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� Traits obtained by high-throughput
phenotyping perform similarly or
even better in GWAS than those
obtained by traditional, manual
methods.

� Dynamic phenotyping contributing a
lot for GWAS to identify time-specific
loci.

� High-throughput phenotyping,
allowing noncontact and dynamic
measurement, possesses great
potential to provide high quality trait
data for GWAS.

� Future research should focus on the
development of low-cost high-
throughput phenotyping techniques
and efficiency data/image analysis
algorithm.

� Research of using various high-
throughput phenotyping techniques
and GWAS on more diverse plant
species and traits is urgently needed.
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Background: Linking phenotypes and genotypes to identify genetic architectures that regulate important
traits is crucial for plant breeding and the development of plant genomics. In recent years, genome-wide
association studies (GWASs) have been applied extensively to interpret relationships between genes and
traits. Successful GWAS application requires comprehensive genomic and phenotypic data from large pop-
ulations. Although multiple high-throughput DNA sequencing approaches are available for the generation
of genomics data, the capacity to generate high-quality phenotypic data is lagging far behind. Traditional
methods for plant phenotyping mostly rely on manual measurements, which are laborious, inaccurate,
and time-consuming, greatly impairing the acquisition of phenotypic data from large populations. In
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contrast, high-throughput phenotyping has unique advantages, facilitating rapid, non-destructive, and
high-throughput detection, and, in turn, addressing the shortcomings of traditional methods.
Aim of Review: This review summarizes the current status with regard to the integration of high-
throughput phenotyping and GWAS in plants, in addition to discussing the inherent challenges and future
prospects.
Key Scientific Concepts of Review: High-throughput phenotyping, which facilitates non-contact and
dynamic measurements, has the potential to offer high-quality trait data for GWAS and, in turn, to
enhance the unraveling of genetic structures of complex plant traits. In conclusion, high-throughput phe-
notyping integration with GWAS could facilitate the revealing of coding information in plant genomes.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The plant phenotype refers to all morphological, physiological,
and biochemical characteristics reflecting the structure, composi-
tion, and growth of a plant [1,2]. It encompasses not only agro-
nomic traits such as structure, size, and color, but also the
physiological status in the course of development. Conversely,
genes are nucleotide sequences that encode polypeptide chains
or functional RNA, and therefore, are the basic genetic units regu-
lating trait expressions. Alleles are variant forms of a gene at the
same position on a pair of homologous chromosomes, which con-
trol different forms of the same trait. Alleles are classified as either
dominant or recessive, and they generate functional RNA or pro-
teins that determine whether traits become dominant and reces-
sive. The genotype, which is the sum of all genes obtained from
both parents, represents the genetic makeup of a plant. The plant
phenotype is influenced by the genotype as well as the environ-
ment [3]. According to Mendel’s genetic theory, a recessive allele
will not be expressed when a dominant allele present. In addition,
as the expression of alleles is under the influence of environmental
factors (e.g., temperature, light, and soil. [4,5]), dominant traits
may emerge only under certain environmental conditions. There-
fore, plant phenotypes are the aggregate of three-dimensional
(3D) spatiotemporal expression information derived from interac-
tions among genotypes and environmental factors. Diverse pheno-
types are formed due to the selective expression of plant genetic
information under various environmental conditions.

Over the past few years, tremendous progress has been made in
plant genome sequencing [6–8], which has facilitated research on
the integration of genotyping and phenotyping for crop improve-
ment. However, traditional phenotyping methods largely rely on
manual measurements, which are laborious and time-consuming,
and hinder the acquisition of comprehensive phenotypic data from
individuals in large populations. Moreover, manual measurements
are subjective and error-prone; therefore, data accuracy and relia-
bility cannot be guaranteed [9]. Besides, owing to the workforce,
cost, and other contextual limitations, manual measurements can
only be exploited for limited features during key stages of plant
growth. In addition, phenotypic changes cannot be fully tracked
throughout the plant life cycle. High-throughput phenotyping
overcomes the above shortcomings of traditional methods, and
therefore, has emerged as a powerful tool for evaluating plant phe-
notypes. High-throughput phenotyping techniques, such as visible
light imaging, hyperspectral imaging, and fluorescence imaging,
have been successfully applied in evaluating plant growth, bio-
mass, and nutritional status [10–14]. All the techniques above have
unique advantages of allowing rapid, non-destructive, and high-
throughput detection. Detailed information on the phenotyping
techniques can be found in [15].

The robust development of high-throughput phenotyping tech-
niques and gene sequencing technologies has promoted the study
of the genetic structures of plant traits. Methods linking pheno-
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types and genotypes to identify genetic architectures that regulate
important traits, such as quantitative trait locus (QTL) mapping,
candidate-gene association studies, and genome-wide association
studies (GWASs), have been used to study various aspects of plant
architecture, development, and responses to environmental factors
[16]. GWAS, for example, provides high-resolusion genetic data
and has a high capacity to link small-effect genes/QTLs on a
genome-wide scale. The integration of GWAS and high-
throughput phenotyping has enhanced our understanding of plant
growth and facilitated crop breeding. Although high-throughput
phenotyping has been used to plant phenotyping for a long time,
few studies have been conducted on their GWAS applications. Rey-
azul et al. [16] and Moreira et al. [17] reviewed the progress made
in linking significant genes and crop traits by high-throughput
phenotyping techniques and various genetic analysis approaches.
However, GWAS was rarely mentioned in their reviews. Some
reviews have focused on GWAS for specific traits of specific plants
[18–21]. Few review papers focusing on progress in high-
throughput phenotyping integration with GWAS in plant genetic
architecture exploration have been published recently. Therefore,
intending to keep abreast of current developments, this review
summarizes the status concerning integrating high-throughput
phenotyping and GWAS in plants and expounds the loci found
through the multi-scale plant traits obtained by various high-
throughput phenotyping techniques in GWAS studies. The inher-
ent challenges and future prospects are further discussed to
enhance our understanding of the approach of integrating high-
throughput phenotyping and GWAS, as well as to provide guidance
for future research.

High-throughput phenotyping

High-throughput phenotyping platforms integrate data acquisi-
tion equipment, a control terminal, and a data analysis platform.
They mainly collect phenotypic data through non-invasive imaging
and spectroscopy techniques and adopt high-performance com-
puting equipment to rapidly analyze plant growth activities and
physiological status. Compared with traditional phenotyping
methods, high-throughput phenotyping facilitates simultaneous
data acquisition for multiple traits in large populations and
dynamic observation of plants at different growth stages. Second,
compared to traditional methods such as visual scoring, which
are prone to subjective interpretation, trait characterization based
on spectra or images is more objective. Third, it allows non-
destructive estimation of biochemical parameters based on model-
ing, thus avoiding laborious operations.

Over the past years, great efforts have been made to develop
high-throughput phenotyping techniques for different targets,
such as cells, seeds, shoots, leaves, roots, individual plants, and
canopy [22]. In terms of cells and tissues, high-resolution imaging
techniques, such as micro-computed tomography (micro-CT)
imaging and microscopic imaging, could be used to determine
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the number of cells [23], changes in cell structure [24], growth rate
of cells [25], and tissue morphology [26]. As for seed phenotyping,
visible light imaging has been widely utilized for the characteriza-
tion of morphological traits, such as color [27], the length of
coleoptile [28], and germination rate [29]. A smartphone-based
portable instrument for seed morphological parameter phenotyp-
ing has been developed [30]. Besides, X-ray imaging has been used
to evaluate seed morphometric features and tissue integrity [31].
For the assessment of the biochemical components, near-infrared
spectroscopy and time-domain pulsed nuclear magnetic resonance
(NMR) demonstrated advantages in determining the content of
protein, oil content, and fatty acids in seeds [32–34]. As for organs,
individual plant, and canopy, the characteristics and potential of
various high-throughput phenotyping techniques for obtaining
phenotypes at these scales have been documented. Studies of the
applications of image-based high-throughput phenotyping tech-
niques related to the acquisition of plant morphological, physiolog-
ical, and pathological traits in recent years have been summarised
by Zhang Y and Zhang N [35]; Yang et al. [36] outlined the com-
monly used high-throughput phenotyping techniques for plant
and its application, especially in the assessment of abiotic stress,
pest stress and yield quality in rice and other crops. Shakoor
et al. [37] provided a review of high-throughput phenotyping plat-
forms and sensors. The potential applications of high-throughput
phenotyping techniques in disease assessment were also detailed.
Besides, Liu et al. [38] gave a thorough review of hyperspectral
imaging and three-dimensional sensing for plant phenotyping.
Jang et al. [39] and Yang et al. [40] focused on reviewing the appli-
cations on unmanned aerial vehicles in field crop phenotyping.
They summarized the deployed sensors that can be mounted on
unmanned aerial vehicles and their characteristics in detail.

In addition to the aforementioned high-throughput phenotyp-
ing techniques, some methods have been used for plant phenotyp-
ing, although few examples are found. Positron-emission
tomography has made a breakthrough in manganese uptake and
transport of maize seedlings phenotyping [41] and crop tolerance
to western corn rootworm [42]. Besides, microwave resonator is
another novel technique that can assess water status [43] and
water distribution [44]. High-throughput phenotyping techniques
can be used in combination, aiming to provide more comprehen-
sive and accurate results. RGB cameras and multispectral sensors
have been integrated for yield estimation [45]. The combination
of thermal sensors, RGB cameras and multi-spectral sensors has
been applied to yield assessment [46], biochemical parameters
determination, and biophysical parameters quantitation [47]. Fur-
thermore, ultrasonic distance sensors with spectral, thermal, and
other sensors have been conducted for crop canopy phenotyping
[48] and yield prediction [49].

High-throughput phenotyping provides a solid foundation for
unlocking the genetic characteristics underlying plant phenotypes
[16,22]. In particular, high-throughput phenotyping techniques
can be used to achieve short-interval continuous imaging of plants
and monitor dynamic changes, which facilitate efficient analysis of
all activities in plant growth [50–53]. High-throughput phenotyp-
ing tools are generally used to obtain high-resolution images of
samples, from which features are extracted by data/image process-
ing algorithms. Sometimes, derived parameters calculated from
the acquired values are used, such as the height/width ratio. There-
fore, robust data/image processing algorithms are crucial for accu-
rate and efficient phenotypes of plants. Mochida et al. [54] fully
discussed machine learning algorithms in the preprocessing, seg-
mentation, feature extraction, and classification of plant images.
With advanced computer technology development, deep learning
shows outstanding advantages in big data processing [55]. Some
studies using deep learning algorithms have gradually emerged
in plant phenotyping research. Detailed information on applying
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deep learning in plant stress phenotyping can be found in the liter-
ature [56]. Besides, deep learning has performed well on a board
range of plant phenotyping tasks: prediction of relative moisture
content [57], flowering time and the rate of flowering detection
[58], diagnosis of cold damage [59], panicle and spikes recogniza-
tion and counting [60–64], seedling development detection [65],
leaf to panicle ratio calculation [66], yield estimation and predic-
tion [46,67], estimation of vegetation indices [68], fruit number
quantification [69], hypocotyl or coleoptile length determination
[70], disease detection and quantitation [71–73], leaf counting
[74], temporal phenotype/genotype classification [75], ear density
estimation [76], and the segmentation and grading of plant prod-
ucts [77]. It is foreseeable that applying deep learning in plant phe-
notyping is an inevitable trend, and there will be more researches
in this field in the future.
Genome-wide association studies

GWAS uses statistical methods to search for associations
between genomic polymorphisms (e.g., SNPs, insertions and dele-
tions, and structural variations) and phenotypic variation. GWAS
highly facilitates the analyzing the genetic architectures associated
with complex traits [3] and delves into the genetic basis for plant
phenotypic diversity [78]. Compared with traditional genetic map-
ping methods that require substantial effort to construct mapping
groups, the following are the key advantages of GWAS that have
been highlighted. First, GWAS uses natural populations as research
materials, which greatly reduces the research time. Second, GWAS
has a high efficiency and high resolution. Third, GWAS is conducted
on a genome-wide scale and allows simultaneous detection of
multiple alleles at the same locus. Finally, natural populations have
high genetic diversity; the germplasm materials and genetic infor-
mation from a single natural population can be used for the genetic
analysis of multiple traits, avoiding the need for repeated popula-
tion establishment, and greatly reducing the costs of gene sequenc-
ing. Important agronomic traits, such as yield, crop quality, and
disease resistance, are generally controlled by multiple genes,
which are prone to influence by continuously changing environ-
ments. Compared with traits controlled by a single gene, the
genetic architecture of a complex trait is more intricate. Therefore,
the application of GWAS in the exploration of the genetic basis of
plant traits has attracted considerable attention. The specific ana-
lytical process for high-throughput phenotyping combined with
GWAS is illustrated in Fig. 1.
Application of GWAS integrated with high-throughput
phenotyping

Rice

Rice (Oryza sativa L.) is one of the most important food crops
globally. Rice production is closely linked to national food security
in some countries. Precise phenotyping of rice traits and the explo-
ration of the underlying genetic structures are essential for
improving crop yield and quality. A schematic overview of the
application of high throughput phenotyping in GWAS studies for
rice is presented in Fig. 2.

Yang et al. [79] established an automated rice phenotyping
facility for greenhouse use by integrating X-ray computed tomog-
raphy (CT) and visible light imaging. Fifteen agronomic traits,
including plant height, tiller number, and shoot fresh weight, were
measured. Among the 141 loci identified, 25 loci were located close
to known genes, such as SD1, Hd1, and OsGH3-2. In addition, Crow-
ell et al. [80] introduced an image skeletonization phenotyping
platform into inflorescence phenotyping for field-grown material.



Fig. 1. General analysis process of GWAS equipped with high-throughput phenotyping.

Fig. 2. Schematic overview of high throughput phenotyping used in GWAS studies for rice.
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Forty-nine panicle traits were captured. Through GWAS based on
242 accessions, ten candidate genes were identified near signifi-
cant GWAS peaks. Likewise, Rebolledo et al. [3] conducted compre-
hensive RGB imaging with GWAS for panicle traits of harvested
samples, revealing subtle associations between panicle traits and
numerous markers, which had also been reported by Crowell
et al [80].

In comparison with cross-sectional phenotyping, dynamic phe-
notyping greatly improves temporal resolution. The combination
of dynamic RGB imaging and GWAS has facilitated the discovery
of loci associated with leaf-related traits [81] and shoot growth
[51,52,82]. Such approach provides a feasible solution for the
detection of QTLs that persist throughout multiple growth stages,
as well as time-specific and transient QTLs [52]. By analyzing
739 tiller traits at nine time points using micro-CT-RGB imaging
system, GWAS facilitated the identification of 402 loci associated
with tiller growth and a gene controlling tiller angle (TAC1) [83].
The data revealed that there are three TAC1 haplotypes and that
the tiller angles of rice accessions containing haplotype H3 are sub-
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stantially smaller. Notably, a dynamic relationship between loci
and tiller traits in different developmental stages was revealed
[83].

Visible and near-infrared spectroscopy is a powerful tool for
obtaining effective spectral parameters. Based on the normalized
difference spectral index calculated from spectral data, SNPs simi-
lar to those identified on the basis of seed protein content deter-
mined by traditional destructive methods as well as new SNPs
associated with rice protein content that were not identified
through biochemical analysis of protein content were found [84].
In contrast to visible light imaging and spectroscopy, hyperspectral
imaging allows trait characterization at the 2D spatial scale as well
as the 1D spectral scale. Feng et al. [13] developed a hyperspectral
imaging system that enables the acquisition of thousands of hyper-
spectral indices during multiple growth stages. Based on indices
acquired in three growth stages, nine hundred and eighty-nine rice
loci associated with growth regulation, many of which could not be
identified by traditional agronomic trait analysis, were identified.
More importantly, the study revealed that the red edge (680–
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760 nm) is valuable for generating phenotypic and genetic infor-
mation in rice research. In addition, hyperspectral imaging inte-
grated with GWAS also shows the potential in identifying genetic
architectures associated with grain quality traits [85]. In this study,
the results of GWAS revealed that grain chalk and hyperspectral
variants share genomic regions, which contain several plausible
candidate genes for grain chalkiness.

Rice plants experience various stresses in the course of growth
such as salt and drought stress. Hence, there is a vital requirement
to study phenotypes under stress conditions and identify QTLs
facilitating stress tolerance. RGB imaging [86,87] and fluorescence
imaging [87] have been used in GWAS to explore genetic architec-
ture under salt stress responses. Morphological features, fluores-
cence responses, and dynamic growth indicators such as relative
growth rate, transpiration rate, and transpiration use efficiency
have been derived from RGB and fluorescence images [86,87].
The studies revealed that loci on chromosomes 3, 1 [87] and 11
[86] are involved in early responses to salt stress. Dynamic RGB
imaging has also been used for phenotyping of individual rice
plants under drought stress [88,89]. A study using 507 rice acces-
sions and image-based traits revealed that 443 loci, most of which
co-localizing with previously known genes, were identified to be
associated with drought stress regulation [88]. Besides, candidate
genes of OSM34, COLD1, NAL1, GF14c, and OsMPS were identified
to be associated with shoot growth trajectories under water deficit
[89]. Detailed information about studies on high-throughput phe-
notyping and GWAS in rice is presented in Table 1.

Nearly all studies discussed in this section demonstrated that
high-throughput phenotyping integrated with GWAS could accel-
erate genetic architecture analysis and the dissection of complex
traits in rice for the following reasons: (1) Complex traits appear
to be regulated by multiple small-effect loci. Dynamic phenotyping
provides insights into the genetic architecture that is missed under
cross-sectional phenotyping and that is likely to contribute to the
detection of small-effect loci. Efficient and non-destructive high-
throughput phenotyping meets the requirements for convenient
and rapid dynamic phenotyping. (2) Some small-effect loci have
a weak correlation with traits and are difficult to detect using tra-
ditional methods. By adding novel parameters that encompass dif-
ferent perspectives through spectroscopy, fluorescence imaging,
and X-ray CT imaging, high-throughput phenotyping facilitates
the localization of novel heritable loci. For example, numerous
hyperspectral and fluorescence signals could represent a specific
biochemical condition and could reveal phenotypic and genetic
relationships with traditional agronomic traits. The acquisition of
such features could aid the identification of more small-effect loci
that warrant further dissection and analysis at the gene expression
level.

Maize

In maize (Zea mays L.), to find selection features underlying
male inflorescence transformation, Gage et al. [90] conducted a
GWAS of 942 inbred accessions and three 200-line biparental pop-
ulations. Fifteen morphological traits, including branch number
and tassel length, were monitored and 242 SNPs were observed
to be associated with the traits. In addition, the heritability of the
traits measured using manual and image-based methods was
investigated. In a follow-up study, the performance of the manual
and image-based methods in GWAS were compared based on
receiver-operating characteristic (ROC) curves; no significant dif-
ference was observed [91]. Similarly, Pace et al. [92] compared
the performance of GWAS using a novel root phenotyping platform
that they developed, automatic root image analysis (ARIA), with
that of GWAS using established software (WinRHIZO). Both soft-
ware identified significant SNPs associated with total root length
219
in similar genomic regions. A tool for semi-automatic root excava-
tion and cleaning in the field and extracting features based on
images (Core Root Excavation using Compressed-air, CREAMD)
has been used in GWAS of maize and sorghum [93]. One hundred
and thirty-nine root system architecture-associated genes, includ-
ing Bige1, which encodes a MATE transporter, were detected in
maize, and seven pairs of syntenic genes were identified in maize
and sorghum (Sorghum bicolor (L.) Moench) [93].

A study by Wang et al. [94] revealed that plant height-related
QTLs vary at different growth stages. In the study, the plant growth
rate was recorded by aerial imaging and used in GWAS. Multiple
candidate genes involved in plant height regulation, including
SAUR61, which encodes an auxin response protein, were identified.
Similarly, the growth rate was measured in a GWAS of biomass,
which accumulates gradually during plant growth [10]. The identi-
fication of genetic loci regulating biomass through specific-stage
phenotyping is substantially less comprehensive than dynamic
phenotyping, and non-destructive imaging makes spatio-
temporal dynamic monitoring feasible. The most significant
marker-trait associations explained more than 12% of the natural
phenotypic variation in biomass accumulation. The study also
showed that plant biomass is controlled by numerous small-
effect loci, some of which act at specific growth stages. Chen
et al. [11] analyzed the genetic and environmental components
affecting biomass accumulation in the canopy. Radiation intercep-
tion efficiency, radiation use efficiency, and biomass were evalu-
ated, and the Monteith equation was used to identify
environmental influences on interception efficiency and radiation
use efficiency. Simulated multi-genotype canopies were used to
determine the extent to which canopy heterogeneity influences
biomass accumulation of individual genotypes [11]. Microscope-
RGB imaging-assisted GWAS has also been used to identify candi-
date genes associated with bulliform cell number and width [95].
In the study, bulliform cell column number and width were quan-
tified from tens of thousands of leaf epidermal glue-impression
images using convolutional neural networks. Likewise, micro-CT
imaging was also used to explore the genetic architecture associ-
ated with maize stem vascular bundles [96]. Detailed information
on the above studies is presented in Table 1.

In maize, high-throughput phenotyping integrated with GWAS
has been successfully applied to investigate cell and root traits,
as well as to identify selection signatures for male inflorescence
transformation, which opens avenues for future research on
changes in genetic information in the course of evolution [90]. In
addition, studies have shown that for complex traits, some genes
act in certain developmental phases, whereas others play a more
general role and function in multiple stages [10,94]. Dynamic phe-
notyping is especially advantageous for traits that develop gradu-
ally, such as biomass accumulation and plant height.

Wheat

In a GWAS of 231 synthetic hexaploid wheat (Triticum aestivum
L.) accessions to identify QTLs controlling grain morphology, visi-
ble light/RGB imaging was used to measure 29 traits related to
grain morphology [97]. Candidate genes, including TaCwi-2A,
TaSus-6B, TaCKX-6D, and TaGW2-2B, which are known to regulate
grain size and weight, were identified. Furthermore, relationships
between some favorable alleles and grain phenotypes were
revealed [97]. A semiautomatic system including spectrometers
was used to capture the canopy reflectance of wheat under normal
nitrogen supply and nitrogen deficiency [12]. Three vegetation
indices derived from canopy reflectance were used in a GWAS.
The study identified a set of loci associated with canopy traits as
well as PPD-D1, which is involved in photoperiod response regula-
tion. Another study using unmanned aerial systems-based imaging



Table 1
Applications of high-throughput phenotyping integrated with GWAS in plant.

Crop Population size Technique Environment Traits Number of associated
loci/SNP/QTL/candidate
genes

Reference

rice 533 accessions x-ray CT, color-imaging Greenhouse 15 morphological traits (e.g. plant
height, tiller number, green leaf area)

141 loci [79]

rice 242 accessions visible light imaging Field 49 panicle traits (e.g. panicle length,
rachis length, primary branch number)

10 candidate genes [80]

rice 225 accessions RGB imaging Laboratory number of spikelets per panicle (NSP),
the number of primary (PBN) and
secondary branches (SBN), the length
of primary (PBL) and secondary (SBL)
branches

17 GWAS sites for NSP,
10 for PBN, 11 for SBN,
7 for PBL, 11 for SBL

[3]

rice 533 accessions RGB imaging Laboratory 29 leaf traits (6 size–related traits, 7
color–related traits, 16 shape–related
traits)

73 loci for size-related
traits, 123 for color-
related traits, 177 for
shape related traits

[81]

rice 360 accessions visible light/RGB imaging Greenhouse projected shoot area 7 QTLs [51]
rice 357 accessions RGB imaging Greenhouse projected shoot area 442 SNPs [52]
rice 165 lines unmanned aerial vehicle,

RGB imaging
Field vegetation fraction 4 QTLs [82]

rice 234 accessions micro-CT, RGB imaging Laboratory 739 traits during tillering process (e.g.
tiller number, convex hull area, total
tiller area, height/width ratio)

402 loci [83]

rice 80 accessions visible/near-infrared
spectroscopy

Laboratory 5 hyperspectral traits (reflectance at
wavelength 1177 nm and 1227 nm,
normalized difference spectral index
(NDSI), differential spectral index,
simple ratio index)

NDSI: 65 genes [84]

rice 529 accessions hyperspectral imaging Laboratory 1540 hyperspectral indices 989 loci [13]
rice 221 accessions visible and near-infrared

hyperspectral imaging
Laboratory the first principal component for

spectral values in the range 702–
922 nm

44 chromosomal
candidate regions

[85]

rice 553 genotypes visible light/RGB imaging Greenhouse relative growth rate, transpiration rate,
transpiration use efficiency (TUE)

previously undetected
loci affecting TUE on
chromosome 11

[86]

rice 378 genotypes visible light/RGB imaging,
fluorescence imaging

Greenhouse 97 digital traits (7 morphology and
growth traits, 90 fluorescence
responses traits)

visible light/RGB
imaging: a genomic
region on chromosome
3; fluorescence
imaging: 4 genomic
regions

[87]

rice 507 accessions RGB imaging Greenhouse 51 image-based traits (e.g. total
projected area, plant compactness,
height/width ratio)

443 loci [88]

rice 378 accessions visible light/RGB imaging, Greenhouse projected shoot area \ [89]
maize 942 inbred

accessions, three
200 biparental
lines

visible light /RGB imaging Field 15 tassel morphological traits (e.g.
branch number, tassel length,
tortuosity)

242 SNPs [90]

maize 942 inbred lines visible light/RGB imaging Field tassel weight, tassel length, spike
length, branch number

\ [91]

maize 384 inbred lines visible light /RGB imaging Laboratory total root length, total surface area \ [92]
maize, sorghum maize: 369 inbred

lines; sorghum:
294 accessions

visible light/RGB imaging Field root area, convex hull area, median
width, maximum width, width-profile
angle, adjusted depth

maize: 139 genes,
sorghum: 115 SNPs

[93]

maize 252 inbred lines aerial visible light/RGB
imaging

Field plant height at 4 different growth
stages, the growth rate of plant height

68 QTLs [94]

maize 252 inbred lines near-infrared, visible light/
RGB and fluorescence
imaging

Laboratory plant fresh weight, plant dry weight,
biovolume estimation at 11 different
developmental time points

12 MTAs, 6 pairs of
epistatic interactions

[10]

maize 255 hybrids lines RGB imaging Laboratory biomass, radiation interception
efficiency, radiation use efficiency

\ [11]

maize 468 inbred lines Microscope, RGB imaging Laboratory bulliform cell column number and
width

5 candidate genes [95]

maize 480 inbred lines micro-CT imaging Laboratory 48 stem vascular bundles traits 1562 SNPs [96]
bread wheat 231 synthetic

hexaploids
visible light /RGB imaging Field grain size and shape traits (e.g. length,

width, volume of seed)
197 loci using general
linear model, 79 loci
using mixed linear
model

[97]

bread wheat 211 bread wheat
cultivars

visible/near-infrared
reflectance spectroscopy

Field the modified canopy adjusted ratio
index 2 (MCARI2), the MERIS
terrestrial chlorophyll index (MTCI),
the normalized difference vegetation
index (NDVI)

105 QTLs for MTCI, 97
QTLs for NDVI, 159 QTLs
for MCARI2

[12]
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Table 1 (continued)

Crop Population size Technique Environment Traits Number of associated
loci/SNP/QTL/candidate
genes

Reference

spring wheat 1185 lines unmanned aerial system
integrate RGB and RedEdge
multispectral imaging

Field lodging traits: 3 visual scores of
lodging namely intensity, severity and
lodging index per plot and additional
supporting agronomic measurements
per plot, 2 digital lodging scores
obtained by taking overall summary
mean per plot or combined lodging
index of normal mixture parameters

a key genomic region
on chromosome 2A

[98]

Durum wheat 248 accessions unmanned aerial vehicles
integrated with multi-
spectral imaging, tractor-
based system integrated
with GreenSeeker spectral
sensors

Field normalized difference vegetation index
(NDVI)

46 QTLs [99]

winter wheat 335–352
genotypes

light detection and ranging
(LIDAR)

Field canopy height, average daily stem
elongation rates

10 MTAs for final
height, 3 MTAs for
temperature response,
4 MTAs for vigour

[100]

winter wheat 335 cultivars RGB imaging Field septoria tritici blotch infected traits
(e.g. the percentage of leaf area
covered by lesions, average pycnidia
density within lesions, pycnidia size,
pycnidia gray value)

26 chromosome
segments

[101]

winter wheat 215 lines visible light/RGB scan Laboratory total seminal root (TSR) length, root
diameter (RD), the length of seminal
axis roots (SAR), branched root (BR)
length; root dry matter (RDM)

63 MTAs with 7 for SAR,
24 for BR, 4 for TSR, 8
for RDM, and 20 for RD

[102]

spring barley 100 genotypes visible light imaging Greenhouse biomass and related traits (tiller
number, tipping time, the calculated
inflection point, fresh weight)

21 loci [104]

barley 1420 lines RGB imaging Greenhouse 14 growth traits (e.g. absolute growth
rate, relative growth rate, shoot area
smoothed, convex hull area integral,
caliper length integral)

\ [105]

barley 109 accessions chlorophyll fluorescence Laboratory 23 traits, including 19 chlorophyll
fluorescence induction parameters

205 markers [106]

soybean 373 genotypes visible/near-infrared
spectroscopy

Field photochemical reflectance index (PRI),
canopy spectral reflectance

31 SNPs [110]

soybean 332 genotypes visible/near-infrared
spectroscopy

Field chlorophyll a (eChl_A), chlorophyll b
(eChl_B), total chlorophyll (eChl_T)
content, chlorophyll a/b ratio (eChl_R)

14 loci for eChl_A, 7 loci
for eChl_B, 10 loci for
eChl_R, 27 putative loci
for total chlorophyll
content

[111]

soybean 189 genotypes chlorophyll fluorescence Field 21 fluorescence phenotypes 288 SNPs [112]
soybean 5555 lines ground-based and

unmanned aerial system-
based RGB imaging

Field canopy coverage a large QTL on
chromosome 19

[113]

soybean 200 accessions unmanned aircraft system,
digital imaging

Field dark green color index (DGCI) 45 SNPs [114]

soybean 341 accessions Photosynthetic System II
imaging, visible and near-
infrared hyperspectral
imaging

Greenhouse NDVI, chlorophyll index (CHL) 38 QTLs for NDVI, 32
QTLs for CHL

[115]

spinach 284 accessions unmanned aircraft system,
RGB imaging

Field 9 plant growth traits: canopy cover,
canopy volume, excess greenness
index; days after sowing to maximum
seasonal values of canopy cover,
canopy volume and excess greenness
index; days after sowing for manually
collected plant bolting stages: early
bolting. pollination, and kernel filling

99 SNPs [9]

cotton 200 accessions RGB imaging Greenhouse 119 image-based digital traits (56
morphological traits and 63 texture
traits)

390 loci [116]

sorghum 381 accessions near-infrared spectroscopy Laboratory total phenol, proanthocyanidin, and 3-
deoxyanthocyanidin concentrations

\ [14]

arabidopsis 382 accessions visible light imaging,
fluorescent imaging

Laboratory seed width, seed length, seed area,
projected leaf area, relative growth
rates

238 MTAs [118]

arabidopsis 96 accessions visible light/RGB imaging Laboratory 75 lesion traits for each infected leaf
(e.g. the number of pixels for specific
hues within the lesion, lesion
perimeter, proportion of the leaf the
lesion occupied)

7940 genes [119]

(continued on next page)
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Table 1 (continued)

Crop Population size Technique Environment Traits Number of associated
loci/SNP/QTL/candidate
genes

Reference

arabidopsis 110 and 70
ecotypes

visible light/RGB imaging Laboratory disease symptoms (e.g. the percent of
tissue that is chlorotic yellow)

\ [120]

rapeseed 477 genotypes visible light imaging,
fluorescence imaging

Greenhouse estimated biovolume, projected leaf
area, early plant height, colour
uniformity

787 MTAs [117]

rapeseed 248 accessions visible light/RGB imaging Laboratory 9 seed germination and vigor traits 18 candidate genes [121]
rapeseed 238 inbred lines near-infrared reflectance

spectroscopy, nuclear
magnetic resonance

Laboratory seed traits: erucic acid content (EAC),
glucosinolate content (GSC), oil
content (SOC)

6 loci for EAC, 49 loci for
GSC, 17 loci for SOC

[122]

MTA: marker-trait association
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and GWAS for the detection of genetic regions associated with
lodging identified a significant marker on chromosome 2A [98].
Likewise, unmanned aerial vehicles coupled with multi-spectral
imaging was also used in normalized difference vegetation index
(NDVI) measurement. Forty-six QTLs associated with NDVI were
detected in GWAS [99]. Furthermore, light detection and ranging
(LIDAR) contributed in wheat GWAS, which was used to investi-
gate the genetic response to temperature fluctuations during stem
elongation [100]. Aerial systems are expected to substantially facil-
itate canopy trait estimation activities, such as lodging and canopy
coverage, which will facilitate the discovery of novel genetic loci
related to such traits. RGB imaging combined with GWAS has also
been used in detecting genetic architectures related to disease
resistance. Yates et al [101] used flatbed scanners to acquire the
leaf traits associated with septoria tritici blotch infection.
Twenty-six chromosome intervals were idenfied as affecting four
independent resistance traits in GWAS analysis. For genetic archi-
tecture exploration of root traits, Beyer et al. [102] used a scanner
and the traditional root analysis platform, WinRHIZO, to evaluate
five root traits; GWAS of 20,881 polymorphic sites revealed 63
marker–trait associations for root morphology.

The application of high-throughput phenotyping integrated
with GWAS in the study of wheat is rather rare and the field is still
in the early stage of development. At present, few traits have been
explored, and only a limited number of techniques have been
applied. This is largely because wheat is an allohexaploid, so that
sequencing costs are relatively high. With advances in wheat gene
resequencing technologies, more wheat GWAS will be undertaken.
In fact, numerous high-throughput phenotyping techniques are
available and have been applied in wheat. For instance, terrestrial
3D laser scanning has been used to estimate increase in canopy
height under field conditions [103]. In addition, a dual-mode
microwave resonator has been used to evaluate leaf water content
and ionic conductivity [43]. Such techniques are expected to be
applied in further genetic studies in wheat. All the above-
mentioned studies on root traits applied ectopic investigations,
which means that the root system was evaluated outside of the
natural growth environment. However, such an approach has some
disadvantages, including loss of the 3D root structure and
underestimation of the contribution of fine roots, as these are
prone to fracture during sampling. At present, studying root phe-
notypes in situ is challenging. The application of techniques suit-
able for in situ root phenotyping (such as X-ray CT and magnetic
resonance imaging) may allow more accurate visualization and
quantification of root growth, in turn, improving the analysis of
root morphology.

Barley

To reveal associations between genetic architecture and barley
(Hordeum vulgare L.) biomass, biomass and related traits were
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measured for individual plants at multiple time points using visible
light imaging [104]. Twenty-one loci were identified, seventeen of
which had also been identified in previous studies. A locus on chro-
mosome 7HL that exhibited a significant effect for a long period
and that co-located with HvDIM was found to be associated with
biomass. Dynamic phenotyping has been conducted to evaluate
drought stress responses of barley [105]. In the study, fourteen
traits, including absolute and relative growth rates, were deter-
mined and numerous significant QTLs that co-localized with
known genes (Ppd-H1, HvCEN, VRN-H1, VRN-H2, and sdw1/denso)
were identified, illustrating the validity of traits acquired by visible
light imaging for GWAS [105]. A QTL on chromosome 4H was pos-
sibly involved in biomass increase under both control and drought
conditions [105]. Chlorophyll fluorescence response of leaves
under drought stress has also been studied [106]. One hundred
and sixty-two associations with physiological parameters (gas
exchange, leaf water status, and chlorophyll fluorescence induc-
tion) were found, sixty-seven of which were annotated to known
sequences [106]. Chlorophyll fluorescence reflects the photosyn-
thetic status of plants and, therefore, is useful in the genetic study
of plant stress phenotypes.

As mentioned above, high-throughput phenotyping-integrated
GWAS of plants is still in its infancy. Therefore, it is not surprising
that its application in barley remains sporadic. Although diverse
high-throughput phenotyping techniques are available for trait
evaluation, they have been applied in only few barley GWAS, and
various techniques have not been introduced in barley GWAS to
date. For example, light curtain arrays have been utilized for the
rapid determination of plant height and leaf area [107]. Hyperspec-
tral imaging has been used to evaluate changes in barley leaves at
the cellular level during resistance reactions against powdery mil-
dew [108]. Hyperspectral absorption-reflectance-transmittance
has also been used to assess disease severity on leaves [109]. The
examples above suggest that the techniques hold promise in
uncovering the genetic architectures of barley traits. Successful
phenotyping requires not only accurate measurement of plant
traits but also high-quality trait data and abundant genetic infor-
mation. Most studies used a single technique, such as RGB imaging,
to measure morphological traits, or hyperspectral imaging, to
acquire spectral parameters. Future research should aim at com-
bining various techniques to measure numerous plant traits from
which high-quality traits can be selected to conduct in-depth anal-
ysis of plant growth from multiple perspectives. Such an approach
would certainly facilitate the identification of more loci involved in
the regulation of plant traits.

Soybean

Herritt et al. [110] identified genetic loci for a photosynthesis
trait in soybean (Glycine max (L) Merr.), i.e., the photochemical
reflectance index calculated from canopy spectral reflectance,
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which was measured in the field by visible/near-infrared spec-
troscopy. Fifteen putative loci exhibited a significant association
with the trait and several of them were located close to genes
known to be associated with photosynthesis, nonphotochemical
quenching and sugar transport processes. Visible/near-infrared
spectroscopy and GWAS analysis was also utilized for exploring
the genetic basis of chlorophyll traits. Twenty-seven putative loci
were designated as associated with total chlorophyll content, four
of which were indicated by all extract-based and canopy spectral
reflectance-based approaches [111]. In addition, Herritt et al.
[112] carried out an impressive GWAS designed to study genetic
dissection associated with chlorophyll fluorescence phenotypes.
Twenty-one chlorophyll fluorescence phenotypes were captured
by a fluorometers. A total of 288 SNPs were detected as signifi-
cantly related with one or more of the measured chlorophyll fluo-
rescence phenotypes.

Canopy coverage of soybean measured using ground-based and
aerial visible light/RGB imaging has been observed to potentially
have a genetic correlation with yield, and a QTL on chromosome
19 with a strong positive effect on production was identified by
GWAS [113]. Dark green color index (DGCI) captured by aerial
images was used in GWAS to explore the genetic architecture of
the intensity of greenness. Among the 43 putative loci identified
through GWAS, twenty-one loci were coincident with previously
reported genetic regions, which were related with nitrogen traits
and ureide concentration [114]. Similarly, NDVI and chlorophyll
index (CHL) obtained from hyperspectral images were used to
study the population genetics underlying the growth and yield of
Chinese soybean germplasm population [115].

In soybean, high-throughput phenotyping combinedwith GWAS
has contributed for the discovery of genetic regions for several spec-
tral traits, such as NVDI, CHL, DCCI, which tend to be closely linked
with yield and plant growth [114–115]. It is worth mentioning that
the study conducted byWang [115] elucidated that the exploration
of genetic architecture of upstream traits, such as NVDI and CHL,
may provide additional understanding for controlling target traits.
Therefore, high-throughput phenotyping techniques, allowing to
acquire and select upstream traits, will facilitate crop functional
genomics and improve the potential for crop breeding.

Other species

In spinach (Spinacia oleracea L.), aerial RGB imaging has been
used for time-course measurements of growth traits throughout
the crop cycle. GWAS identified 99 SNPs, several of which were
located in transcription factor and stress-response genes that had
putative roles in plant development [9]. In cotton (Gossypium hirsu-
tum Linn.), RGB imaging combined with GWAS was used to charac-
terize genetic loci for drought resistance. Using 119 image-based
digital traits, GWAS allowed the identification of 390 loci, some
of which has been reported previously. Remarkablely, some
promising genes, which may have a negative affect for drought
response, were also detected [116]. In sorghum (Sorghum bicolor
(L.) Moench), near-infrared spectroscopy has been used to estimate
the contents of total phenolic, procyanidins, and 3-
deoxyanthocyanins in grain of 381 accessions, and novel QTLs
involved in polyphenol synthesis were identified, some of which
were homologous to flavonoid genes in maize (Zea mays L.) Pr1
and Arabidopsis (Arabidopsis thaliana) TT16 [14]. Visible light imag-
ing and fluorescence imaging have also been used to screen the
genetic variation underlying growth dynamics in canola (Brassica
napus L.) [117] and Arabidopsis thaliana [118]. These studies
[117,118] both highlighted the importance of conduct time-
course analyses of plant traits since they are regulated by specific
QTLs at different growth stages. Notably, attempts have been made
to apply high-throughput phenotyping combined with GWAS to
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the mapping of defense response genes in plants [119,120]. Symp-
toms of Botrytis infection [119] and Pseudomonas syringae type-3
secreted effectors for effector-triggered immunity elicitation
[120] in Arabidopsis (Arabidopsis thaliana) have been quantified
using visible light and RGB imaging, respectively. GWAS identified
23 candidate genes significantly related to responses to Botrytis
infection [119] and host genes for P. syringae type-3 secreted
effector-triggered immunity, demonstrating the suitability of
image-based phenotyping coupled with GWAS [120]. In addition,
visible light/RGB imaging, near-infrared reflectance spectroscopy,
and NMR have been used in GWAS for seed traits such as germina-
tion and vigor [121], and glucosinolate and oil contents [122].
Strong correlations between the identified candidate genes and
seed quality variation were observed. Detailed information about
studies published over the last five years that we found via a liter-
ature search is presented in Table 1. These studies confirmed that
GWAS integrated with high-throughput phenotyping is a practical
and effective strategy for linking complex traits and genes in
plants.

As shown in Table 1, the traits obtained by high-throughput
phenotyping techniques under laboratory, greenhouse, and field
conditions have been applied in GWAS. It is easy to control envi-
ronmental factors such as temperature, humidity, and light in lab-
oratory and greenhouse conditions. On the contrary, the
phenotypic data obtained in the field are susceptible to interfer-
ence from environmental factors, which may cause large uncer-
tainties in the results. Therefore, to ensure the stability of the
results, there are certain requirements of the timing and environ-
ment in the field measurement. Besides, laboratory measurements
are more suitable for small-scale samples, such as cells, seeds, and
individual plants. Greenhouse and field-based techniques are
applicable to obtain the traits of individual plants and canopy.
UAV-based high-throughput phenotyping devices can be used in
the field to capture traits of large populations, such as plant height,
lodging, and yield. Whether in the laboratory, greenhouse, or field
conditions, high-throughput phenotyping platforms can be fixed or
mobile, although a flexible hardware and software phenotyping
platform may facilitate the acquisition of plant traits faster and
more efficiently.

The merits and shortcomings of the most extensively used high-
throughput phenotyping techniques and the traits evaluated in
GWAS are shown in Table 2. Visible light/RGB imaging is the most
popular technique for the measurement of various traits, from the
cell level to the canopy level. Visible light/RGB imaging applies a
series of image processing algorithms to identify features in images
acquired with a digital camera. A major advantage of the approach
is the low equipment requirements. Although visible light/RGB
imaging allows the assessment of diverse morphological traits, it
is highly dependent on image processing algorithms; proper image
processing algorithms are key for accurate and rapid trait recogni-
tion. X-ray CT is a form of imaging that allows structural analysis of
samples through X-ray irradiation with high penetrability. Besides
rice tiller traits, X-ray CT has been applied in the measurement of
other plant traits, such as pollen grain traits [123] and wheat grain
traits [124]. Although the application of X-ray CT in GWAS is still in
its infancy, the study on the genetic structure of tiller traits in rice
demonstrated the feasibility of applying X-ray CT to GWAS and the
unique advantages of the technique in detecting rice tiller traits. X-
ray CT and micro-CT provide high-resolution images of plants, and
reconstruction of the 3D structure of a sample facilitates accurate
trait measurements. However, their high costs limit their applica-
tion. Visible near-infrared spectroscopy is convenient for acquiring
spectral parameters, and spectral reflectance values can be used to
investigate the contents of certain biochemical components
through modeling, in a non-invasive manner and on a large scale.
Multispectral/hyperspectral imaging combines spectroscopy with



Table 2
Advantages and disadvantages of common used high-throughput phenotyping techniques and their evaluated traits used in GWAS.

Techniques Traits used for GWAS Advantages Disadvantages

Visible light/RGB
imaging

morphological traits (shape, color, size-related traits):
(1) panicle traits: e.g. panicle length, rachis length, primary branch number;
(2) leaf traits: e.g. green leaf area;
(3) tassel traits: e.g. tassel weight, tassel length, spike length, branch number;
(4) root traits: e.g. total root length, total surface area, convex hull area, adjust
depth;
(5) canopy traits: canopy coverage, biomass, radiation interception efficiency,
radiation use efficiency;
(6) cell traits: cell column number and width;
(7) seed traits: e.g. germination rate at certain time, volume increase, mean
germination time.
(8) others: tiller number, projected shoot area, relative growth rate, transpiration
rate, transpiration use efficiency, plant compactness, digital biomass, plant
height, etc.

low equipment expense,
suitable for wide applications

only allow appearance
information acquisition;
highly depend on image
processing algorithms,

X-ray computed
tomography

(1) tiller traits: tiller number, size, and shape related parameters, tiller angle;
(2) tiller growth traits: absolute growth rate of total tiller area, relative growth
rate of total tiller area, absolute growth rate of tiller number, relative growth rate
of tiller number.
(3) stem vascular bundles traits (micro-CT)

sensitive high expense

Visible and near-
infrared
spectroscopy

(1) spectral indices for crop and canopy: e.g. reflectance at specific wavelengths,
normalized differential spectral index, differential spectral index, simple ratio
index, the modified canopy adjusted ratio index 2, the MERIS terrestrial
chlorophyll index, the normalized difference vegetation index, photochemical
reflectance index, canopy spectral reflectance, the derived hyperspectral indices;
(2) biochemical parameters: e.g. total phenol, proanthocyanidin, and 3-
deoxyanthocyanidin concentrations in grain, glucosinolate content in seed.

biochemical component
content can be estimated by
modeling

point measurement (cannot
be represent spatial
information),
background interference

Multispectral/
hyperspectral
imaging

(1) hyperspectral indices: e.g. total reflectance, average reflectance, the derived
hyperspectral indices;
(2) lodging traits: e.g. visual scores of lodging intensity, severity and lodging
index.

rich spatial and spectral
information acquisition

complex data/image
processing

Chlorophyll
fluorescence

chlorophyll fluorescence induction parameters (e.g. Fv/Fm) high sensitive to plant
physiological changes

point measurement

Fluorescence
imaging

biovolume estimations high sensitivity sensitive to interference,
small field of view

Nuclear magnetic
resonance

seed oil content high resolution high cost
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conventional imaging and not only provides 1D spectral informa-
tion but also 2D spatial information, enabling rapid acquisition of
massive data and allowing comprehensive sample analyses. How-
ever, the technique also has some limitations. Effective processing
of the massive data and redundancy elimination are key to gener-
ating accurate representations of traits, and high-performance
data-processing methods are crucial. Both chlorophyll fluorescence
and fluorescence imaging are based on organic materials emitting
unique fluorescence patterns following excitation. Chlorophyll flu-
orescence is considered a probe for photosynthesis and chlorophyll
fluorescence parameters are appropriate tools for evaluating the
physiological status associated with photosynthesis. Fluorescence
imaging integrates fluorescence and imaging techniques to gener-
ate fluorescence images. While such tools can sensitively detect
changes in fluorescence, the results are prone to be the influence
of external factors such as an exterior light source. NMR uses radio
frequency pulses to capture signals reflecting the proton content to
determine the characteristics of specific components in samples.
NMR has demonstrates particularly high resolution in the detec-
tion of certain key metabolites in seeds [125]; however, its applica-
tion is also limited by high equipment costs. Various other high-
throughput phenotyping techniques that are not discussed in this
review, such as infrared thermography and optical coherence
tomography, require further investigations, in combination with
GWAS.

Owing to the advantages of automated data acquisition,
minimal sample preparation, and non-invasiveness, the above
high-throughput phenotyping techniques have been exploited to
assess numerous plant traits in GWAS. For instance, traits related
to morphology and texture can be acquired by imaging techniques,
and biochemical components can be estimated by building models
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based on near-infrared spectral reflectance or other types of sig-
nals. However, it is worth noting that high-throughput phenotyp-
ing techniques still cannot completely replace manual
measurements. Modern analytical tools make it feasible to auto-
matically or semi-automatically measure plant phenotypes from
the microscale to the macroscale. However, at present, some of
the tools require complex sample preparation, which hamper
high-throughput phenotyping. For example, high-throughput phe-
notyping at the cellular or subcellular scale for certain metabolites
and indicators that are difficult to measure using currently avail-
able instruments has been rarely reported since complex sample
preparation procedures and high-performance instruments are
required. With further analytical and instrumental developments,
high-throughput phenotyping of such attributes could be realized.

Challenges and future prospects

Although numerous studies have demonstrated the potential
applications and roles of high-throughput phenotyping in plant
research, relatively few studies have integrated high-throughput
phenotyping and GWAS. The major factors limiting the application
of high-throughput phenotyping and GWAS are challenges in
acquisition of genetic data, accurate characterization of plant traits,
and lack of adequate individuals with the required skills. Genetic
data are mainly acquired from gene banks or by resequencing.
Whole-genome resequencing is laborious, time-consuming, and
costly. In addition, current gene banks are few and the available
data may not match the actual samples. Accurate trait acquisition
is essential for GWAS; however, current high-throughput pheno-
typing techniques applied in GWAS are still generally flawed. Var-
ious high-throughput phenotyping techniques, including the most
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commonly used visible light/RGB imaging, hyperspectral imaging,
and X-ray CT, strongly depend on data/image processing algo-
rithms. Currently, available signal analysis algorithms have various
shortcomings, such as low efficiency and imperfect and inaccurate
feature extraction; therefore, they require improvements. High-
resolution and high-sensitivity equipment used for hyperspectral
imaging, X-ray CT, and fluorescence imaging are costly and are
therefore not used extensively. Unmanned aerial vehicles for
near-surface high-throughput phenotyping are suitable for obtain-
ing canopy phenotypic data due to flexibility and extensive spatial
coverage. However, high cost, insufficient payload, and the com-
plex techniques required to process massive remote sensing data
limit their adoption. More promising approaches, such as infrared
thermal imaging and optical coherence tomography, should be
introduced into GWAS.

At present, some studies focused more on how to acquire phe-
notypic data of plants using high-throughput phenotyping tech-
niques and how to deal with the acquired data for phenotype
analysis [22,35,37,38,54,56,126]. Some other studies presented
in this review used high-throughput phenotyping techniques to
acquire phenotypic data for genomic analysis [16–17]. For both
kinds of researches, a common phenomenon could be observed
that the acquired phenotypic data were used for specific objec-
tives, and may not be accessible over generations. Phenotypic
data are significantly affected by genotype and environment.
Changes in the environment can cause changes in phenotypic
data, the unknown environmental factors will cuase uncertainty
of phenotypic data. Indeed, it is possible to generate phenotypic
data databases by high-throughput phenotyping techniques, only
if enough environmental situations are considered, and it is quite
difficult to achieve this goal. Recent studies focused on linking the
phenotypic data with certain phenotypes and with certain geno-
typing data that may have relationships with specific phenotypes.
The expectation that phenotypic data should be accessible over
generations to preserve non-repeatable experiments in the con-
text of constantly changing environments has not been fully con-
sidered. However, although the acquired phenotypic data may not
be re-used directly due to the changing environmental factors,
specific traits associated with certain genes reflected in the cur-
rent phenotypic data could still be used over generations for
the same genotypes. These traits can be acquired and analyzed
for the next generations.

Various high-throughput phenotyping techniques can obtain
multiple types of plant phenotypic data from different aspects,
which significantly extend the content of plant phenotypic data.
These data are presented in heterogeneous data formats, causing
difficulties in data analysis and management. Data analysis
approaches are important to deal with these heterogeneous data
formats and transform these data formats into the same format
for data representation. Different data sources representing various
types of phenotypic data can be further fused to comprehensively
understand the relationship between phenotypic data, phenotypes,
and genotypes. The high data volume is also a problem for analyz-
ing phenotypic data obtained by these techniques. Multiple data
analysis approaches (for example, deep learning [57–77]) have
been developed to deal with phenotypic data obtained from vari-
ous techniques. However, how to make full use of massive data
is challenging for phenotypic data analysis. Although high-
throughput plant phenotyping has been widely studied in recent
studies, very few phenotypic datasets have been provided for free
access. Indeed, it is quite hard to acquire phenotypic data, they are
very valuable, and the researchers have paid a great deal of effort.
However, with more public available phenotypic datasets, non-
repeatable experiments in the context of constantly changing envi-
ronments can be preserved. Many more efforts are needed to
enrich the sources of public available phenotypic datasets. There
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are still shortcomings in the analysis, management, and effective
preservation of phenotypic data, limiting the use of phenotypic
data.

The combination of high-throughput phenotyping and GWAS
could reveal the genetic variation underlying complex traits in var-
ious plant species. The current status of application of GWAS inte-
gration with high-throughput phenotyping in plants is illustrated
in Fig. 3. It is obvious that current research is mainly focused on
model species such as rice and maize, whereas studies on other
plants are rare. Other important plant traits, such as heading date,
and other species are expected to be investigated in future studies.

This review focused on the application of high-throughput phe-
notyping techniques to explore genetic architectures of plant traits.
Such techniques can also be applied in GWAS in humans, animals,
bacteria, and in other fields. For example, magnetic resonance neu-
roimaging data have been used to analyze genetic information
related to brain sulcus widening [127]. Microscope-RGB imaging
has potential applications in the identification of candidate genes
associated with morphological traits of cells [95].

To enhance the use of high-throughput phenotyping and GWAS
for the exploration of the genetic structures underlying complex
traits and to carry out more relevant studies, the following aspects
can be considered:

(1) Investment in research and development in high-efficiency
and accurate population genotypic data acquisition tech-
nologies should be increased.

(2) Ample genotypic data on several important crops are avail-
able in public databases (https://bigd.big.ac.cn/gvm/home).
Collecting plant materials with known genotypes for high-
throughput phenotyping is a potential strategy of minimiz-
ing associated costs.

(3) Low-cost high-throughput phenotyping techniques should
be developed to encourage other applications and adoption.

(4) The establishment and improvement of the public pheno-
typic database are of great significance to effectively solve
insufficient metadata, heterogeneous data formats, or
resource problems in data provision. We encourage and rec-
ommend the publication of metadata, which should be
structured according to the FAIR principles [128] and be
clearly provided with all the detailed information, such as
data format and the environmental conditions. The guideli-
nes for governing the description of phenotypic data has
been proposed, which offered a document of Minimum
Information About a Plant Phenotyping Experiment
(MIAPPE) and recommended to use ISA-Tab formatting for
organizing metadata set [129]. Moreover, unified standard
formats, which can be used universally, should be developed
for phenotypic data generated by different techniques. To
support data reuse, the maintenance and continuously
update of research data management plans within project
live span and the selection of data deposition sites that
ensure long-term data availability under FAIR criteria are
equally important. Some progress has been made in devel-
oping publicly available phenotypic database, such as PHE-
NOPSIS DB (http://bioweb.supagro.inra.fr/phenopsis/) for
Arabidopsis thaliana phenotypic data [130], which can be
used as a template for further advancing the development
of more similar databases. Despite there has been some
attempts in data management, researchers should band
together to pave the way for data reuse.

(5) Continuous development of multivariate data/image analy-
sis algorithms is essential. For instance, deep learning has
exhibited excellent performance in the processing of volu-
minous data and image processing, owing to its unique
strengths in the form of self-learning ability and efficiency

https://bigd.big.ac.cn/gvm/home
http://bioweb.supagro.inra.fr/phenopsis/


Fig. 3. The current status of GWAS equipped with high-throughput phenotyping in plants. (a) The proportion of studies using GWAS combined with high-throughput
phenotyping in plant species (based on searched articles); (b) The main focus of searched articles for various plants. The bigger font size corresponding to the more high
attention.
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in big data analysis. The application of deep learning in plant
trait data extraction will definitely become a major topic in
future research.

(6) The combination of various high-throughput phenotyping
techniques would facilitate more comprehensive evaluation
of plant traits.
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(7) Studies applying various high-throughput phenotyping
techniques in combination with GWAS in more diverse plant
species and traits are urgently required. More high-
throughput phenotyping techniques are expected with fur-
ther developments in analysis techniques and equipment.
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Conclusions

This review provides an overview of the application of high-
throughput phenotyping techniques and GWAS in plants. The
highlighted techniques, including visible light/RGB imaging, X-
ray CT, visible and near-infrared spectroscopy, multispectral/hy-
perspectral imaging, chlorophyll fluorescence, fluorescence imag-
ing, and NMR, have been applied to obtain plant trait data, which
are subsequently applied in GWAS. Recent studies suggest that
traits obtained by high-throughput phenotyping perform similarly
or even better in GWAS than those obtained by traditional, manual
methods. Moreover, traits can be linked to known gene loci using
high-throughput phenotyping. High-throughput phenotyping,
which facilitates non-contact and dynamic measurements, has
the potential to offer high-quality trait data for GWAS and, in turn,
to enhance the unraveling of genetic structures of complex plant
traits. Bottlenecks and challenges in the further development of
high-throughput phenotyping combined with GWAS, as well as
future prospects, are also discussed. The combination of high-
throughput phenotyping and GWAS in linking phenotypes and
genes has broad applications and is not limited to the techniques
and plant traits mentioned in the present review. There are many
more phenotypes to be investigated and techniques to be applied.
Notably, currently, high-throughput phenotyping cannot entirely
replace manual measurements, especially in the quantification of
certain metabolites and indicators that are challenging to measure.
We expect that high-throughput phenotyping integrated with
GWAS will allow the unravelling of coding information in plant
genomes and could promote plant breeding and modern genomics
studies and applications.
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