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Abstract

Most autotrophs use the Calvin—Benson—-Bassham (CBB) cycle for carbon fixation. In contrast, all currently described
autotrophs from the Campylobacterota (previously Epsilonproteobacteria) use the reductive tricarboxylic acid cycle (rTCA)
instead. We discovered campylobacterotal epibionts (“Candidatus Thiobarba) of deep-sea mussels that have acquired a
complete CBB cycle and may have lost most key genes of the rTCA cycle. Intriguingly, the phylogenies of
campylobacterotal CBB cycle genes suggest they were acquired in multiple transfers from Gammaproteobacteria closely
related to sulfur-oxidizing endosymbionts associated with the mussels, as well as from Betaproteobacteria. We hypothesize
that “Ca. Thiobarba” switched from the rTCA cycle to a fully functional CBB cycle during its evolution, by acquiring genes
from multiple sources, including co-occurring symbionts. We also found key CBB cycle genes in free-living
Campylobacterota, suggesting that the CBB cycle may be more widespread in this phylum than previously known.
Metatranscriptomics and metaproteomics confirmed high expression of CBB cycle genes in mussel-associated “Ca.
Thiobarba”. Direct stable isotope fingerprinting showed that “Ca. Thiobarba” has typical CBB signatures, suggesting that it
uses this cycle for carbon fixation. Our discovery calls into question current assumptions about the distribution of carbon
fixation pathways in microbial lineages, and the interpretation of stable isotope measurements in the environment.
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potential to improve crop yields and sequester carbon
dioxide from the atmosphere [1]. Seven carbon fixation
pathways have evolved in nature, and one purely synthetic
pathway runs in vitro [2—4]. Of the seven natural path-
ways, the Calvin—Benson—Bassham (CBB) cycle was the
first discovered, and is believed to be the most widespread
[5-7]. The CBB cycle is used by a diverse array of
organisms throughout the tree of life, including plants and
algae, cyanobacteria, and autotrophic members of the
Alpha-, Beta-, and Gammaproteobacteria. Its key enzyme,
the ribulose 1,5-bisphosphate carboxylase/oxygenase
(RuBisCO) is thought to be the most abundant, as well as
one of the most ancient enzymes on Earth [8, 9].

The reductive tricarboxylic acid (fTCA) cycle was the
second described carbon fixation pathway [10]. In short, it
is a reversal of the energy-generating oxidative TCA cycle.
Instead of oxidizing acetyl-CoA and generating ATP and
reducing equivalents, it reduces CO, at the expense of ATP
and reducing equivalents [2, 7, 10]. Most of the enzymes
are shared with the TCA cycle, except for those that cata-
lyze irreversible reactions in the TCA, such as citrate syn-
thase, which is catalyzed by ATP citrate lyase in the
rTCA cycle. However, given sufficiently high reactant to
product ratios and enzyme concentrations, the citrate syn-
thase reaction can be reversed to run the TCA cycle
reductively, without any additional enzymes [11, 12]. The
TCA pathway is widely distributed in nature, and has
been described in diverse lineages of anaerobes and
microaerobes, such as the Chlorobi, Aquificae, Nitrospirae,
and is also commonly observed among the Proteobacteria,
including the Deltaproteobacteria and the Campylobacter-
ota, (formerly Epsilonproteobacteria) [13, 14]. It is parti-
cularly prominent in the Campylobacterota, as all
previously described autotrophic members of this class use
the rTCA pathway for CO, fixation [2, 13].

Carbon fixation by chemoautotrophic microorganisms
forms the basis of entire ecosystems at deep-sea hydro-
thermal vents and cold seeps [15, 16]. Most of this carbon is
fixed either via the CBB cycle, used by many gammapro-
teobacterial autotrophs, or the rTCA cycle, used by cam-
pylobacterotal autotrophs. This difference is reflected by the
different niches colonized by these organisms at hydro-
thermal vents and seeps, with Gammaproteobacteria typi-
cally dominating habitats with higher oxygen and lower
sulfide concentrations where the CBB cycle would be more
efficient, and Campylobacterota typically thriving at lower
oxygen and higher sulfide concentrations where the rTCA
cycle could provide a selective advantage [17-23].
Experimental studies have linked substrate preferences in
cultured Gammaproteobacteria and Campylobacterota to
these ecological distributions [24-26]. Symbiotic inverte-
brates at hydrothermal vents and cold seeps associate
with either gammaproteobacterial or campylobacterotal

endosymbionts, which they rely on for most of their nutri-
tion [27, 28]. Some vent and seep invertebrates associate
with both gammaproteobacterial and campylobacterotal
symbionts simultaneously, which raises the question of how
these co-occurring symbionts with differing habitat pre-
ferences can both be provided with suitable conditions
[27, 29, 30].

Bathymodiolin mussels, a subfamily of mytilid bivalves,
are found worldwide at hydrothermal vents and cold seeps
[31]. They have evolved symbiotic relationships with che-
mosynthetic bacteria, allowing them to colonize these
extreme environments. Inside their gills, they host intra-
cellular gammaproteobacterial endosymbionts in epithelial
cells called bacteriocytes. The dominant endosymbionts are
sulfur- and methane-oxidizing bacteria, often co-occurring
in the same mussel species. Some sulfur-oxidizing sym-
bionts also use hydrogen as an energy source, and some
mussel species host additional symbionts that gain energy
from short-chain alkanes [32, 33]. In addition to these
dominant endosymbionts, Assié€ et al. recently discovered
epibionts that colonize bathymodiolin mussels from around
the world [34]. In contrast to the gammaproteobacterial
endosymbionts of bathymodiolins, these epibionts belong to
the Campylobacterota. They are filamentous and colonize
the surfaces of the gill epithelia in dense patches in the
extracellular spaces between the gill filaments, through
which the mussel pumps the inflow of oxygenated seawater
(Fig. S1). The nature of the association between the epi-
biotic Campylobacterota and their mussel hosts is not clear.
Similar associations in other deep-sea invertebrates, such as
Kiwa crabs [35], gastropods [36], and shallow-water
nematodes [37] are thought to be beneficial or commensal.

In this study, we used a multi-omics approach to inves-
tigate the metabolism of the Campylobacterota epibionts in
two bathymodiolin mussels species, “Bathymodiolus”
childressi from cold seeps in the Gulf of Mexico, which
have only methane oxidizers as their dominant endo-
symbiont, and Bathymodiolus azoricus from the Mid-
Atlantic Ridge, which host both a sulfur- and a methane-
oxidizing endosymbiont [27]. Unexpectedly, the epibionts
had, and expressed, all genes required for the CBB cycle but
appeared to lack key genes of the rTCA cycle. These CBB
cycle genes were most likely acquired by horizontal gene
transfer (HGT) from diverse sources. With a recently
developed, highly sensitive, direct stable isotope finger-
printing technique [38], we show that the proteins of these
epibionts had an isotopic signature typical of the CBB
cycle, further demonstrating its importance for the meta-
bolism of these epibionts. The discovery of Campylo-
bacterota that use the CBB cycle for CO, fixation has
implications for understanding the evolution of carbon
fixation pathways, and for interpreting stable isotope values
in environmental samples.

SPRINGER NATURE
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Results and discussion
Genome assemblies and annotations

We assembled Campylobacterota draft genomes from gill
metagenomes of two mussel species: “B.” childressi and
B. azoricus. The draft genome from “B.” childressi was
2.2Mb, and estimated to be 95% complete. It was com-
posed of 354 contigs (longer than 900 bp) with an N50 of
6367 bp, and had 30% GC content, 2204 predicted protein-
coding genes and 31 tRNA-encoding genes. The draft
genome from B. azoricus was estimated to be 92% com-
plete at 2.3 Mb. It was composed of 523 contigs (longer
than 900 bp) with an N50 of 4446bp. It had 30% GC
content, 2155 predicted protein-coding genes and 37 tRNAs
(Supplementary Table S1). The draft genomes had an
average nucleotide sequence identity (ANI) of 83.1%,
indicating that they represent different species likely
belonging to the same genus [39-42]. The low GC content
of both genomes falls within the range found in other
Campylobacterota genera, such as Arcobacter with 27%,
and Sulfurovum with 41% GC content.

Sequence analysis of 16S ribosomal RNA genes (16S
rRNA, Fig. S2) identified these epibionts as a novel family-
level, deep-branching, sister group of the Sulfurovum clade
within the Campylobacterota [34]. The Campylobacterota
draft genome from “B.” childressi contained a partial 16S
rRNA sequence (586 bp) that was 100% identical to the
epibiont sequence previously published [34]. The metage-
nomic 16S rRNA sequences and ANI information allowed
us to link the two draft genomes to the previously described
epibiont [34].

To better resolve the relationships of the mussel epi-
bionts to other Campylobacterota, we analyzed a set of
18 conserved marker genes from the two epibiont draft
genomes and other publicly available Campylobacterota
genomes (Fig. 1). In contrast to the 16S rRNA based phy-
logeny (Fig. S2), our analysis placed the mussel epibionts
on a long branch, basal to the main Campylobacterota
families. The long-branch formation for the genomes pre-
sented in this study is likely related to low amino acid
sequence identity (AAI) values between these and the
Campylobacterota representative genomes. It is unlikely
caused by long-branch attraction artifacts due to major
differences in GC content, because the genes and genomes
compared have similar GC contents (Fig. 1). AAI values
were below 48% when comparing the Campylobacterota
bins found in our bathymodiolin samples with their closest
relatives Sulfurospirillum arcachonense and Arcobacter
anaerophilus (Supplementary Table S2). According to the
guidelines of Rodriguez and Konstantinidis [42], organisms
with AAI values higher than 30% and lower than 55-60%
likely belong to the same division, but not the same genus.

SPRINGER NATURE

In summary, both 16S rRNA and concatenated marker gene
phylogenies indicated that the epibionts belong to a novel
family of Campylobacterota.

We therefore propose the new Candidatus family
“Thiobarbaceae” (Campylobacterales, Campylobacterota),
with the name composed of “Thio- from the Greek word
O¢iov, theion, for sulfur and “barba” from the Latin word
for beard. The proposed family includes the novel Candi-
datus genus “Thiobarba” with two Candidatus species
“Ca. T. azoricus” and “Ca. T. childressi”, for the two epi-
biont species in reference to their respective hosts,
B. azoricus and B. childressi. For more details on the
etiology see SI Appendix note 1.

Unexpected carbon fixation pathways of
“Candidatus Thiobarba spp.”

Considering their phylogenetic relationship to free-living
chemolithoautotrophic and mixotrophic Campylobacterota
and their presence in sulfide-rich environments, we searched
the epibiont draft genomes for metabolic pathways indicative
of heterotrophy, autotrophy, and sulfur oxidation. Both
“Ca. Thiobarba” genomes encoded all the genes for the SOX
multi-enzyme pathway of sulfur oxidation and are thus cap-
able of lithotrophy using reduced sulfur compounds as
electron donors (Fig. 2). Like other sulfur-oxidizing Campy-
lobacterota, they also appear capable of heterotrophic growth
as their genomes contained an oxidative TCA cycle, a partial
glycogenesis/glycolysis pathway and numerous ABC-like and
TRAP transporters (SI Appendix note 2 and Fig. S3).

All previously described sulfur-oxidizing Campylobacter-
ota use the reverse TCA cycle for carbon fixation [2]. All of
these bacteria have genes encoding the enzymes for this cycle
including the pyruvate: ferredoxin oxidoreductase genes
porABCD, the 2-oxoglutarate oxidoreductase genes oor-
ABDG, and the ATP citrate lyase genes aclAB. Unexpectedly,
we could not find most of these genes in the “Ca. Thiobarba”
genomes. The “Ca. T. childressi” draft genome contained
only the porAB genes, and the “Ca T. azoricus” draft genome
contained porABCD and aclA, but not the 0orABDG genes. In
“Ca. T. childressi” the aclA genes was the only gene present
on a 1 kb-long contig. To confirm that these genes were not
missing because of errors in assembly, binning or annotation,
we performed two different analyses: we searched the gen-
omes and unbinned metagenome assemblies with BLAST,
and we mapped the unassembled reads to a database we
created from hundreds of published sequences for the key
rTCA cycle genes, oor, por, and acl (SI Appendix note 3 and
Table S9). No additional rTCA cycle genes were found in the
draft genomes or in the “B.” childressi metagenome assem-
bly. The absence of rTCA cycle genes suggests that either (a)
the epibionts never had a complete rTCA cycle, (b) it was lost
over evolution, or (c) as the “Ca. Thiobarba” genomes are not
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Fig. 1 Phylogenomic tree of representatives of Campylobacterota. The
18 single copy genes used in this analysis were chosen based on the
AMPHORA? marker database [90]. Five deltaproteobacterial species
were used to root the tree. In blue are genomes with rTCA cycle genes

yet complete, it is possible that the missing rTCA cycle genes
could still be present in the epibiont genomes but were not
recovered. The por genes are also part of other metabolic
pathways, such as pyruvate fermentation, and are widely
distributed across the Campylobacterota, including non-
chemotrophic members such as Helicobacter pylori [43].
This could explain why the por genes were present in both
lineages [44].
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Although the rTCA cycles were incomplete, both
“Ca. Thiobarba” genomes contained all the genes required
for carbon fixation via the CBB cycle (Fig. 2). Most CBB
cycle enzymes are used in other metabolic pathways, and
are thus also found in heterotrophic bacteria, but two
enzymes are unique to the cycle: phosphoribulokinase
(PRK) and ribulose 1,5-bisphosphate carboxylase/oxyge-
nase (RuBisCO) [2]. In both “Ca. Thiobarba” species, 9 out
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compared with the metabolism of “Ca. Thiobarba spp.”

of the 12 genes encoding PRK, RuBisCO, and accessory
proteins were grouped in two clusters, while three addi-
tional genes for the CBB cycle were scattered on separate
contigs (Fig. S4). The first cluster consisted of the RuBisCO
Form I large and small subunits (rbcL and rbcS), a con-
served hypothetical protein, and the RuBisCO activation
protein ¢bbQ. The order of these genes was conserved in
both epibionts (Fig. S5). “Ca. T. childressi” had an addi-
tional gene encoding the RuBisCO activation protein chbO
in this first cluster. In the “Ca. T. azoricus” genome, this
gene was located on a separate contig. The second cluster
included the genes coding for fructose-1,6-bisphosphatase,
PRK, transketolase, phosphoglycolate phosphatase,
fructose-bisphosphate aldolase, and ribulose-phosphate
3-epimerase (Fig. S4). The order of the second gene clus-
ter was consistent in both epibiont genomes, but the gene
neighborhoods surrounding this cluster differed (Fig. S5).
As the genomes of “Ca. Thiobarba” are not closed, we
analyzed the assemblies further to rule out that the CBB
cycle genes originated from assembly error. Multiple lines
of evidence support our interpretation. Firstly, identical

SPRINGER NATURE

gene cluster structures, for both RuBisCO and accessory
genes, have been reconstructed independently from two
separate host species. Secondly, analysis of the sequence
coverage of these clusters did not show deviation from the
rest of the genome, which would be an indicator for an
assembly artifact [45]. Furthermore, “B.” childressi does
not host a sulfur-oxidizing endosymbiont from which a
RuBisCO sequence could originate, further reducing
the likelihood of a metagenomic miss-assembly. Because
of this and considering the higher quality of the draft gen-
ome assembly, we focused our further analyses on
“B.” childressi.

CBB cycle expression in “Ca. Thiobarba childressi”

To confirm expression of the CBB cycle by the epibionts,
we analyzed the metatranscriptomes and -proteomes of
“B.” childressi, the mussel species with the highest abun-
dance of these epibionts [34]. We found that all CBB cycle
genes were expressed in the transcriptomes, including the
rbcL and rbcS, which were among the most highly
expressed genes of this epibiont (Table 1). “Ca T. child-
ressi” was present in relatively low abundance in the
metaproteome samples (~0.5% of the total sample protein,
calculated according to [46]), thus, only the most abun-
dantly expressed proteins could be detected. The RuBisCO
small and large subunits were among those “Ca T. child-
ressi” proteins detected, further indicating high expression
levels. The abundance of CBB cycle transcripts and proteins
highlights their importance in the metabolism of “Ca.
T. childressi” (for full transcription and expression infor-
mation, see Supplementary Tables S3 and S4). In contrast,
the porABCD genes were transcribed, but not detectable in
the proteome suggesting a less important role of these
genes.

Direct stable isotope fingerprinting suggests a CBB
signature for “Ca. Thiobarba childressi”

The stable carbon isotope signatures of an environmental
sample reflect the pathway that dominates inorganic carbon
fixation in the chemoautotrophic members of the bacterial
community [47]. Due to differences in kinetic isotope
effects, the enzymes involved in the different carbon fixa-
tion pathways vary in the degree to which they discriminate
against the heavier '*C. This leads to a shift in the '*C/!*C
ratio between the inorganic carbon source and the generated
biomass that is characteristic for the carbon fixation path-
way. The CBB cycle generates a —13 to —26%o shift of the
8¢ ratio, while the rTCA cycle leads to a much smaller
—3 to —13%o shift [47].

The average 8'°C value of bulk “B.” childressi gill
tissues was —47.1 +£2.6%o0, (Supplementary Table SS5).
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Table 1 Transcription and
translation ranks for the
detectable genes involved in the
CBB cycle of “Ca. T. childressi”

Gene_ID

BCM6EPS_1532

BCM6EPS_1531

BCMG6EPS_1455

BCM6EPS_1028
BCM6EPS_1030

BCMG6EPS_126

BCM6EPS_1031
BCM6EPS_1027
BCMG6EPS_1026

BCMG6EPS_125

BCM6EPS_1029
BCMG6EPS_124

BCMG6EPS_1456
BCM6EPS_514
BCM6EPS_127

Name Transcription rank Translation rank
Ribulose 1,5-bisphosphate carboxylase large 14 18

chain - EC 4.1.1.39

Ribulose 1,5-bisphosphate carboxylase small 17 19

chain - EC 4.1.1.39

NAD-dependent glyceraldehyde-3-phosphate 75 Not detected
dehydrogenase - EC 1.2.1.12

Transketolase - EC 2.2.1.1 80 Not detected
Fructose-bisphosphate aldolase class II - EC 90 Not detected
4.1.2.13

Pyruvate-ferredoxin oxidoreductase- delta 129 Not detected
subunit -EC 1.2.7.1- CDS

Ribulose-phosphate 3-epimerase - EC 5.1.3.1 150 Not detected
Phosphoribulokinase - EC 2.7.1.19 160 Not detected
Fructose-1-6-bisphosphatase- type I - EC 182 Not detected
3.1.3.11

Pyruvate-ferredoxin oxidoreductase- alpha 217 Not detected
subunit -EC 1.2.7.1- CDS

Phosphoglycolate phosphatase - EC 3.1.3.18 236 Not detected
Pyruvate-ferredoxin oxidoreductase- beta 256 Not detected
subunit -EC 1.2.7.1- CDS

Phosphoglycerate kinase - EC 2.7.2.3 440 Not detected
Triosephosphate isomerase - EC 5.3.1.1 461 Not detected
Pyruvate-ferredoxin oxidoreductase- gamma 720 Not detected

subunit -EC 1.2.7.1- CDS

However, these values reflect the stable isotope compo-
sition of all members of the symbiotic community. As
most of the biomass is from the host animal or the highly
abundant  methane-oxidizing  gammaproteobacterial
endosymbiont, the signal of the epibiont was greatly
diluted [48]. To overcome this limitation and to distin-
guish between the stable carbon isotope values of the
symbiotic partners, we employed the recently-developed
direct Protein-SIF method (SIF = stable isotope finger-
printing) on our metaproteomic data [38]. Direct Protein-
SIF quantifies the stable isotopic composition of unculti-
vated members of a mixed community for which genomes
or transcriptomes are available. Peptides from the
methane-oxidizing symbionts had a 8'°C of —38.8 =
0.7%o, and host peptides had —44.2 + 0.6%0. These values
are similar to those of the methane gas at this cold seep
site. Thus, the methane-oxidizing symbionts likely obtain
most of their carbon from methane [49]. The host values
were similar to those of bulk measurements. However,
they were unexpectedly light compared with the methane-
oxidizing symbionts, considering that these mussels are
thought to gain most of their nutrition from their methane-
oxidizing symbionts, and would therefore be expected to
have similar 8'°C values. As “B.” childressi is known to
be capable of filter-feeding [50], these values possibly
reflect nutritional supplementation from filter-feeding on

microorganisms with even lighter 8'°C values than the
methane-oxidizing symbionts, that is from the seep
environment (as phototrophic microorganisms from the
surface would have heavier §'°C values).

“Ca. T. childressi” had a much lower abundance in the
metaproteomic dataset compared with the host and the
methane-oxidizing symbionts, yet we detected 49 peptides
that were unique to “Ca. T. childressi”. This allowed us to
estimate the epibionts natural 8'3C value, which was rela-
tively light at —66.6 +12.5%c. There are two possible
inorganic carbon sources for this epibiont: (1) ambient
seawater inorganic carbon, which has a 813C value of +
3%o0 [49], and (2) inorganic carbon produced as an end
product of methane oxidation by methane-oxidizing bac-
teria or respiration by the host, which we expect to be
around —39%o for a gas hydrate site, similar to our col-
lection site [48, 49]. We calculated the expected values of
biomass generated if either of these carbon sources were
fixed through the rTCA cycle or the CBB cycle (Fig. 3).
Regardless of the inorganic carbon source, the 813C values
of “Ca. T. childressi” peptides were far lighter than would
be expected if they used the rTCA cycle. They were,
however, consistent with the expected values for carbon
fixation using the CBB cycle, with inorganic carbon
derived from symbiont methane oxidation or host
respiration.
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Fig. 3 Stable carbon isotope values of “Ca. Thiobarba childressi” are
consistent with carbon fixation via the CBB cycle. Model of 8'*C
values of deep-sea carbon and the predicted influence of different
inorganic fixation pathways on these values. The 5'>C values of CO,
originating from ambient seawater are shown in yellow, and the
expected 8'°C values of CO, originating from methane oxida-
tion (MOX) are shown in blue. The red line represents the average
813C value measured for “Ca. Thiobarba” peptides using direct
Protein-SIF. Reference 813C values for “Seep methane” and “Seep/
ambient CO,” are based on Macavoy et al. [48] and Sassen et al. [49].
Transformations of 8'°C values for each metabolic pathway are esti-
mated based on Pearson et al. [47]

Calvin cycle genes in free-living Campylobacterota

After discovering the CBB cycle in the mussel epibionts, we
asked if other members of the Campylobacterota might also
have acquired these genes. We discovered key CBB cycle
genes in a Campylobacterota draft genome binned from a
metagenomic library from diffuse hydrothermal fluids col-
lected in the Manus Basin (Western Pacific) [23]. This draft
genome was composed of 60 contigs with 29.1% GC content,
and based on CheckM, was 92.2% complete [51]. Phyloge-
nomic reconstruction placed this organism on a deep branch
basal to the Arcobacteraceae family. AAI values showed
between 55 and 58% similarity with the Arcobacteraceae,
suggesting that this Campylobacterota bin might belong to a
new genus within the Arcobacteraceae (Supplementary
Table S2). Our phylogenetic analyses and AAI values indicate
that this environmental bin belongs to a Campylobacteraota
family distinct from “Ca. Thiobarba” (Fig. 1). Although a full
rTCA cycle was present in the draft genome, we also found
genes coding for a RuBisCO form I enzyme, a hypothetical
gene and CbbQ in one cluster. This cluster shared the same
gene order, as well as 84% nucleotide sequence identity, with
the CBB cycle cluster we found in “Ca. Thiobarba” (Fig. S5).
The high sequence identity between these clusters suggests a
similar origin for both. If these genes and the enzymes they
encode are active in the Manus Basin bacterium, then free-
living Campylobacterota may also be able to use the CBB
cycle to fix carbon. These bacteria could use either or both
cycles depending on the environmental setting, as suggested
for the sulfur-oxidizing gammaproteobacterial symbionts of
vestimentiferan tubeworms found at hydrothermal vents
[52-54], the large sulfur bacteria Beggiatoa and Thio-
margarita spp. [55-57], and recently, the cultivable sulfur
oxidizer Thioflavicoccus mobilis [58]. The tubeworm
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symbiont “Ca. E. persephone” expressed both the CBB and
the rTCA cycle in the same host individual, but it is still
unclear how these two cycles are coordinated at the level of
individual symbiont cells, or over time [53, 54].

Possible evolutionary origins of Campylobacterota
CBB cycle genes

Considering the lack of CBB cycle genes in all Campylo-
bacterota investigated prior to this study, it is most likely
that this carbon fixation pathway was acquired by “Ca.
Thiobarba” and free-living Campylobacterota through
HGT, rather than being an ancestral pathway in this phy-
lum. We investigated the evolutionary origins of the genes
coding for CBB enzymes, including those with additional
roles in other metabolic pathways, using BLAST analyses
of nucleotide and protein sequences, and phylogenetic
reconstruction of protein sequences. BLAST analyses
revealed that only two of the “Ca. Thiobarba” CBB cycle
genes were affiliated with genes from other Campylo-
bacterota. Of the other ten, five had best hits to Gamma-
proteobacteria, and five had best hits to Betaproteobacteria
(Supplementary Table S6).

Phylogenetic reconstruction further supported our
hypothesis that the “Ca. Thiobarba” CBB cycle is a
‘patchwork’ of genes with evolutionary origins in the
Betaproteobacteria, Gammaproteobacteria, and Campylo-
bacterota (Fig. 4). The RuBisCO large and small subunits
rbcL and rbcS, their accessory proteins chbQ and cbbO, as
well as the glyceraldehyde-3-phosphate dehydrogenase
proteins clustered with a clade of gammaproteobacterial
sulfur-oxidizing chemolithoautotrophs. Many of the related
sequences belonged to free-living sulfur oxidizers such as
“Ca. Thioglobus autotrophicus” and the gammaproteo-
bacterial sulfur-oxidizing endosymbionts of bathymodiolin
mussels (Fig. 5). Phylogenetic analysis of “Ca. Thiobarba”
PRK proteins placed these on a long branch between
gamma-, alpha- and betaproteobacterial clades, but this
placement did not have high support (Fig. 6). This could
indicate that the “Ca. Thiobarba” PRK proteins truly belong
to a Campylobacterota gene family, and because these are
the first sequences available from this family, their phylo-
genetic placement is currently not well supported. Further
sampling may help to clarify their evolutionary history.
Four “Ca. Thiobarba” CBB cycle proteins consistently
belonged to a sister branch to betaproteobacterial sequences
(fructose-1,6-bisphophatase,  1,6-bisphophate  aldolase,
transketolase, and ribulose-phosphate 3-epimerase). Only
two proteins were phylogenetically related to those from
other Campylobacterota (phosphoglycerate kinase and
triose phosphate isomerase) (Figs. S6-S25).

The CBB cycle genes consistently fell into three phylo-
genetic groups: three CBB enzymes were encoded by genes
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most closely related to those of other Campylobacterota, two
were encoded by genes closely related to gammaproteo-
bacterial genes, and seven steps were encoded by genes
related to those from Betaproteobacteria. The “Ca. Thio-
barba” CBB cycle genes that fell within the Gammaproteo-
bacteria were organized in the same order as genes with
which they were most closely related, such as those from “Ca.
Thioglobus autotrophicus” and the endosymbionts of bath-
ymodiolin mussels (Fig. S5 and SI Appendix note 4),
including the same hypothetical genes placed between the
rbeS and cbbQ genes. Furthermore, the genes that were most
closely related to Betaproteobacteria had a similar organiza-
tion to genes found in free-living Betaproteobacteria, such as
Paraburkholderia xenovorans (NC_007651) and Dechlor-
omonas aromatica (NC_007298) (Fig. S5), the difference
being that “Ca. Thiobarba” operons contain a phosphogly-
colate phosphatase gene absent in the free-living genomes.
This similarity further supports the hypothesis that these CBB
cycle genes were acquired by “Ca. Thiobarba™ at least twice,
in independent HGT events, with one possibly originating
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from Gammaproteobacteria, and another possibly from
Betaproteobacteria. Alternatively, it is also possible that the
Betaproteobacteria-like genes clustering on long branches,
such as the PRK, are Campylobacterota genes that have
not previously been sequenced. Regardless of the number
of HGT events, the acquisition of these genes presumably
happened in a common ancestor to the “Ca. Thiobarbaceae”.

Codon usage of horizontally acquired genes is initially
expected to reflect the codon usage of the original donor’s
genome. Over time, codon usage will evolve to match that
of its new host [59]. Some of the “Ca. Thiobarbaceae” CBB
cycle genes that we hypothesize were acquired via HGT
have, when compared with the closest relative belonging to
a different class, a highly similar amino acid identity but
differ strongly at the nucleotide level. For example, the
RuBisCO small and large subunit amino acid sequences
were 98% identical to the sequence from the sulfur-
oxidizing gammaproteobacterial endosymbiont, although
the nucleotide sequences shared only 47% identity (more
details are available in Supplementary Table S6). In
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Fig. 5 “Ca. Thiobarba” RuBisCO proteins cluster with gammapro-
teobacterial sequences. Bayesian inference trees of RuBisCO large (a)
and small (b) subunit amino acid sequences under an LG model with
Gamma-distributed rates of evolution. Analyses were performed with
6 million generations using two parallel Monte Carlo Markov chains.

addition, codon usage analysis of all “Ca. Thiobarba” CBB
cycle genes showed that these had a codon usage similar to
that of the “Ca. Thiobarbaceae” core genome (Fig. S26).
These results suggest that if these CBB cycle genes were
acquired horizontally from donors that had different codon
usage patterns to “Ca. Thiobarbaceae”, this was not a
recent event.
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Sample trees were taken every 25,000 generations. Left arrows indi-
cate truncated tree, tree roots were built from Prochlorococcus and
Synechococcus sequences for (a) and Planktothrix and Synechococcus
sequences for (b). Full trees are displayed as Figs. S14 and S15

Gene order within each of the two CBB clusters was
identical in “Ca. T. azoricus” and “Ca. T. childressi”. This
further supports our hypothesis of a single acquisition
event for each cluster in a common ancient ancestor. This
synteny also highlights the tendency of these clusters to
resist genomic rearrangements. In contrast, the genomic
neighborhoods of the CBB clusters differed between the
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Fig. 6 “Ca. Thiobarba” phosphoribulokinases are loosely affiliated
with those from Betaproteobacteria, Alphaproteobacteria, and Verru-
comicrobia. Bayesian inference tree of phosphoribulokinase amino
acid sequences under an LG model with Gamma-distributed rates of
evolution and a proportion of invariant sites. Analyses were performed

two “Ca. Thiobarba”, indicating that subsequent genome
rearrangements occurred since the divergence of these
two epibionts. Mobile element genes and transposases
were the most highly expressed genes in “Ca. T. child-
ressi” based on our transcriptomes, which, if active,
could explain these rearrangements (Supplementary
Table S3) [60].

Evolutionary advantages of the CBB cycle

Members of the Campylobacterota occupy remarkably
diverse habitats, and have a range of different lifestyles and

Vibrio sp. ER1A - KFA95131.1
Vibrio sp. 16 - WP_005471097.1
Vibrio breoganii 1C10 - WP_017031392.1
Photobacterium leiognathi lrivu.4.1 - GAD31011.1

Pseudoalteromonas porphyrae - WP_054206629.1
Pseudoalteromonas sp. SM9913 - WP_013464065.1
Uncultured Gammaproteobacteria - 01Q46702.1

Shewanella amazonensis SB2B - WP_011761109.1
Shewanella sp. MR 7-WP_011621530.1
Gallaecimonas pentaromativorans - WP_050659261.1

Nitrosomonas sp. AL212 - WP_013647316.1
? Uncultured marine bacterium 577 - AAR38080
Nitrosomonas europaea ATCC 19718 - WP_011112042.1

with 6 million generations using two parallel Monte Carlo Markov
chains. Sample trees were taken every 25,000 generations. Left arrow
indicates truncated root, the root is built from distant Prochlorococcus
and Synechococcus sequences. Full tree is displayed as SI appendix
Fig. S23

metabolic capabilities, from chemolithoautotrophs that use a
suite of electron donors and acceptors, to heterotrophic
symbionts and pathogens of humans and other animals
[13, 61]. Evolutionary studies suggest that Campylobacterota
emerged in deep-sea habitats, subsequently colonizing and
diversifying across terrestrial and human-associated environ-
ments [13, 62]. Considering the distribution of chemosyn-
thetic potential within the Campylobacterota, it has been
hypothesized that they evolved from an autotrophic common
ancestor that first used the Wood-Ljungdahl pathway before
switching to a more flexible rTCA cycle [13, 17, 63]. We
hypothesize that in the symbiotic “Ca. Thiobarba” lineage, the
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rTCA cycle was replaced by yet another carbon fixation
pathway, the CBB cycle.

Several environmental and genomic factors provide
important clues as to why the CBB cycle may be selected for
over the rTCA cycle in “Ca. Thiobarba”. Both the CBB and
rTCA cycles serve the same purpose, the fixation of inorganic
carbon to provide building blocks for cell biomass. But a
major difference between the two known carbon fixation
pathways is their energy requirements. For example, if one
molecule of pyruvate is synthesized from CO, via the CBB
cycle seven molecules of ATP are used, while the rTCA cycle
only requires two ATPs [2]. From an evolutionary point of
view, exchanging a more energy-efficient carbon fixation
pathway with a costlier one could best be explained if it
comes with an additional advantage such as oxygen tolerance.
The rTCA cycle relies on ferredoxin-based enzymes, which
are quickly oxidized by oxygen, and as a result, most
organisms with an rTCA cycle are anaerobes or microaerobes
[64, 65]. In contrast, CBB cycle enzymes are less affected by
oxygen [66]. “Ca. Thiobarba” colonizes the space between
the individual gill filaments (Fig. S1), a gas exchange organ
that is exposed to oxygen and is typically dominated by
gammaproteobacterial endosymbionts. Oxygen dissolved in
seawater is therefore first encountered by “Ca. Thiobarba”,
before the host or the endosymbionts. Considering that the
gills are constantly pumping water through the gills and the
inter-filament space, the epibionts will experience oxygen
concentrations as high as those in the surrounding seawater.
The close phylogenetic relationship between some “Ca.
Thiobarba” CBB cycle genes with those from the sulfur-
oxidizing gammaproteobacterial endosymbionts of bath-
ymodiolin mussels suggests that either (i) both symbionts
acquired CBB cycle genes from the same source or (ii) “Ca.
Thiobarba” acquired key genes from the gammaproteo-
bacterial endosymbionts already adapted to the mussel
gill niche.

Many free-living, deep-sea Campylobacterota colonize
abiotic and biotic surfaces [29, 67, 68]. Thus, the ancestor of
“Ca. Thiobarba” might have colonized mussel gills prior to
acquiring the CBB cycle. Colonizing mussel gills would bring
“Ca. Thiobarba” into close proximity to the mussel’s gam-
maproteobacterial endosymbionts. Sharing a niche has been
shown to be a stronger predictor of HGT than phylogenetic
relatedness [69]. Moreover, Campylobacterota have remark-
ably flexible genomes, with rampant genomic rearrangement
and DNA uptake [70-72]. This affinity for foreign DNA
uptake, and the physical proximity of mussel epibionts and
endosymbionts support scenario (ii) above. The acquisition of
the CBB carbon fixation pathway may have enabled “Ca.
Thiobarba” to thrive attached to an animal host, leading to the
complete reliance on the CBB cycle for carbon fixation and
potentially to the gradual loss of the rTCA cycle.
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Evolving a Calvin cycle in nature and the laboratory

The complex metabolic network that links carbon fixation
and central carbon metabolism poses a massive challenge to
switching carbon fixation pathways, either in nature or in
the laboratory. These links are usually specific to each
pathway and to each organism [66]. Efforts to introduce
nonnative carbon fixation pathways have mainly focused on
the CBB cycle because theoretically, only two additional
enzymes are needed to run this cycle, even in heterotrophs,
such as Escherichia coli [73, 74]. However, a number of
challenges must be overcome to express ‘foreign’ carbon
fixation pathways in new organisms. In addition to the
challenges inherent in expressing horizontally acquired
genes, such as nonnative promoter and codon usage, and the
need for chaperones and biosynthesis enzymes, gene
expression must be tightly regulated to balance the pro-
duction and consumption of intermediates and end pro-
ducts. Because of this, to run the CBB cycle in engineered
E. coli, the CBB cycle had to be synthetically decoupled
from gluconeogenesis by deleting the phosphoglycerate
mutase gene [73]. Switching from one carbon fixation
pathway to another may be simpler in chemolithoautotrophs
than rewiring a chemoorganoheterotroph, such as E. coli to
use the CBB cycle. In a chemolithoautotroph, production of
energy and reducing equivalents are already decoupled from
carbon fixation, as they are generated through oxidation of
reduced compounds such as sulfur. Nevertheless, switching
from the rTCA to the CBB cycle is a major shift in cellular
metabolism, requiring adaptation of diverse biosynthetic
pathways linked to carbon fixation. As far as we are aware,
this has not yet been observed in nature, but in the
laboratory, E. coli required extensive fine-tuning of meta-
bolic enzymes beyond the CBB cycle through experimental
evolution to run a fully functional CBB cycle [3, 73].

Conclusions

The environment is a potent driving force in structuring
symbiotic and free-living microbial communities
[27, 30, 75]. The distribution of gammaproteobacterial and
campylobacterotal sulfur oxidizers is a typical example of
adaptation to geochemical niches in a range of environ-
ments from hydrothermal vents [23] and cold seeps [21] to
oxygen minimum zones [76] and coastal sediments [77].
Gammaproteobacteria are usually associated with low-sul-
fide, high-oxygen environments, and Campylobacterota
with high-sulfide, low-oxygen environments. The hor-
izontal acquisition of the CBB cycle genes may have
allowed campylobacterotal “Ca. Thiobarba” to establish a
symbiotic relationship in a niche that is usually dominated
by Gammaproteobacteria.
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The diverse origins of “Ca. Thiobarba’s” CBB cycle
genes showcases the modularity [78] of bacterial metabo-
lism and demonstrates that in principle, fully functional
metabolic cycles can be pieced together with enzymes from
different organisms, both in the laboratory [3] and in nature.
In addition to acquiring the two genes theoretically required
by a heterotroph to encode a full CBB cycle, “Ca. Thio-
barba” seems to have replaced an extensive set of additional
CBB cycle genes. This suggests that similar to laboratory
models, this natural metabolic switch required ‘tweaking’ of
further enzymes of this pathway, and possibly other path-
ways that siphon off intermediates. Metabolic modularity
is considered one of the main factors organizing biological
networks [78]. Understanding genome evolution in
“Ca. Thiobarba” will shed light on the complex interplay
between gene acquisition, expression and the selection that
caused the evolution of this major metabolic shift. Our
findings highlight the central role that HGT plays in meta-
bolic modularity and environmental adaptation.

Carbon isotope signatures are routinely used to assess the
relative importance of the CBB and rTCA cycles in con-
temporary and past natural environments, and to infer the
key organisms responsible for primary production [79-82].
Although stable isotope signatures may accurately reflect
the relative importance of distinct carbon fixation pathways
in environmental samples, our study shows that assigning
these key ecological functions to particular microbial
groups requires a deeper understanding of how the under-
lying metabolic pathways are distributed in nature.

Material and methods
Sample collection

“B.” childressi individuals were collected at cold seeps in
the northern Gulf of Mexico at the GC246 and GC234 sites
during the R/V Atlantis AT26-13 cruise in April 2014,
Nautilus cruise NA044 in July 2014 and Nautilus NA058
cruise in May 2015. The B. azoricus individual was col-
lected at the Lucky Strike hydrothermal vent field on the
North Mid-Atlantic Ridge during the Biobaz cruise in 2013.
All mussels were recovered in ambient seawater in insulated
containers to maintain the water temperature at their col-
lection site. A list of samples and fixation details are sum-
marized in Supplementary Table S7.

DNA and RNA extraction

DNA was extracted from mussel gill tissue according to
Zhou et al. [83] with the following modifications: an initial
overnight incubation step was performed at 37 °C in 360 pl
of extraction buffer (100 mM Tris-HCI [pH 8.0], 100 mM

sodium EDTA [pH 8.0], 100mM sodium phosphate
[pH 8.0], 1.5M NaCl, 1% CTAB), and 40 ul of proteinase
K (10 mg/ml). For transcriptome sequencing, RNA was
extracted with an Allprep® DNA/RNA micro kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instruc-
tions. Concentrations of DNA and RNA were measured
with a Qubit® 2.0 Fluorometer (Invitrogen, Eugen, USA).

Metagenome sequencing and assembly

DNA extracted from gill tissues of one “B.” childressi
individual was sequenced at the Center for Biotechnology at
the University of Bielefeld (Bielefeld, Germany). A total of
471,459,598 paired-end reads (150bp) and 7,739,150
paired-end reads (250 bp long) were generated on Illumina
HiSeq 1500 and MiSeq machines, respectively. DNA
extracted from gill tissues of one “B.” and one B. azoricus
individual was sequenced by the Max Planck Genome
Center (Cologne, Germany) and generated, respectively,
57,172,785 and 159,408,731 paired-end reads (150 bp long)
on an Illumina HiSeq 2500.

We screened the metagenomic and metatranscriptomic
libraries for the presence of campylobacterotal 16S rRNA
sequences. The PhyloFlash 2.0 suite (https://github.com/
HRGV/phyloFlash) was used to perform RNA small sub-
unit (SSU) screening and reconstructions.

Metagenome assembly was performed as follows: First the
raw reads were quality trimmed (Q = 2) and Illumina adapters
were removed using BBduk (BBmap suite v37.9 from
Bushnell B. - sourceforge.net/projects/bbmap/). An initial
assembly was performed with Megahit [84] using default
settings. The resulting assembly file was then analyzed with
metawatt V2.0 binning tools [85], and draft genome bins were
generated by analyzing contig tetranucleotide frequency, dif-
ferential coverage and GC content. Contigs belonging to bins
with a Campylobacterota taxonomic signature were extracted.
The quality-trimmed metagenomic reads were then mapped
against the Campylobacterota contigs using Bbmap (BBmap
suite v37.9), filtering reads with a minimum identity of 98%.
The mapped reads were then used for a new assembly using
SPAdes 3.4.2 [86] with default settings. Additional details on
the assembly of “Ca. T. azoricus” are described in SI
appendix note 3. The bin of the free-living Campylobacterota
carrying CBB cycle genes was obtained from the Manus
Basin metagenome “NSu-F5” as described in [23] with three
rounds of read-mapping, reassembly and binning for final bin
completion of 92 and 11.7% contamination.

Bin quality was checked with CheckM [51] and a new
iteration of taxonomic binning, mapping, and assembly was
performed until no contamination from other bacterial
strains or host remained in the assembly. Contigs smaller
than 900 bp were included in BLAST analysis but excluded
from subsequent analyses because they were unlikely to
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have any relevant genetic information. Genomes were
annotated with RAST and cross-checked with IMG ER web
servers [87—-89]. Genome ANI and AAI were calculated
using the AAI and ANI calculator from the enveomics
collection [90] with the default settings. The specific cov-
erage for genomes and gene was calculated using BBmap.

Raw data were uploaded to the European Nucleotide
Archive under the accession numbers: PRJEB19882,
PRJEB23284, and PRJEB23286.

Transcriptome sequencing and processing

Transcriptomes of three “B.” childressi individuals were
sequenced at the Max Planck Genome Center (Cologne,
Germany); details are in Supplementary Table S7. Tran-
scriptome reads were processed as in Rubin-Blum et al.
[33]. Briefly, raw reads were mapped against the “Ca. T.
childressi” draft genome with BBmap (BBmap suite
v.37.09): reads were quality trimmed (Q =2), Illumina
adapters removed and a minimum similarity of 98% used to
map to the reference genome. The number of transcriptome
reads mapping to each gene was estimated with feature-
Counts v1.5.2 [91]. To compare the transcriptome libraries
of each individual, a normalization factor was estimated
with calcNormFactors based on the trimmed mean of M-
values (TMM) implemented in the edgeR version 3.16.5
[92]. The TMM normalized read counts were converted to
reads per kilobases of exon per million reads mapped
(RPKM) with edgeR (http://www.bioconductor.org).

rTCA cycle gene screening

To confirm presence or absence of the rTCA cycle in the
metagenomic and transcriptomic libraries, we created a
BLAST database containing published amino acid sequen-
ces of Campylobacterota rTCA key genes, citrate lyase,
2-oxoglutarate ferredoxin oxidoreductase, and pyruvate
ferredoxin kinase. The first metagenomic assembly itera-
tions, as well as the final Campylobacterota bins, were
screened using BLASTX against the respective database to
detect the presence of potential rTCA cycle genes.

Phylogenomic reconstruction

Phylogenomic trees were calculated using Phylogeno-
mics-tools (Brandon Seah, https://github.com/kbseah/
phylogenomics-tools). The draft genomes “Ca. T. child-
ressi” and “Ca. T. azoricus” and the free-living Campy-
lobacterotum from Manus basin were compared with the
genomes of 41 Campylobacterota representatives. Five
Deltaproteobacteria genomes were used as outgroup.
Universal marker proteins conserved across all bacteria
were screened using Amphora2 [93]. Genes present in one
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copy in every draft genome were selected for the phylo-
genomic reconstruction (rpsl, rplT, rpsB, rpIM, rpsS, rplK,
rplL, frr, rplP, rplA, rplB, pyrG,rpsM, smpB). Each gene
set was aligned using MUSCLE [94]. The concat_align.pl
script (phylogenomics-tools) was used for determining the
best protein substitution model of each marker alignment
(rpsI::LG, rplT::LG, rpsB::LG, rpIM::LG, rpsS::LG,
rplK::RTREV, rplL::LG, frr::LG, rplP::LG, rplA::LG,
rplB::LG, pyrG::LG,rpsM::LG, smpB::LG). To calculate
the multi-gene phylogeny, the marker genes from each
genome were concatenated. The best tree with SH-like
aLRT support value was calculated with RAXML [95]
using the tree_calculations.pl script (phylogenomics-
tools).

Phylogenetic analysis

The IMG ER pipeline detected genes with a gammapro-
teobacterial signature based on homologies to sequences in
its database. We extracted and analyzed these sequences
with the Geneious software version v 9.1.8 [96]
(http://www.geneious.com). Genes predicted by automated
annotations were manually verified and curated using the
public databases NCBI, Uniprot and Swissprot. Sequences
of interest were compared with the NCBI nucleotide and
amino acid databases using nucleotide- and amino acid-
BLAST. We retrieved closely related sequences from the
BLASTX results on the NCBI nonredundant database. In
addition, other reference sequences were included in the
analysis and all sequences were aligned using MUSCLE
(v3.6.) [94]. To detect the best substitution model to use for
phylogenetic reconstruction, we used the ProtTest3 package
[97] (Model summarized in Supplementary Table S8).
Phylogenetic analyses were then performed using Bayesian
and Maximum likelihood analyses. Bayesian analysis was
performed with MrBayes (v3.2) [98] under a General Time
Reversible model with the best-fitted substitution model.
Analyses were performed for 2 million generations using
four parallel Monte Carlo Markov chains. Sample trees
were taken every 1000 generations. Maximum likelihood
trees were calculated with PHYML [99] using the best-fitted
substitution model. We used 1000 bootstraps as support
values for nodes in the trees.

The 16S rRNA phylogeny (Fig. S2) includes the full and
partial 16STRNA sequences identified in the genomes of the
two “Ca. Thiobarbaceae”, the free-living Arcobacter, as
well as the same 41 Campylobacterota representatives used
for phylogenomic analyses. The phylogeny was calculated
using Bayesian inference, the analysis was performed with
MrBayes (v3.2) [100, 101] under a General Time Rever-
sible model with Gamma-distributed rates of evolution and
a proportion of invariant sites. Analyses were performed for
10 million generations using four parallel Monte Carlo
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Markov chains. Sample trees were taken every 5000 gen-
erations. Posterior probabilities calculated with PHYML
using a GTR substitution model with 5000 bootstraps were
used as support values for nodes in the tree.

Codon usage analysis

The codon usage of “Ca. T. azoricus” and “Ca. T. child-
ressi” genes was determined with CodonW [59] using
default parameters. The principal component analysis was
plotted with R (version 3.4.0).

Bulk isotope analysis

Parts of “B.” childressi gill tissues were used for bulk stable
isotope analysis. Tissue pieces were oven-dried overnight
and ground to a fine powder. The dried tissue was weighed
and samples (0.3-0.7 mg dry weight) were packaged in tin
capsules for mass spectrometry, and analyzed using a
Costech (Valencia, CA USA) elemental analyzer interfaced
with a continuous flow Micromass (Manchester, UK) Iso-
prime isotope ratio mass spectrometer (EA-IRMS) for N/
YN and C/'2C ratios. Measurements are reported in &
notation [per mil (%o) units] and ovalbumin was used as a
routine standard. Precision for 8'°C and 8'°N was + 0.2 and
+ 0.4%o.

Protein extraction and peptide preparation

Parts of the gills (see SI appendix Supplementary Table S7)
of three “B.” childressi specimen were used to prepare
tryptic digests following the filter-aided sample preparation
(FASP) protocol of Wisniewski et al. [102] with minor
modifications [61]. Prior to FASP, cells were disrupted by
beat-beating samples in SDT lysis buffer (4% (w/v) SDS,
100 mM Tris-HCI [pH 7.6], 0.1M DTT) using lysing
matrix D tubes (MP Biomedicals) before heating to 95 °C
for 10 min.

To allow binding of peptides to the SCX column for 2D-
LC methods, peptides were desalted using Sep-Pak C18
Plus Light Cartridges (Waters) according to the manu-
facturer’s instructions. A centrifugal vacuum concentrator
was used to exchange acetonitrile after peptide elution with
0.2% (v/v) formic acid. The Pierce Micro BCA assay
(Thermo Scientific) was used to determine peptide con-
centrations, following the manufacturer’s instructions.

1D- and 2D-LC-MS/MS

All three samples were analyzed by 1D-LC-MS/MS and
2D-LC-MS/MS as described in Kleiner et al. [46]. Briefly,
sample analysis via 1D-LC-MS/MS was run twice. An
UltiMate™ 3000 RSLCnano Liquid Chromatograph

(Thermo Fisher Scientific) was used to load 1.5-3 ug pep-
tide with loading solvent A (2% acetonitrile, 0.05% tri-
fluoroacetic acid) onto a S mm, 300 um ID C18 Acclaim®
PepMap100 pre-column (Thermo Fisher Scientific). Pep-
tides were eluted from the pre-column onto a 50 cm x 75 pm
analytical EASY-Spray column packed with PepMap RSLC
C18, 2 um material (Thermo Fisher Scientific) heated to
45 °C. An Easy-Spray source connected the analytical col-
umn to a Q Exactive Plus hybrid quadrupole-Orbitrap mass
spectrometer (Thermo Fisher Scientific). Separation of
peptides on the analytical column was achieved at a flow
rate of 225 nlmin~' using a 460 min gradient going from
98% buffer A (0.1% formic acid) to 31% buffer B (0.1%
formic acid, 80% acetonitrile) in 363 min, then to 50% B in
70 min, to 99% B in 1 min and ending with 99% B. Elec-
trospray ionization was used to ionize eluting peptides.
Carryover was reduced by two wash runs (injection of 20 pl
acetonitrile, 99% eluent B) and one blank run between
samples. Data acquisition with the Q Exactive Plus were
done as in [103].

The 2D-LC-MS/MS experiments were performed as
described by Kleiner et al. [46] with the modification that pH
plugs instead of NaCl salt plugs were used for peptide elution
from the SCX column. Briefly, 4.5 ug of peptide was loaded
with loading solvent B (2% acetonitrile, 0.5% formic acid)
onto a 10 cm, 300 um ID Poros 10S SCX column (Thermo
Fisher Scientific) at a flow rate of 5 ul min~' using the same
LC as for 1D-LC-MS/MS. Peptides that did not bind to the
SCX column were captured by the C18 pre-column (same as
for 1D-LC), which was in-line downstream of the SCX col-
umn. The C18 pre-column was then switched in-line with the
50 cm x 75 um analytical column (same as for 1D) and the
breakthrough separated using a gradient of eluent A and B
(2-31% B in 82min, 50% B in 10 min, 99% B in 1 min,
holding 99% B for 7 min, back to 2% B in 1 min, holding 2%
B for 19 min). Peptides were eluted stepwise from the SCX
to the C18 pre-column by injecting 20ul of pH buffers
with increasing pH ([pH 2.5-pH 8], CTIBiphase buffers,
Column Technology Inc.) from the autosampler. After each
pH plug, the C18 pre-column was again switched in-line
with the analytical column and peptides separated as above.
Between samples, the SCX column was washed twice
(injection of 20ul 4M NaCl in loading solvent B, 100%
eluent B), the RP column once (injection of 20 pl acetonitrile,
99% eluent B) and a blank run was done to reduce
carryover. Data were acquired with the Q Exactive Plus as
in [103].

Protein identification and quantification
A database containing protein sequences predicted from the
metatranscriptomic and -genomic data of the “B.” childressi

symbiosis generated in this study was used for protein

SPRINGER NATURE



118

A. Assié et al.

identification as described in the ‘Metagenome assembly’
section above. The cRAP protein sequence database
(http://www.thegpm.org/crap/), which contains sequences
of common lab contaminants, was appended to the data-
base. The final database contained 38,418 protein sequen-
ces. For protein identification, MS/MS spectra were
searched against this database using the Sequest HT node in
Proteome Discoverer version 2.0.0.802 (Thermo Fisher
Scientific) as in [38].

To quantify proteins, normalized spectral abundance
factors (NSAFs) [104] were calculated per species and
multiplied by 100, to give the relative protein abundance in
%. For biomass calculations, the method described by
Kleiner et al. [46] was used (see Supplementary Table S4).
Calculations of NSAFs and biomass for each sample were
based on the combined data from both 1D-LC-MS/MS runs
and the one 2D-LC-MS/MS run.

Direct Protein-SIF

Stable carbon isotope fingerprints (SIFs) for “B.” child-
ressi and its symbionts were determined as described by
Kleiner et al. [38]. Human hair with a known 8'°C value
was used as a reference to correct for instrument fractio-
nation. A tryptic digest of the reference material was
prepared as described above and with the same 1D-LC-
MS/MS method as the samples. Due to the low abundance
of the “Ca. Thiobarba” symbiont in terms of biomass, the
six 1D-LC-MS/MS datasets (technical replicate runs of
three gill samples) were combined in one peptide identi-
fication search to obtain enough peptides for SIF estima-
tion. For peptide identification, MS/MS spectra were
searched against the database using the Sequest HT node
in Proteome Discoverer version 2.0.0.802 (Thermo Fisher
Scientific) and peptide spectral matches were filtered
using the Percolator node as described by Petersen et al.
[103]. The peptide-spectrum match (PSM) files generated
by Proteome Discoverer were exported in tab-delimited
text format. The 1D-LC-MS/MS raw files were converted
to mzML format using the MSConvertGUI available in
the ProteoWizard tool suite [105]. Only the MS' spectra
were retained in the mzML files and the spectra were
converted to centroided data by Vendor algorithm
peak picking. The PSM and mzML files were used as
input for the Calis-p software (https://sourceforge.net/
projects/calis-p/) to extract peptide isotope distributions
and to compute the direct Protein-SIF §'*C value for each
species [38]. The direct Protein-SIF 813C values were
corrected for instrument fragmentation by applying the
offset determined by comparing the direct Protein-SIF
8'3C value of the reference material with its known
8"3C value.
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Electron microscopy

One “B.” childressi mussel, retrieved from location GC 234,
was dissected and gill pieces were fixed for 12 h with 2.5%
glutaraldehyde in 1.5X PHEM buffer (containing 90 mM
PIPES, 37.5mM HEPES, 15mM EGTA, and 3mM
MgCl,) and 9% sucrose at 4 °C after Montanaro et al. [106].
Samples were then washed in 1.5X PHEM with 9% sucrose
three times. Gill pieces were dehydrated in a stepwise
ethanol series (30-100% in 10% increments), transferred
into pure acetone and infiltrated with resin with a stepwise
resin series (25-100% in 25% steps) using centrifugation
embedding [107]. In short, the sample was transferred to a
2ml tube filled with resin and centrifuged for 30s in a
benchtop centrifuge at 2000 g. After the second pure resin
step, samples were transferred into fresh resin in an
embedding mold and polymerized at 60°C for 24 h.
Seventy nanometers of sections were cut with an Ultracut
UC7, picked up on formvar coated copper grids and stained
with 0.5% aqueous uranyl acetate for 20 min and 2% lead
citrate for 6 min. Ultrathin sections were imaged at 30 kV
with a Quanta FEG 250 scanning electron microscope
equipped with a STEM detector using the xT microscope
control software ver. 6.2.6.3123.

Data availability

The metagenomic and metatranscriptomic raw reads are
available in the European Nucleotide Archive under Study
Accession Number: PRJEB23286, PRJEB23284, and
PRJEB19882. The mass spectrometry metaproteomics data,
direct Protein-SIF relevant files, and protein sequence
database were deposited in the ProteomeXchange
Consortium via the PRIDE [108] partner repository with
the dataset identifier PXD008089.
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