations. Here, the imprinted and non-imprinted
polymers showed similar trends, with the most notable differences for MIP and NIP13,
as portrayed in Figure 5. The pH in the range of 6 to 8 had almost no influence on the bind-
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ing with differences below 1%. The only exception was NIP13, with differences between
pH 6 and pH 8 ranging up to 7.8%. On the other hand, the increasing salt concentration
improved the removal of pharmaceuticals. This finding was further supported by the
improved binding found during the pH tests, which were performed in phosphate buffer,
as compared to the binding in UW. Our results are consistent with the findings of Kempe
and Kempe (2010), where elevated concentrations of salts had a significant influence on
the removal of penicillin G from solution and followed the Hofmeister series. As seen
in Kempe and Kempe (2010), the higher removal was of non-specific nature, observed in
both MIP and NIP [46]. The kosmotropic ions seem to promote the formation of stable
interactions between the polymers and tested compounds. Since phosphate ions are more
kosmotropic than chloride ions, this would also explain the larger effect in the buffer
solutions, despite their lower concentrations [56].
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3.5. Upscale Experiment

The performance of the materials was evaluated as the difference between the initial
concentration and the remainder extracted by Oasis HLB SPE. This way, we avoided
underestimating the performance of AC, since completely eluting compounds off the AC
is a known difficulty [23]. The results on the performance of selected materials in the
upscale experiment are shown in Figure 6. The main difference from the batch (mini-MIP)
experiments is the less efficient binding to AC (Figure 6). The two main reasons behind this
may involve the shorter contact time between the material and WW, or lower capacity of
the material due to the non-specific binding of other matrix components. Since in the batch
experiment AC showed shortest time to reach equilibrium, the latter is more probable.
Furthermore, several reports showed AC performance deteriorating with an increase of
matrix complexity (e.g., COD, total dissolved solids) [23,55].
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In the Oasis HLB extracts from MIP5, NIP5, and MIP9, none of the investigated pharma-
ceuticals were detected. On the contrary, as expected, their highest remainder was determined
in the Oasis HLB extracts from NIP13, again implying its lowest binding capacity.

While non-specific rebinding is not desired in MIPs that are used, for example, in sam-
ple preparation or chromatography, we show here that this phenomenon is favorable in
WW treatment. As Le Noir et al., (2007) pointed out, it only becomes a problem if it causes
lower capacity and affinity of the selective binding [39]. MIP5 and MIP9 both showed
higher capacities compared to MIP13, and even NIP5 and NIP9 performed better under
tested conditions. This means that a larger amount of MIP13 would have to be used to
achieve the competitive removal efficiencies. However, specific interactions of MIPs will
likely play a more important role at higher volumes and more complex matrices. At the
same time, we show that the NIPs, which are based on non-specific binding only, are less
negatively affected by matrix, as compared to AC, and along with their easy recyclability
they could therefore pose a less expensive alternative for the removal of pharmaceuticals.

3.6. Leaching

As an alternative to sorption in WW treatment, we also considered the developed
MIPs for SPE extraction of environmental samples. As for our hypothesis, MIP could be
employed as an SPE sorbent in order to selectively extract targeted compounds, thus reduc-
ing the suppressing effect of matrix interferences in further liquid chromatography coupled
to mass spectrometry (LC–MS) analysis. Such sorbents may potentially be employed in a
highly sensitive analytical method for an ultra-trace level determination of contaminants
in WW [57]. MIPs have previously been used for SPE several times [58–61]. However,
given the fact that the template in polymerization (SER) is also the analyte in the LC–MS
method, the MIP sorbent would have to pass the “leaching test”, which means that it
would have to show a negligible leaching and thus avoid interfering with the assessment
of trace-level analytes in the subsequent LC–MS analysis. Leaching of SER from the ma-
terial was tested on UHPLC-QTRAP, applying the instrumental method developed by
Gornik et al., (2020a) [9]. By using 5 mL of 1% TFA in MeOH, we eluted up to 3.5 µg of
SER from the MIPs. Alternative methods for template removal, such as microwave or
ultrasound-assisted extraction, heating under pressure, or even the use of another acid dur-
ing Soxhlet extraction, could have lessened the leaching from the MIPs. On the other hand,
the more extreme conditions could also have damaged or distorted the imprinted cavities
and thus decreased the selectivity, affinity, and capacity of the MIPs [62,63]. Furthermore,
the synthesis of MIPs and the subsequent washing procedures triggered the formation
of SER transformation products (NS, SEK, hydroxyl-SER) [9], which in turn leached off
the materials, thus interfering the environmental analysis. Unfortunately, this makes the
material inappropriate for the determination of SER residues including its metabolites
and transformation products at trace levels. Finding an appropriate dummy template that
would substitute SER and produce a MIP cross-reactive towards SSRI could be a viable
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solution to such a problem [35]. Nonetheless, the synthetized material can still be applied
to SPE of the remaining tested pharmaceuticals (Figure 1).

3.7. Characterization

The FTIR spectra for the chosen MIP/NIP pairs 5, 9, and 13 can be found in Figure 7.
The broad band visible at approximately 3500 cm−1 corresponds with the stretching
vibration of the hydroxyl group from MAAs COOH group. The stretch bands around
2950 cm−1 in all the spectra are part of the C–H vibration present in MAA, mMA, HEMA,
and EGDMA. The band around 1720 cm−1 represents the vibration from the carboxylic
C=O group that can be associated with the C=O groups from MAA, mMA, and EGDMA.
The 1250 and 1140 cm−1 stretch bands contributed to the stretching of C–O also present
in all three compounds. The stretch bands corresponded with the polymerized material.
Since the composition of the synthetized materials did not vary strongly, the resulting FTIR
spectra were accordingly similar.
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The results of the elemental analysis of the MIP and NIP pairs 5, 9, and 13 are reported
in Table 3. The results are in accordance with the expected values of the synthetized
material. With this measurement, we confirmed that the added reagents reacted in the
expected ratio.

Table 3. Results of the elemental analysis for MIPs and NIPs 5, 9, and 13.

MIP 5 % C % H NIP 5 % C % H

Theoretical 60.21 7.11 Theoretical 60.21 7.11
Actual 59.56 7.81 Actual 59.68 8

Deviation 0.65 −0.7 Deviation 0.53 −0.89

MIP 9 % C % H NIP 9 % C % H

Theoretical 59.99 7.28 Theoretical 59.99 7.28
Actual 59.55 8.18 Actual 60.2 8.25

Deviation 0.44 −0.9 Deviation −0.21 −0.97

MIP 13 % C % H NIP 13 % C % H

Theoretical 59.27 7.23 Theoretical 59.27 7.23
Actual 57.00 7.60 Actual 58.03 8.17

Deviation 2.27 −0.37 Deviation 1.24 −0.94

The BET surface area, pore size, and pore volume of the MIPs and NIPs are reported
in Table 4. As expected, the larger the surface area and pore volume of the tested polymers,
the higher the reported capacity and affinity. All three parameters were comparable
between MIP and NIP pairs 5 and 9, with BET surface areas for MIP/NIP 5 in the 200 m2·g−1

range and MIP/NIP 9 at the 100 m2·g−1 range. However, NIP13 exhibited a more than
five times lower BET surface area and pore volume compared to its corresponding MIP
(Table 4). A similar difference was observed in MIP and NIP pairs using HEMA as the
copolymer in toluene in the research by Dirion et al., (2003). They reported that stronger
swelling was observed for the NIPs and similar elution times measured for void markers
(acetone or MeOH) in their chromatographic evaluations of the polymers. This indicated a
smaller difference between the MIP and NIP in their swollen state.

Table 4. Brunauer–Emmett–Teller (BET) surface area of MIPs and NIPs 5, 9, and 13.

Material BET Area (m2·g−1) Pore Size (nm) Pore Volume
(cm3·g−1)

MIP5 193.8 7.7 0.374061
NIP5 262.1 7.2 0.470623

MIP9 136.0 10.3 0.349167
NIP9 125.7 9.6 0.300946

MIP13 27.4 7.6 0.051835
NIP13 5.5 6.6 0.009074

The SEM images of the surface of our polymers in Figure 8 support the surface area
and pore volume measurements. While the morphology of MIP5/NIP5 and MIP9/NIP9
were comparable, the surfaces of MIP13 and NIP13 were dissimilar. These differences in
the morphology between MIP and NIP 13 indicate that care should be taken when NIPs
are used for the evaluation of MIP selectivity. Comparing a material imprinted with a
completely different compound or the determination of α between the template and other
compounds can offer more information [35,48].
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Compared to AC with a surface area of 1400 m2·g−1 [64], the surface areas of MIPs
and NIPs were 5 to 253 times lower. Nevertheless, some of them showed superior binding
characteristics in WW.

4. Conclusions

This study investigated the ability of MIPs imprinted with the free base form of SER to
remove SSRIs and their metabolites. The functional monomers and porogens revealed a strong
impact on the capacity, affinity, and selectivity of the synthetized MIPs. The three selected
MIPs showed cross-reactivity towards the SSRIs and the metabolite norsertraline, whereas
they bound a lesser amount of the competitors BUP and BUC. Further, the loss of selectivity
towards the metabolite SEK was probably due to the loss of the amino group, which was thus
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found crucial for selective binding to the MIP. The performance of both the imprinted and
non-imprinted materials was strongly influenced by the presence of salt ions, which improved
their performance in WW. The performance of MIPs was stable throughout WW-relevant pH
range 6–8. Compared to AC, the synthetized polymers had at least five times lower surface
area and required a longer equilibration time. This slower mass transfer was particularly
evident when selective binding was the main driving force behind the removal, as observed
in MIP13. However, the capacity in WW for two out of the three tested MIPs surpassed that of
AC, and thus both the non-specific and specific interactions showed an important role for the
removal from WW. The surface area calculated from the BET isotherm for the MIPs correlated
with a higher removal and more non-specific interactions. The advantage of the MIPs is also
their reusability that, together with the lower number of regeneration cycles needed due to
slower fouling, will cut the costs of the treatment. Unfortunately, the MIPs were found
inappropriate for SPE of samples containing trace levels of SER due to continuous leaching
of the template and its degradation products. Future work should include a large-scale
experiment confirming the advantages of the synthetized material for the removal of SSRIs
from WW.
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