
Evagination of Cells Controls Bio-Silica Formation and
Maturation during Spicule Formation in Sponges
Xiaohong Wang1,2, Matthias Wiens2, Heinz C. Schröder2, Ute Schloßmacher2, Dario Pisignano3, Klaus
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Abstract

The enzymatic-silicatein mediated formation of the skeletal elements, the spicules of siliceous sponges starts intracellularly
and is completed extracellularly. With Suberites domuncula we show that the axial growth of the spicules proceeds in three
phases: (I) formation of an axial canal; (II) evagination of a cell process into the axial canal, and (III) assembly of the axial
filament composed of silicatein. During these phases the core part of the spicule is synthesized. Silicatein and its substrate
silicate are stored in silicasomes, found both inside and outside of the cellular extension within the axial canal, as well as all
around the spicule. The membranes of the silicasomes are interspersed by pores of <2 nm that are likely associated with
aquaporin channels which are implicated in the hardening of the initial bio-silica products formed by silicatein. We can
summarize the sequence of events that govern spicule formation as follows: differential GENETIC READOUT (of silicatein) R
FRACTAL ASSOCIATION of the silicateins R EVAGINATION of cells by hydro-mechanical forces into the axial canal R and finally
PROCESSIVE BIO-SILICA POLYCONDENSATION around the axial canal. We termed this process, occurring sequentially or in parallel, BIO-
INORGANIC SELF-ORGANIZATION.
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Introduction

The siliceous skeletal elements of the sponges [phylum:

Porifera], termed spicules, possess several unique features which

distinguish them from the skeletal elements found in other

Metazoa. They are made of silica [(SiO2)n] instead of Ca-based

minerals [1] with an unparalleled precision, giving rise to species-

specific complex structures [2]. These genetically controlled and

biologically produced structures are formed at ambient, mild

physiological conditions, without high temperatures, pressures, or

caustic chemicals [3]. The spicules are the critical structural

determinant that controls the morphology of the sponges [4,5]. In

the center of the spicules lies a 0.5–4.0 mm wide axial canal which

harbors the organic axial filament [6,7]. Since its discovery the

axial filament has been considered to be a template that controls

the morphology of the spicules [8]. A major step towards an

understanding of the genetically controlled morphogenesis of

sponges was the identification of the structural protein of the

spicules, termed silicatein which is located in the axial filament [9]

as well as on the surface of the spicules [10]. Silicatein is an

enzyme which forms the bio-silica required for the construction of

the sponge spicules [11–14]. The formation of spicules is a rapid

process, which lasts for a spicule with a length of 190 mm and a

diameter of 6 to 8 mm at 21uC only 40 hrs [15]. Because of this

high growth rate it remained unclear for a long time if spicule

formation starts intra- or extracellularly [16,17].

Detailed cell biological and biochemical studies on the intracel-

lular spicule formation have been performed with the sponge

Suberites domuncula [18,19]. These studies became possible since the

establishment of a suitable cell culture system (the primmorphs)

from S. domuncula, which allowed time-lapse developmental studies

of spicule formation under controlled conditions [20]. The 3D-cell

culture is composed of proliferating and differentiating stem cells,

and of sclerocytes that initially form the spicules [21]. In these

studies we described that silicatein-mediated spicule growth

proceeds in two directions. Firstly, in axial, longitudinal direction

in which the growth of the spicule is driven by the 23 kDa processed

form of silicatein. Secondly, the radial thickening of the spicules,

their appositional growth, occurs after extrusion of the spicules into

the extracellular space. Accumulation of silica on the surface of the

growing spicule in centripetal direction is mediated by the 34.7 kDa

silicatein [10,18]. This form of silicatein is distinguished from the

23 kDa enzyme by the presence of the N-terminal pro-peptide

sequence that is presumably cleaved off autocatalytically immedi-

ately before the onset of bio-silica synthesis [18]. In this study no

conclusive evidence has been obtained for the existence of collagen
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either in the axial filament or on the surface of the spicules that

would be causatively involved in bio-silica formation, as has been

speculated [22].

Earlier studies on silicatein-driven spicule synthesis did not

answer the question of how elongation of the spicule in axial

direction occurs [18,19]. Two observations have been published

which showed that even after the release of the spicules into the

extracellular space the axial filament undergoes maturation steps.

These data revealed that thereby an alteration from a less

compact organization of the organic components within the axial

canal, which also includes membraneous structures, to a compact

axial filament occurs [18,19]. In support it was found that during

maturation of the spicules the diameter of the axial canal

decreases from approximately 4 mm to 0.5 mm. The release of the

intracellularly formed spicules, their extrusion into the extracel-

lular space, was assumed to be facilitated by spicule associated

filaments [18,23]. The final shaping of the spicules surely occurs

extracellularly while growing from 6 mm to 150–320 mm. It

should be stressed here that in sponges, in contrast to the more

evolved metazoan taxa, the cells within the body are only loosely

attached to each other by cell-cell contacts, and are positioned

within the tissue by stronger cell-matrix interactions [reviewed in:

24]. In the extracellular space of the sponge tissue galectin is the

dominant protein, and functions there as a structural protein

[25]. Galectin is a molecule that can, in the presence of Ca2+,

turn from the sol into the gel state, and then associate with

silicatein molecules together; these two components form an

organic cylinder around the surface of a growing spicule into

which bio-silica is finally deposited [10]. A collagen cast is

arranged around that organic cylinder comprising the moldable

bio-silica and models the growing spicule [26].

In the present study we give for the first time experimental

evidence for the existence of one cellular process originating from

a spicule-forming cell, a sclerocyte, into the axial canal of a spicule.

Such an extension evaginates into the axial canal where it controls

axial growth and releases silicasomes [27]. From these vesicles

silicatein and silicic acid are transported into the extracellular

space resulting in the deposition of bio-silica at the inner surface of

the siliceous mantel. During maturation of the spicule in the

extracellular space two polycondensation/deposition processes

occur that are spatially separated; first on the outer surface of the

growing spicule and second on the inner surface of the spicule [the

wall of the axial canal]. Thus, two polycondensation reactions run

in parallel, first, centripetally directed polycondensation, resulting

in the formation of the bio-silica core around the axial filament

within the axial canal, and second, centrifugally directed

polycondensation on the outer surface of the spicule, leading to

the synthesis of the bio-silica shell of the spicule. During these

processes the cell extension elongates by an energy-consuming

process which is very likely fed by ATP cleavage through an

arginine kinase. In S. domuncula we found that the gene encoding

an arginine kinase is induced by silicate [28]. In addition to

silicatein and arginine kinase, whose presence in the axial canal

has been demonstrated by immunofluorescence staining, a third

protein, aquaporin-8 (to be published; EMBL accession number

FR773712) that had been implicated in the maturation of bio-

silica, was recently identified by specific antibodies. Aquaporins

are channels interspersed in the cell membrane, which regulate the

flow of water in general [29], and very likely translocate the

reaction water that is released during the polycondensation

reaction; thereby they facilitate the maturation/ageing process of

the bio-silica material [30]).

Based on the presented data we propose a model to describe the

experimental findings of bio-silica formation in the core of the

spicules. Our data strongly support the view that axial spicule

growth is driven by the elongation of cell processes into the axial

canal, and is mediated by silicatein and silica that are released

from the silicasomes.

Materials and methods

Sponge, primmorphs and spicules
Specimens of S. domuncula (Porifera, Demospongiae, Hadro-

merida) were collected in the Northern Adriatic near Rovinj

(Croatia), and then kept in aquaria in Mainz (Germany) at 17uC
for more than 5 months. S. domuncula synthesizes monaxonal

spicules, primarily tylostyles, measuring 150–320 mm in length and

6.14 to 6.57 mm in diameter. While one end of the spicules is

pointed, the other is blunt with a globular swollen knob [31]. The

rarer oxeas, with two pointed ends, can reach sizes of up to

430 mm.

Primmorphs were prepared from S. domuncula as described

[20]. These 3D cell aggregates were cultivated for 10 days in

natural seawater (Sigma, Taufkirchen; Germany) supplemented

with 1% RPMI 1640 medium (Sigma). Spicules were isolated by

soaking 10 days old primmorphs in nitric acid/sulfuric acid (1 :

4 v/v) for 2 days, followed by washing in distilled water until the

pH value was 6.

Electron microscopy - immunocytochemical procedure
For transmission electron microscopy [TEM] analysis prim-

morph sections were transferred onto coated copper grids and

analyzed with a Tecnai 12 microscope (FEI Electron Optics,

Eindhoven; Netherlands). Slices were prepared as described [18]

by dehydration with ethanol, followed by fixation in propylene

oxide/araldite and embedding in araldite. Cutting to 60-nm

ultrathin slices was performed with an Ultracut S ultramicrotome

(Leica, Wetzlar; Germany). Electron immunogold labeling/TEM

analysis was performed with slices treated in glutaraldehyde/

paraformaldehyde buffered in phosphate buffer [PBS] [18]. The

samples were reacted with one of the following primary polyclonal

antibodies (PoAb), with anti-silicatein-a (PAb-aSILIC_SUBDO;

1:1,000; [18]) for 12 hrs at 4uC, with anti-aquaporin-8, raised

against the recombinant protein from the S. domuncula cDNA

(PoAb-aAQP_SUBDO: 1:1,000; accession number FR773712), or

with anti-arginine kinase PoAb, raised against the S. domuncula

recombinant protein (PoAb-aAK_SUBDO; 1:1,000; accession

number AJ744770) [28]. Subsequently, the sections were incubat-

ed with a 1:100 dilution of the secondary antibody (1.4-nm

nanogold anti-rabbit IgG; diluted 1:200) obtained from Nanop-

robes (Yapbank, NY). After rinsing with PBS the samples were

exposed to silver to enhance the immunocomplexes. In controls,

preimmune serum was used instead of the primary antibodies.

High-resolution scanning electron microscopy (SEM) analyses of

the samples were performed with a Gemini Leo 1530 high-

resolution field emission scanning electron microscope (Zeiss,

Oberkochen; Germany).

Immunohistology
The detailed procedure was given previously [18]. In brief,

tissue samples were embedded and 8-mm-thick frozen sections

were cut. The cryosections were fixed and then reacted with the

first antibody (1:1,000 dilution). After blocking with nonfat dry

milk/bovine serum albumin the samples were subjected to the

second antibody (Cy5-conjugated F(ab9)2 goat anti-rabbit IgG;

Jackson ImmunoResearch, Cambridgshire, UK; at a 1:2,000

dilution). Immunofluorescence images were taken with an

Olympus AHBT3 light microscope, together with an AH3-RFC
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reflected light fluorescence attachment at an emission wave-length

of 670 nm (filter G). The slices had been counterstained with 49-6-

diamidino-2-phenylindole (DAPI; Sigma) to visualize the cell

nuclei and inspected at 420 nm.

Analysis energy dispersive X-ray spectroscopy (EDX)
Primmorph samples were embedded in epoxy resin as described

[32]. Then the aggregates/primmorphs were cut to about 200 nm

thick slices with an Ultra-Microtome (Leica EM; Leica Micro-

systems Japan, Tokyo; Japan). Those sections were placed onto a

grid and analyzed (see above). EDX analyses were performed with

a Philips 420 TEM and a Nova 600 NanoLab SEM/FIB,

equipped with an EDAX Division EDX analyzer.

Results

Growth of the spicules
The prevalent spicule type found both in tissue and in

primmorphs from S. domuncula were tylostyles (Fig. 1A); the

monaxonal rods displayed one blunt end, appearing as a knob,

and one pointed tip. The length of the shaft was 150–320 mm. The

globular knobs emerging from the shaft had sizes between 6.5 and

9.2 mm (Fig. 1B). Each monaxonal rod comprised a central axial

canal (Fig. 1B and C). In the axial canal an organic axial filament

existed that displayed a granulated structure (Fig. 1D). The bulgy

material constituting the axial filament tightly filled the axial canal.

As outlined in the ‘‘Introduction’’, the synthesis of the spicules is

a rapid process and in turn developing spicules can only be seen

very scarcely in tissue from adult animals. However, during

cultivation of primmorphs starting from single cell suspension

growing spicules can be seen more frequently. In Fig. 1 E and

Fig. 1G such spicules are shown. The progressively forming

spicules showed a distinct zonation, into a protruding solid central

core with a diameter of 2.5–3.2 mm and a surrounding thicker

outer mantel, the shell of the spicule (Fig. 1E to Fig. 1G). In about

15% of those spicules the surfaces were not smooth but grainy

suggesting fresh deposition of minerals (Fig. 1F). Cross fractures

through growing spicules showed that the internal mineral core,

which surrounded the axial canal was detached from the outer

shell (Fig. 1G).

Cross sections through growing spicules revealed a change in

the widths of the axial canals and also of the structures in the axial

filament. Fig. 2A shows the three growth phases of the spicules in a

TEM image: they are labeled in this figure with I to III. PHASE I: In

the initial stage the diameter of the central axial canal was

<2.5 mm and it comprised an organic material. The axial canal

was surrounded by an organic cylinder that included several

vesicles, filled with electron dense material (Fig. 2A phase I). The

average size of these vesicles that have previously been identified as

silicasomes was 150 nm [27]. These initial spicules were not yet

surrounded by a silica mantel. PHASE II: During phase II spicules

started to form a siliceous mantel. The diameters of the spicules in

this phase were between 2–4 mm and the axial filament had not

yet been developed (Fig. 2A phase II and Fig. 2B). However, in

this phase cell processes became visible (Fig. 2B). In PHASE III an

axial filament was seen which was composed of an electron-dense

material (Fig. 2A phase III and Fig. 2C). The axial filament was

embedded in an organic matrix that comprised in the early stages

membraneous fragments, originating from the cell processes

(Fig. 2C), that were absent in a later stage. In the final stage

(phase III) only the axial filament could be identified in the axial

canal (Fig. 2D). Subsequently, the diameter of the axial canal

shrunk to a size of 2 to 0.5 mm. During maturation the axial

filament changed its form from spindle-like (Fig. 2F) to triangular

(Fig. 2A [III]; Fig. 2G). Besides the three main phases I to III also

intermediary stages have been found. Examples are Fig. 2C,

Fig. 2F and Fig. 2G being in phase II/III. In some cross sections

no axial filament and no cellular structures were seen (Fig. 2E).

Those cross sections had been performed close to the apex of the

axial canal (see below).

Figure 1. Different microscopic techniques reveal the morphology of S. domuncula spicules; (A) light microscopy, (B–G) SEM. (A) A
tylostyle, a monaxonal rod with a terminal knob (k) on one side and a pointed tip at the other end. B and C show the blunt end with the knob (k) and
some broken spicules exhibiting the axial canal (ac). (D) A broken spicule displaying the bulgy material constituting the axial filament (af). (E) A
developing spicule with a progressively growing tip; the central core shell (c) around the axial canal (ac), and the final silica shell (s). The surface (su) of
the spicule is marked. (F) Mineral deposits on a growing spicule causing the granular surface of its core (c) and shell (s) regions. (G) A broken spicule,
displaying the internal mineral core (c) surrounding the axial canal (ac), and the outer shell (s).
doi:10.1371/journal.pone.0020523.g001
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Evagination of cells
The spicule formation started intracellularly in vesicles within

sclerocytes ([18]; Fig. 3A and Fig. 3B). There, 1.5 to 2.0 mm long

spicules were surrounded by a membrane. Adjacent 100–300 nm

large silicasomes were found that were filled with electron-dense

material. Near the blunt ends of the spicules the intracellularly

formed axial filaments were associated with other thin filaments

(diameters of approximately 40–50 nm) [28] of yet undetermined

nature (Fig. 3C). From longitudinal sections through spicules

strong evidence could be obtained that cellular structures protrude

into the spicules, specifically into their axial canal (Fig. 3D to Fig.

3F). The longitudinal section through a complete monaxonal

50 mm long spicule showed that the axial canal was closed at one

end with a siliceous layer, while the other end of the channel was

open and associated with a sclerocyte (Fig. 3D). From the TEM

images taken we have strong reasons to accept that the open end

of the axial canal is connected with the sclerocyte via one cell

protrusion. Consequently this site would represent the growth

region of the spicule. Two images have been taken at higher

magnification (i) from the middle part (Fig. 3E) and (ii) from the

region close to the apex (Fig. 3F). (i) In the middle of the growing

spicule densely packed vesicles were identified, which were

surrounded by a membrane that likely represents the cell

membrane (Fig. 3E). The vesicles that existed in large number

were considered to be silicasomes. (ii) At the more terminal end,

closer to the apex of the axial canal, the cell membrane ended

before the silica rim leaving an open extracellular space. There,

‘‘extracellular’’ vacuoles, silicasomes, of sizes between 50 and

200 nm existed (Fig. 3F). In this image, the end of the cell process

is seen. In the extracellular space between the axial canal and the

cell extension a developing axial filament is seen. An overview of

the apex region of the axial canal is shown in Fig. 3G. Figs. 3H

and Fig. 3I show further examples of spicules with growing axial

filaments in the extracellular space of the axial canal.

From these data we propose that into each growing spicule one

cell process protrudes. At the entrance of the cellular extension

into the axial canal the diameter of the canal was much larger (1 to

3 mm) while it decreased steadily in size towards the apex which

was surrounded by the siliceous mantel.

EDX analyses
EDX analyses were performed to prove whether the organic

material existing in the axial canal contains silicic acid which could

serve as substrate for the polycondensation reaction catalyzed by

silicatein. Therefore, primmorphs were sectioned and especially

areas where spicules were cut transversely or longitudinally were

selected for the spectroscopic analyses. Figs. 4A and Fig. 4B show

such areas with cross-sectioned spicules.

Areas from the extra-spicular space (spectrum 1), from the

siliceous mantel surrounding an axial canal (spectrum 2), and

finally from the axial canal itself (spectrum 3) were selected and

analyzed by EDX. The spectra show (Fig. 4E) that in the extra-

Figure 2. TEM images of the axial canal of spicules in primmorphs at different developmental stages. (A) The three major
developmental phases during spicule formation: phase I: primordial spicule comprising a large axial canal (ac) which is surrounded by an organic
cylinder enclosing vesicles (v). phase II: the spicule shows the siliceous mantel (si) surrounding the small axial canal (ac) devoid of a pronounced axial
filament. phase III: such spicules have a small sized axial canal and a distinct axial filament (af); scl, sclerocyte. (B) Spicule in phase II. Membraneous
structures can be resolved in the axial canal (ac) which is surrounded by the silica mantel (si). (C) Spicule between phases II and III showing in the axial
canal a well developed axial filament (af) embedded in membranous structures, which is surrounded by the silica mantel (si) (D) Mature spicule with
an axial filament (af) without any cellular structures. One surrounding sclerocyte is marked (scl). (E) Axial canal (ac), close to the apex of the spicule,
comprising a homogenous granular material. (F) Spicule with an axial canal at phase II/III. The axial canal (ac) comprises a growing axial filament (af).
(G) Intermediate spicule phase between II and III comprising an axial canal (ac) showing cellular structures with vesicles (v) and one axial filament (af).
doi:10.1371/journal.pone.0020523.g002
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spicular space the silicon [Si] signal was low (upper panel), while in

the siliceous mantel region almost exclusively Si and oxygen [O]

could be detected (middle panel). In the axial canal carbon

appeared as a major peak, besides Si and O (lower panel). In a

parallel series of experiments, longitudinal sections were selected

(Fig. 4C and Fig. 4D). Also there the EDX spectroscopic data

showed that the axial canal comprised C, besides si and O (not

shown).

Ultrastructure of the vesicles present in the axial canal
The ultrastructural analysis by TEM revealed that vesicles,

silicasomes, were abundant within the axial canal of developing

spicules. Those vesicles displayed pores in their membranes (Fig. 5).

The 50–200 nm large vesicles were densely packed in the cellular

processes (Fig. 5A). Silicasomes can be filled either with electron-

dense or electron-poor material. It seemed that silicasomes that

occurred closer to the silica mantel were electron-dense (Fig. 5E).

At high magnification, on the ,100 nm scale, it could be seen that

the membranes of the vesicles were not homogeneous but

interrupted by pores (Fig. 5B). The membrane pores were 10 to

15 nm apart. This distance between the pores was largely constant

both for the silicasomes existing in the intra-spicular (Fig. 5B to

Fig. 5D) and those in the extra-spicular space (Fig. 5E and Fig. 5F).

The dimension of the pores can only be approximated with 1–

2 nm (Fig. 5B and Fig. 5F).

Light immunocytochemical studies
Cryosections were prepared and reacted with antibodies raised

against silicatein, aquaporin and arginine kinase. The reaction of

the anti-silicatein antibody was very strong on the surfaces and also

in the center of the spicules (Fig. 6A). Since the spicules are closed,

not all antibodies could reach the axial filament residing in the

axial canal. Likewise intense was the reaction of anti-aquaporin

with antigens on the slices (Fig. 6C). Again the surface and the

axial canal were stained. Finally also anti-arginine kinase gave a

strong reaction with the structures, but the staining pattern was

more diffuse (Fig. 6E). The staining of these antibodies was

specific, since all three preimmune sera failed to stain any

structure. The images for the reaction with preimmune serum

collected prior to the immunization with arginine kinase are

shown here (Fig. 6G). The slices had been counterstained with

DAPI allowing a staining of the nuclei (Fig. 6B, D, F and H).

TEM-immunocytochemical procedure
TEM analysis has been combined with immunostaining to

localize silicatein, aquaporin and arginine kinase within the axial

canal (Fig. 7). Arginine kinase was selected as a marker protein for

an energy generation (ATP formation); [28]. The fine structure of

the axial canal comprised in the more mature phase the axial

filament (Fig. 7A). This filament reacted with antibodies raised

against silicatein (Fig. 7A to Fig. 7C). It is obvious that not only the

filament became decorated with the grains, but also the electron-

dense space that surrounded it. In contrast, the reaction of the

antibodies against aquaporin was equally strong at the margin of

the canal to the silica mantel, the location of the cell membrane

(Fig. 7D). At higher magnifications this intense staining was

impressive (Fig. 7E and Fig. 7F). In contrast to silicatein, which

was mainly found at the axial filament, and of aquaporin, which

was found primarily close to the silica mantel, the reaction of the

antibodies to the arginine kinase was scattered throughout the

axial canal and was predominantly associated with membranous/

filamentous structures in the axial canal (Fig. 7G to Fig. 7I).

In a parallel series of experiments slices were reacted either with

the respective antibodies or with the preimmune serum (Fig. 8). A

longitudinal section through a spicule was reacted with anti-

silicatein and again staining was found primarily to recognize the

Figure 3. Longitudinal sections through spicules, showing the process of evagination of cells into the axial canals (ac) of the
spicules, as elucidated by TEM. (A and B) Intracellular onset of spicule (sp) formation in sclerocytes (scl). The growing spicules are surrounded by
silicasomes (sis). (C) A developing axial filament (af), that possesses at its blunt end several filaments (fi). (D) A longitudinal section through a spicule
with its axial canal (ac). The axial canal is surrounded by a silica mantel (si). The silica fragments, that occurred during cutting of the primmorphs, were
partially removed. The axial canal is closed at the apex (ap) of the spicule, while it is open at the end that is associated with the sclerocyte (scl). There
the growth zone of the spicule (gr) exists. (E and F) The middle part of that spicule shows in the axial canal (ac) many silicasomes (sis). Those vesicles
are surrounded by a membrane, which we perceive as cell membrane (.,). Furthermore, the intracellular space (ics) and the developing axial
filament (af) are marked. In the extracellular space (ecs) within the axial canal (ac) a silicasome (sis) can be identified. These images were taken close to
the apex of the axial canal (ac). (G) Axial canal at the apex (ac), comprising no membranous structures and no axial filament. (H and I) An axial
filament (af) in the extracellular space within the axial canal (ac).
doi:10.1371/journal.pone.0020523.g003
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Figure 4. EDX analysess were performed of cross sections through primmorphs displaying growing spicules (sp). The sections were
made in transversal (A and B) and in longitudinal orientation (C and D); SEM analyses. (E) EDX spectra from areas in the extra-spicular space (ex-s)
[sp1], within the siliceous mantel of the spicule [sp2], and the region across the axial canal (ac) of one spicule [sp3]. The areas where the
spectroscopic analysis were performed are marked in (B).
doi:10.1371/journal.pone.0020523.g004
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axial filament (Fig. 8A). In the control, by using preimmune serum,

no grains were identified on the axial filament (Fig. 8B). If cross

sections through the spicules were incubated with anti-aquaporin

the membrane of the cell extension and also the extracellular space

to the silica mantel were heavily decorated (Fig. 8C). Again, the

preimmune serum did not show any reactivity (Fig. 8D). Likewise,

the anti-arginine kinase antibodies reacted over the complete axial

canal with the antigens (Fig. 8E), while the pre-immune serum

failed to do so (Fig. 8F).

Discussion

Until this study it remained enigmatic which morphogenetic

events trigger and control extracellular axial growth of the siliceous

spicules of sponges. Surely the answer to this question will help not

only to understand the development of sponge spicules, but may

also contribute to the understanding of morphogenesis of more

complex skeletal elements, e.g. bone in vertebrates. During bone

formation the hydroxyapatite mineral is deposited by osteoblasts

apparently in the extracellular space [33]. There, the inorganic

deposits are formed to the hydroxyapatite scaffold that is molded

into the collagen web [reviewed in: 34]. Morphological studies of

the sponge spicules, monaxonal tylostyles, isolated from prim-

morphs show that their siliceous mantel is composed of a core and

a shell cylinder. While the shell is synthesized in the extracellular

space by silicatein under consumption of silicate, the core cylinder

is formed around the axial canal by the same enzyme/substrate

[14]. As presented here, the spicules developing in primmorphs

comprise in their axial canals cellular protrusions, with the

silicasomes as the most prominent organelles. Those regions of the

axial canal are wider [<2–4 mm] in developing spicules than in

canals of spicules from adult specimens [18] or more mature

spicules identified in primmorphs [<0.5 mm]. Especially from

longitudinal sections through tylostyles it becomes evident that the

wider part of the axial canal of the spicule is directly connected

with cells. One cell projection of a sclerocyte reaches into the axial

canal of a given growing spicule. The cellular extension ends

before the closed tip of the axial canal, the apex, and leaves space

for the release of silicasomes and in turn for the discharge of

Figure 5. The ultrastructure of the vesicles/silicasomes was analyzed by TEM. Intra-spicular (in-s) and extra-spicular (ex-s) regions, comprising
silicasomes (sis), were studied. (A to D) The intra-spicular silicasomes were found (A to C) densely packed within the cell extensions protruding into the axial
canal (ac) and also (D) outside of the cell extensions. (D) One silicasome (sis), identified in the extracellular space within the axial canal (ac), was surrounded by
the silica mantel (si). (E and F) Silicasomes found on the surface of the spicules, in the extra-spicular space (ex-s). (E) Some of the silicasomes had an electron-
dense content; scl, sclerocyte. (F) In all silicasomes (sis) the membrane was perforated; some of the pores are marked (.,).
doi:10.1371/journal.pone.0020523.g005

Figure 6. Immunostaining of cryosections through prim-
morphs of S. domuncula showed growing spicules (sp). The 8-
mm thick frozen sections were reacted with one of the following polyclonal
antibodies; with anti-silicatein PAb-aSILIC_SUBDO (A and B), with anti-
aquaporin (PoAb-aAQP_SUBDO) (C and D), or with anti-arginine kinase
(PoAb-aAK_SUBDO). (E and F) In one control series, the slices were reacted
with preimmune serum from an animal used for immunization with
aquaporin (G and H). The immunocomplexes were visualized with red
florescent light, while the corresponding DAPI patterns were recorded with
blue fluorescence light. All size bars represent 100 mm.
doi:10.1371/journal.pone.0020523.g006
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silicatein as well as of silicate. The existence of silicatein in that

region has been determined by immuno-TEM, while the presence

of silicate was determined by EDX analyses. Both, silicatein and

silicate have been identified also in the silicasomes of the

sclerocytes localized in the extra-spicular space. Consequently it

is compelling to assume that the core cylinder of the spicules is

formed by the same enzymatic polycondensation reaction as the

one that forms the core cylinder [18]. Silicatein and silicate

necessary for both reactions are stored in silicasomes; after

translocation of the silicasomes into the extracellular space, they

release the two components required for bio-silica synthesis.

Recently we discovered for the first time that the aquaporin gene

is expressed during spicule formation and contributes to the

hardening/aging of the bio-silica product of silicatein (EMBL

accession number FR773712 [30]). Sequence similarity analysis

revealed that the sponge aquaporin belongs to the group of

aquaporins-8. Aquaporin-8 molecules are involved in the

absorption of water from the intestine and likewise regulate the

intracellular osmo-homeostasis and mucosal fluid fluxes [35]. In

turn the sponge aquaporin-8 is the candidate molecule to channel

the reaction water into the cells, which is released during the

polycondensation of bio-silica in the extracellular space. Sponge

cells display a high motility within the bulky extracellular space

[25]. Hence, cells that have taken up that reaction water may

transport it to more distant places. The consequences are two-fold;

(i) the removal of water from the site of its formation during the

synthesis of bio-silica. In turn, elimination of reaction water causes

a shift of the equilibrium towards enhanced silica condensation,

resulting in (ii) an aging process of the formed bio-silica [36] during

which the polymer hardens. By applying antibodies to aquaporin

we could demonstrate in the present study that aquaporin exists in

two compartments of the axial canal; first, in the silicasome

membranes and second, at the cell membranes bordering the silica

core of the siliceous mantel. Studies with vertebrate cells revealed

that the functional aquaporins are integrated into cell membranes,

or into membranes from organelles [37]. In our studies we

observed also immune-reactions between aquaporin antibodies

and antigens, not associated with membrane structures, which

we attribute to reactions with aquaporin pores coming from

disintegrating silicasomes.

Based on the TEM studies presented here it is obvious that the

silicasomes, both in the extra-spicular and in the intra-spicular

space, comprise pores with an approximate size of 1–2 nm. Surely

those pores do not reflect aquaporin pores which have a size of

around 3 Å [38]. However, the aquaporin channels allowing the

transport of small molecules, e.g. water, are usually co-expressed

with larger pores (20 to 25 Å) controlling the transport of lower-

molecular-weight solutes such as glucose, urea, and creatinine, and

also large pores (150 Å) that guide the transport of macromole-

cules [39]. In view of earlier data [27] and those presented here it

can be assumed that water as well as silicate and silicateins are

inversely transported through the silicasome membranes and

hence the respective channels are preferentially located closely

together.

In none of the TEM images clear evidence for the existence of

mitochondria could be detected in the cell processes. However, the

Figure 7. Immunogold labeling electron microscopy [TEM] of the axial canal of spicules. Antibodies against silicatein (A to C), against
aquaporin (D to F) and against arginine kinase (G to I) were used. (A to C) The silicatein antibodies reacted with the axial filament (af), which was
surrounded by the silica mantel (si), while (D to F) the aquaporin antibodies recognized their antigens primarily at the rim of the axial canal (ac)
towards the silica mantel (si). (G to I) The anti-arginine kinase antibodies reacted in a more scattered pattern with the antigen in the axial canal,
primarily recognizing membranous structures. The size of all bars represents 1 mm.
doi:10.1371/journal.pone.0020523.g007
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fast polycondensation reactions [14] are surely energy-consuming

[40,41]. Based on our findings of the absence of mitochondria (to

be published) in the 50 mm long cell processes within the axial

canal and the results from an earlier contribution that in the

presence of silica an upregulation of the ATP generating

phosphagen kinase [the arginine kinase] follows, we screened if

this kinase is co-localized with the cellular structures within the

axial canal. The results indeed revealed an accumulation of the

antigens reacting with anti-arginine kinase antibodies within the

axial canal structures, assumed to represent the membranes of the

silicasomes of the growing spicule.

Based on the TEM analyses of diagonal and longitudinal

sections through growing spicules the most plausible explanation

for the dynamics of the extension of the cellular processes into the

axial canals of the spicules is to propose hydrodynamic forces that

drive an evagination process. Evagination is a frequently occurring

Figure 8. Ultrastructure and immunoelectron microscopy
prove the specificity of the antibodies. Sections through spicules
were prepared and inspected by TEM analysis. Parallel specimens were
reacted either with antibodies or with the preimmune serum kept from
this immunization. (A and B) Silicatein: (A) reaction with PAb-
aSILIC_SUBDO; (B) incubation with the corresponding pre-immune
serum. (C and D) Aquaporin: (C) reaction with PoAb-aAQP_SUBDO; (D)
corresponding pre-immune serum. (E and F) Arginine kinase: (E)
reaction with PoAb-aAK_SUBDO; (F) corresponding pre-immune serum.
The axial canal (ac), the axial filament (af) and the silica shell (si) as well
as the intra-cellular space (ics) and the extra-cellular space (ecs) are
marked.
doi:10.1371/journal.pone.0020523.g008

Figure 9. The scheme depicts spicule formation via bio-
inorganic self-organization. (A) The spicule (sp) synthesis starts
intracellularly in sclerocytes (scl). The primordial spicules are associated
with filaments (fi) which are assumed to participate in the extrusion of
the growing spicule. This phase is dominated by the expression of
silicatein that – at the later stage – is required for the formation of both
the core and the shell cylinder of the siliceous mantel of the spicule. The
newly formed silicatein molecules undergo fractal organization. (B) The
primordial spicule is extruded and becomes associated in the
extracellular space with sclerocytes (scl) which intracellularly form the
silicasomes (sis). These organelles contain silicatein and silicate that are
released into the extra-spicular space and cause bio-silica formation. (C)
The growth of the spicule (sp) continues in two directions; axial
elongation and appositional growth/thickening. The bio-silica forma-
tion is mediated by silicatein (sil) under the consumption of the
substrate silicate (si). Growth of spicule is driven both longitudinally and
(subsequently) radially along the cell protrusion. During this phase the
cell extensions elongate by evagination. The core of the spicule mantel
is formed by silicatein, existing in the axial canal, and the shell by
silicatein layered onto the outer surface of the growing spicule. (D) Final
completion of the size and form of the spicule. After termination the
spicule disconnects from the sclerocyte (not shown in the scheme) and
the hole is closed by bio-silica formation. The direction of cell
movement is indicated with an arrow.
doi:10.1371/journal.pone.0020523.g009
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process in metazoans, which can be explained by an interplay of

movement, intercalation, and division of cells as well as by changes

in the cell polarization and shape [42]. On the tissue level

evagination is primarily controlled by morphogenetic events that

are driven by molecular/genetic processes. A famous example is

the Wnt signaling pathway which is controlling development

processes but also diseases [43,44]. This pathway which is based

on a sequential expression of a gene cluster is implicated in axis

formation in metazoans. We described this pathway in sponges

and implied it in the establishment of axis formation in

primmorphs and embryos of S. domuncula [45]. A chain of

differential gene expression causes a controlled cell-cell commu-

nication that is essential for the generation of a patterned tissue

and/or embryo. It is reasonable to assume that solely cell-based

morphogenetic events within tissue or embryos are governed by

sequential molecular readout only. However, a quantitatively and

also qualitatively different process should be adopted to describe

the formation of inorganic/organic structures. Those processes,

e.g. here the spicule formation, are driven by a component that is

genetically controlled and, in addition, a second component which

has to follow hydro-mechanical principles [46], occurring during

the purely chemical processes; Fig. 9. The spicule formation is

initiated by a sequential gene expression of the silicateins and of

collagen, as described [12]. These gene products are associating to

cylinders. Subsequently, a self-organization of silicatein proceeds

that is under the control and constraints of fractal parameters

[47,48]. The initial, intracellularly formed primordial spicules are

extruded from the cells via evagination, a process which is assumed

to be driven by hydro-mechanical forces. These forces are due to

differences in the resistance forces of the cell membrane and the

forces originating from the intracellular composition of the

(macro)molecules and the osmotic pressure. And finally since also

inorganic, silica polycondensation reactions are involved, tension

forces are occurring during the sol-gel processes of bio-silica

formations that guide the cellular extensions and move away the

cell body. The latter forces are supposed to occur in a processive

way during the evagination of the cell protrusions. This conclusion

is also in line with recent observations that during polyconden-

sation reaction both enzymatic and non-enzymatic chemical

bonds are formed [49]. As outlined in Fig. 9 the synthesis of the

spicule occurs first by axial elongation that results in the bio-silica

deposition of the core. Slightly retarded, the process of the

appositional growth of the spicules, the shell formation, starts

resulting in the thickening of the spicules.

In conclusion, the process of spicule formation can be

operationally dissected into the following stages. (i) Initial stage

of gene expression, primarily of the major spicule-forming gene,

silicatein, and subsequent association of the formed silicatein

molecules following a fractal mechanism (Fig. 9A). (ii) Extrusion

of the primordial spicule into the extracellular space (Fig. 9B).

There, two spatially separated processes of enzymatic polycon-

densation proceed; first deposition of bio-silica onto the surface of

the growing spicules [extra-spicular bio-silica deposition]. The

spicule associates with other sclerocytes which in turn transfer their

silicasomes into the extracellular space. There, silicatein and its

substrate silicic acid are released from those vesicles. Subsequently,

bio-silica is formed and deposited onto the surface of the spicule,

resulting in an appositional growth. By this, the siliceous shell of

the spicule is formed. The second process involves the evagination

of the cell protrusion into the axial canal of the spicule where the

intra-spicular silicatein-mediated polycondensation process takes

place. During this process the core of the silica mantel is formed

[intra-spicular bio-silica deposition] (Fig. 9C). This model implies

that the cells move away from the growing spicules. It can be

suspected that the driving forces required for the cell movement

come, at least partially, from the myosin-based motility of the

sponge cells [50]. In addition, it is postulated that the process of

polycondensation (formation of a rigid silica shell) not only

contributes to the elongation of the spicule but also to the

separation of the spicule from the sclerocyte body. This process

continues until the final form and size of the spicule is completed

(Fig. 9D). The remaining hole of the axial canal to the sclerocyte is

closed by bio-silica formation, mediated by extra-spicular and also

intra-spicular silicatein.

In turn we can summarize the sequence of events that governs

spicule formation by the following chain of processes: differential

GENETIC READOUT (silicatein, collagen) R FRACTAL ASSOCIATION of

the silicateins R EVAGINATION of cells by hydro-mechanical

forces R and finally PROCESSIVE POLYCONDENSATION of bio-silica.

We term the interactions of these two processes, biologically driven

events and chemically occurring processes that run sequentially or

in parallel, as BIO-INORGANIC SELF-ORGANIZATION. This term

should express that the bio-genetic self-organization mechanisms,

characteristic for the arrangement of cells within tissue, also are

under the control of processes that originate from chemical and/or

physical processes.
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